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ABSTRACT

Black-box context-free grammar inference is a hard problem as
in many practical settings it only has access to a limited num-
ber of example programs. The state-of-the-art approach Arvada
heuristically generalizes grammar rules starting from flat parse
trees and is non-deterministic to explore different generalization
sequences. We observe that many of Arvada’s generalization
steps violate common language concept nesting rules. We thus
propose to pre-structure input programs along these nesting rules,
apply learnt rules recursively, and make black-box context-free
grammar inference deterministic. The resulting TreeVada yielded
faster runtime and higher-quality grammars in an empirical com-
parison. The TreeVada source code, scripts, evaluation param-
eters, and training data are open-source and publicly available
(https://doi.org/10.6084/m9.figshare.23907738).

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;
Syntax; Software reverse engineering; • Computing methodolo-

gies → Active learning settings; • Theory of computation →
Grammars and context-free languages.
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1 INTRODUCTION

Learning a context-free grammar from sample programs with just
the help of a black-box parser currently does not scale well to
realistic settings. Existing approaches need a combination of a
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large number of sample programs (deep learning), the ability to
manipulate a grey-box or white-box parser, or are non-deterministic.
The most closely related approach, the recent Arvada work [22],
is non-deterministic and thus ran Arvada 10 times for each input
to explore different sequences of grammar inference steps.

Black-box context-free grammar inference is crucially impor-
tant when a language only has a black-box parser that cannot be
instrumented. On the other hand, program samples are often avail-
able (e.g., as open-source code or as example programs from the
language vendor). Examples of such languages typically only have
closed-source parsers that are often only available remotely (or can-
not be instrumented for legal reasons). This unfortunately rules out
using white-box or grey-box parser instrumentation [16, 19, 27, 42].

At the same time, grammar inference is important for many
software engineering tasks, including code comprehension [31],
reverse engineering [28], detecting and refactoring code smells [20,
29], transforming source code [1] for optimization or bug fixing,
and generating test inputs [2, 14, 30, 38].

The task of black-box inference of a context-free grammar is
fundamentally hard. First, the given input programs likely do not
cover all aspects of their language’s “golden grammar”. Second, it
is often very hard to generalize from a few programs exhibiting a
few combinations of language features to a grammar describing
the language features with the correct nesting rules. Finally, not
being able to inspect or instrument the language’s parser makes
black-box inference significantly harder than grey-box or white-
box inference, as a black-box approach has a much narrower access
to the parser’s encoding of the language’s golden grammar.

While there has been a lot of interest in applying deep learning
techniques to learning grammars from program samples [11, 15],
a principal limitation of deep-learning approaches is that (a) they
need a very large amount of training samples (which may not be
available) and (b) they do not take advantage of black-box parsers
that are typically available even for closed-source languages. Indeed,
the Arvada paper reports on a comparison with state-of-the-art
deep learning approaches, in which deep-learning tools did not
match the precision of either Glade [5] or Arvada [22].

While Arvada [22] has made significant improvements over
the pioneering Glade [5, 6] work, it still has several limitations.
For example, Arvada has 𝑂 (𝑛4) runtime in its 𝑛 input tokens and
requires its “seed” input programs to be very short. For example, on
average Arvada mostly produced [22] grammars within 5 minutes
with over 80% F1 scores when running on a few dozen hand-selected
minimal sample programs that on average consist of just 1.7 to
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start → stmt
stmt → stmt ␣;␣ stmt | L␣=␣ numexpr | skip
| while␣ boolexpr ␣do␣ stmt
| if␣ boolexpr ␣then␣ stmt ␣else␣ stmt
boolexpr → ∼boolexpr | true | false
| boolexpr ␣&␣ boolexpr | numexpr ␣==␣ numexpr
numexpr → ( numexpr + numexpr ) | L | n

Figure 1: while’s golden grammar G𝑤 (Arvada’s motivating

example [22, Figure 1], reformatted, plus missing skip rule).

12.5 characters. However when running on 25 randomly generated
nodejs programs with an average length of 50 characters, Arvada
yielded on average a 29% F1 score—after a 12 hour runtime.

TreeVada combines several new techniques. First, to guide its
grammar generalization steps to avoid breaking common nesting
rules, TreeVada first pre-structures its input programs according
to nesting rules induced by balanced brackets that are common in
many languages [41]. Depending on the language grammar’s nest-
ing structure this step reduces TreeVada’s runtime from Arvada’s
𝑂 (𝑛4) downward up to 𝑂 (𝑛2). Second, once TreeVada accepts a
grammar generalization step, TreeVada applies this generalization
rule recursively. Finally, building on these techniques TreeVada
carefully omits non-determinism and thus yields a reproducible
grammar in a single run. In an empirical comparison the resulting
TreeVada implementation achieved both faster runtime and better
grammar quality than the most-closely-related Arvada tool. To
summarize, the paper makes the following major contributions.

• TreeVada is the first fast deterministic black-box approach
for context-free grammar inference that produces high-quality
grammars.

• The paper compares TreeVada empirically with its closest
competitor (Arvada) using Arvada’s setup and achieves
faster runtime and better grammar quality.

• The TreeVada source code, scripts, evaluation parameters,
and training data are open-source and publicly available
(https://github.com/rifatarefin/treevada) and archived
(https://doi.org/10.6084/m9.figshare.23907738).

2 BACKGROUND

While there are trade-offs and special cases, “context-free” remains
an important abstraction level for programming language definition,
both for human-level programming language understanding and for
automated language processing tools. For example, the latest ver-
sions of the official language specifications of complex mainstream
languages such as Java [17], JavaScript [45], and C++ [21] include
in their language syntax descriptions context-free grammars. Simi-
larly, many sample grammars of the widely-used ANTLR4 line of
parser generators [33] are context-free.

Figure 1 is a small example context-free grammar. As usual, a
rule with alternatives (𝑙 → 𝑟1 . . . 𝑟𝑚 | 𝑟𝑛 . . . 𝑟𝑧 ) is just shorthand
for having both a first (𝑙 → 𝑟1 . . . 𝑟𝑚) and second (𝑙 → 𝑟𝑛 . . . 𝑟𝑧 )
rule. Each rule is thus essentially of the same form (𝑙 → 𝑟1 . . . 𝑟𝑚)
with a single non-terminal (𝑙 ) on the left and a sequence (𝑟1, . . . , 𝑟𝑚)

of terminals, non-terminals, or both on the right. This, of course,
allows recursive rules (e.g.: 𝑏𝑜𝑜𝑙𝑒𝑥𝑝𝑟 →∼ 𝑏𝑜𝑜𝑙𝑒𝑥𝑝𝑟 ) and balanced
nesting structures (e.g.: 𝑛𝑢𝑚𝑒𝑥𝑝𝑟 → (𝑛𝑢𝑚𝑒𝑥𝑝𝑟 +𝑛𝑢𝑚𝑒𝑥𝑝𝑟 )).

Many programming languages allow balanced nesting of lan-
guage concepts, where a concept has a dedicated start terminal
and a dedicated end terminal and a concept can contain other con-
cepts [41]. For these start and end terminals many languages use
matching round, square, and curly brackets: ( ) [ ] { }. Common
thereby nested concepts include class and function definitions, pa-
rameter lists, code blocks, array creation and access, and various
other expressions—for example, a code block containing other code
blocks that in turn contain arithmetic expressions.

2.1 Black-box Grammar Inference

The long-term goal of this line of work is to reverse engineer the
(unknown) grammar (or specification) of a programming language
from only two things, (1) a few valid sample programs and (2) a
black-box parser. Having such a specification would support various
software engineering tasks, including code comprehension [31],
reverse engineering [28], smell detection and refactoring [20, 29],
test input generation [18], and code transformation [1].

For example, some popular commercial languages (e.g., MAT-
LAB/Simulink) neither have a formal specification nor parsers that
can be analyzed. Specifically, the language’s tools are closed-source
and cannot be instrumented for legal or technical reasons (e.g., they
are only available as a remote service). But valid sample programs
are often widely available—via GitHub or the vendor’s website (to
document language features and encourage language adoption).

We follow Arvada’s definition [22] of grammar quality. So an
inferred grammar G𝑖 is better if it has a higher F1 score, i.e., if
the set of input programs G𝑖 accepts is closer to the set of input
programs accepted by the golden grammar.

2.2 State-of-the-art Inference: Arvada in 𝑂 (𝑛4)
Black-box inference of context-free grammars was pioneered by
Glade [5, 6] and recently advanced by Arvada [22]. Arvada’s
evaluation showed Arvada’s average run provided on average
some 5× improvement in recall and 3× improvement in F1 score
over Glade (while being just 30% slower).

Arvada initially treats each input program as a flat parse tree,
i.e., a single rule that can only reproduce the given input program.
Arvada then iteratively generalizes grammar rules. It groups a
few (leaf and/or internal) parse-tree sibling nodes 𝑡𝑠 , . . . , 𝑡𝑢 (aka
a “bubble”) under a new bubble parent node 𝑏, reflecting a candi-
date grammar rule (𝑏 → 𝑡𝑠 . . . 𝑡𝑢 ). Arvada then picks an existing
interior tree node 𝑎 and its child nodes 𝑡𝑐 , . . . , 𝑡𝑒 , which together
implicitly define a grammar rule (𝑎 → 𝑡𝑐 . . . 𝑡𝑒 ). It then checks if
it can rename the new bubble parent node to (and thereby merge
it with) the existing interior node, yielding the generalized rule
(𝑎 → 𝑡𝑐 . . . 𝑡𝑒 | 𝑡𝑠 . . . 𝑡𝑢 ).

Arvada heuristically accepts such a rule merge when a black-
box parser accepts up to 100 freshly generated sample programs
that exercise the newly-merged rule. Since each such merge check
(and especially failing it) is expensive, Arvada orders its potential
bubbles via heuristics. The key heuristic is to compare the 𝑘 siblings
immediately before (“left 𝑘-context”) and after (“right 𝑘-context”) a
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candidate bubble. Arvada thus ranks a bubble higher if the bubble’s
contexts are more similar to the contexts of existing interior tree
nodes. The secondary bubble-ranking metric is each bubble’s oc-
currence count in the input programs’ parse trees (a higher bubble
occurrence frequency yields a higher rank). To increase the chance
of a merge, Arvada also tries to merge two bubbles directly with
each other (“2-bubble”), for which it ranks all bubble pairs.

The evaluation of Arvada (and Glade) [22] points to two scal-
ability issues. (1) First, Glade’s and Arvada’s training sets only
contain very small input programs, i.e., the largest input programs
range from just 5 (arith language) to 245 characters (tinyc). (2) Sec-
ond, relatively more complex languages (tinyc and especially nodejs)
have the relatively larger golden grammars and input programs. Be-
sides the higher runtime, here Glade and Arvada also yield lower
F1 scores. Following are the key technical challenges of Arvada.

2.2.1 Arvada Run = 10 Non-deterministic 𝑂 (𝑛4) Runs. Arvada’s
first key challenge is its non-determinism, which makes the results
hard to reproduce. For example, when we ran it 10 times on the
Figure 2 input programs 𝑆1, Arvada produced two different gram-
mars. Non-determinism also creates a trade-off between using the
first run’s grammar vs. re-running Arvada in the hope of finding a
better grammar. On each set of input programs, the Arvada work
ran Arvada 10 times, effectively yielding an order-of-magnitude
worse total runtime than the reported average runtime.

Arvada uses non-determinism to explore various sequences of
grammar generalization steps. Such a generalization sequence can
get Arvada stuck in the sense of cutting off subsequent generaliza-
tion options, reducing the inferred grammar’s quality. For example,
the Arvada study reported for several languages a high F1 score
variance among its 10 runs. For example, among 10 nodejs runs
F1 scores ranged from 0.14 to 0.55. Following are Arvada’s four
main sources of non-determinism.

Shuffling Initial Candidate Node-pair Merges: Arvada first
tokenizes each input program along character classes (lower-case,
uppercase, digits, whitespace), keeping only other ASCII (aka “punc-
tuation”) and non-ASCII characters as individual tokens. (Arvada
treats each such resulting token as the only child of a token-specific
“dummy” parent node connected to the root node—for brevity we
omit from figures these dummy nodes.)

Arvada then tries an initial attempt (“MergeAllValid”) to gen-
eralize grammar rules. Specifically, it creates all pairs of existing
non-terminal (mostly dummy) nodes across all parse trees, orders
the pairs arbitrarily (by storing them in a non-deterministic data
structure), and tries to merge each pair. For example, as Figure 2’s
two initial parse trees contain 12 unique non-terminal node types
(𝑡0 and implicit parents of while, ␣, n, etc.), Arvada tries merging
66 node pairs, which yields one successful merge (skip with 𝑡0).

Ranking & Shuffling 𝑂 (𝑛4) Candidate Merges: After the
initialization phase, for each grammar generalization step Arvada
first (re-) collects and (re-) ranks all possible parse-tree sibling-node
sequences (“1-bubbles”) up to a configurable length together with
their pairs (“2-bubble”). For 𝑛 tokens in the initial parse trees there
are essentially 𝑂 (𝑛2) 1-bubbles, which makes the ranking overall
𝑂 (𝑛4). Arvada then takes the top-100 candidates, shuffles them,
stores the existing non-terminal tree nodes in a non-deterministic
structure, and iteratively tries the merges, until one succeeds. For

𝑆1 = { while␣n␣==␣(n+n)␣do␣L␣=␣n ,
L␣=␣((n+n)+n)␣;␣skip }

𝑡0

while ␣ n ␣ = = ␣ ( n + n ) ␣ do ␣ L ␣ = ␣ n

𝑡0

L ␣ = ␣ ( ( n + n ) + n ) ␣ ; ␣ skip

MergeAllValid: merge
�� ��skip with

�� ��𝑡0 into
�� ��𝑡0

↓

𝑡0

while ␣ n ␣ = = ␣ ( n + n ) ␣ do ␣ L ␣ = ␣ n

𝑡0

L ␣ = ␣ ( ( n + n ) + n ) ␣ ; ␣ 𝑡0

skip�� ��𝑡1 →
�� ��L ␣ = ␣ n , merge

�� ��𝑡1 with
�� ��𝑡0 into

�� ��𝑡0

↓
𝑡0

while ␣ n ␣ = = ␣ ( n + n ) ␣ do ␣ 𝑡0

L ␣ = ␣ n

𝑡0

L ␣ = ␣ ( ( n + n ) + n ) ␣ ; ␣ 𝑡0

skip�� ��𝑡2 →
�� ��( n + n ) , merge

�� ��𝑡2 with
�� ��n :

�� ��𝑡2 →
�� ��(𝑡2+𝑡2) | n

↓
𝑡0

while ␣ 𝑡2

n

␣ = = ␣ 𝑡2

( 𝑡2

n

+ 𝑡2

n

)

␣ do ␣ 𝑡0

L ␣ = ␣ 𝑡2

n

𝑡0

L ␣ = ␣ ( 𝑡2

( 𝑡2

n

+ 𝑡2

n

)

+ 𝑡2

n

) ␣ ; ␣ 𝑡0

skip

�� ��𝑡3 →
�� ��) ␣ ; ␣ 𝑡0 , partially merge with

�� ��) :
�� ��𝑡3 →

�� ��𝑡3 ␣ ; ␣ 𝑡0 | )

↓
𝑡0

while ␣ 𝑡2

n

␣ = = ␣ 𝑡2

( 𝑡2

n

+ 𝑡2

n

)

␣ do ␣ 𝑡0

L ␣ = ␣ 𝑡2

n

𝑡0

L ␣ = ␣ ( 𝑡2

( 𝑡2

n

+ 𝑡2

n

)

+ 𝑡2

n

𝑡3

𝑡3

)

␣ ; ␣ 𝑡0

skip

𝑡0 → while ␣ 𝑡2 ␣ = = ␣ 𝑡2 ␣ do ␣ 𝑡0 | L ␣ = ␣ ( 𝑡2 + 𝑡2 𝑡3 | L␣ = ␣ 𝑡2 | skip
𝑡2 → ( 𝑡2 + 𝑡2 ) | n
𝑡3 → 𝑡3 ␣ ; ␣ 𝑡0 | )

Figure 2: Top to bottom: Input while programs 𝑆1 and a re-

sulting Arvada run: initial (pre-tokenized) flat parse trees,

initial node-pair merges (green), 1
st
bubble merge (lime), 2

nd

bubble merge (yellow) without reapplying rule, and 3
rd

bub-

ble merge (orange) breaking tree nesting; resulting grammar.

example, in Figure 2’s first bubbling step Arvada ranks 1,043 can-
didate 1- and 2-bubbles to merge the lime bubble (𝑡1 → L␣=␣n).

Accepting Rule Generalization Via Sampled Programs: For
both above cases (merging initial single nodes or a candidate bub-
ble), Arvada accepts the merge if the black-box parser accepts up
to 100 freshly generated programs. From all programs that exercise
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the proposed generalized grammar rule, Arvada samples these
100 programs (50 per merged side) uniformly.

Final Step (Expand Terminals): At the end Arvada expands
each terminal to a larger character class, so the grammar may
accept tokens that were not in the seed programs. For example,
Arvada tries to expand 𝑡1 → 1 | 2 to all single digits, integers, or
alphanumeric letters. Arvada then samples 10 strings, generates
programs, and checks them via the parser. A grammar’s terminals
may thus differ across Arvada runs on the same seed inputs.

2.2.2 Not Generalizing Recursively. Arvada’s second challenge
is that it does not recursively reapply a rule generalization it just
learned and thus on some runs needs additional expensive steps
or gets stuck. For example, Figure 2 shows 5/10 runs we observed
Arvada pursue for the 𝑆1 input programs. As the second bubble
(yellow) it grouped sibling nodes (n+n) under new bubble parent
𝑡2 and merged 𝑡2 with n’s (not shown) dummy parent into 𝑡2.

While this bubble yields an appropriate generalized grammar
rule (𝑡2 → n | (𝑡2+𝑡2)),Arvada does not recursively reapply this just
learned rule to its parse trees—even though the sibling sequence
(𝑡2+𝑡2) is now present in the right parse tree. Instead, Arvada
re-ranks all bubbles (an expensive operation), picks and merges
another bubble (orange), and thus gets stuck.

2.2.3 Breaking Bracket-implied Nesting Structure. Many languages
use matching round ( ), square [ ], and curly { } brackets to
recursively nest concepts such as class and function definitions,
code blocks, parameter lists, array creation and access, and various
other expressions. Arvada’s third key challenge is that on some
runs it prioritizes a bubble that conflicts with a parse tree’s bracket-
implied nesting structure and thus gets stuck.

For example, in some runs on the Figure 2 input programs 𝑆1,
Arvada breaks the while language’s numerical expression nesting,
which is defined via matching round brackets. In these runs Ar-
vada partially merges the bracket-wise unbalanced orange bubble
()␣;␣𝑡0) with the implicit parent of the last closing bracket. Arvada
then cannot further generalize the grammar. The resulting grammar
is recursive. But for statement sequences (recursive applications
of the semicolon) it only allows very specific instantiations, i.e.,
each generated statement sequence must start with an assignment
statement that contains at least one addition (L␣=␣(𝑡2+𝑡2 . . . ).

3 OVERVIEW AND DESIGN

We guided our design via feedback from running Arvada and our
alternatives on Arvada’s seed programs for tinyc [22]. To prevent
over-fitting we did not use feedback from any other programs or
languages we used in the subsequent evaluation.

3.1 Assumptions on Strings & Brackets

TreeVada’s current heuristics build on two “soft” assumptions,
i.e., that many languages (1) use ’ " quotes to wrap strings and (2)
use ( ) [ ] { } brackets for nesting. If a language (also) uses these
characters for other purposes then TreeVada’s F1 score may suffer.

3.2 Pre-tokenizing Input Programs

As many languages share basic tokenization (or lexing) rules (e.g.,
an identifier is separated by some non-identifier token from the

following token), TreeVada and Arvada first tokenize their input
programs. Tokenizing both likely yields higher-quality grammars
and is more efficient than on each run rediscovering common lexing
rules via relatively expensive grammar inference.

Both approaches thus replace a sequence of elements of one of
the four character classes (lower-case, uppercase, whitespace, or
digits) with a new terminal. This leaves all brackets, punctuation,
and other “special” characters as individual character terminals.
For example, on the 𝑆1 input programs of Figure 2, Arvada and
TreeVada produce the same token sequence.

3.2.1 Program Structure in String Literals. While not part of the
main three problems we focus on, we also notice that Arvada treats
the contents of string literals as program structure. For example,
during initial tokenization Arvada tokenizes the 7-character input
fragment "k␣:-)" into 7 nodes. It may then bubble and merge some
of these nodes and get stuck. We thus want to distinguish string
literals from program elements.

As this is not the paper’s main focus we use a simple heuristic
that solves several scenarios that are common in many languages.
Specifically, we notice that many languages wrap a string literal
in single (’) or double (") quotes. When it encounters either quote
character TreeVada thus groups all following characters until again
encountering the same quote character. While this scheme cannot
handle all cases (e.g., escaped quote characters), it tokenizes com-
mon simple cases correctly, e.g., "k␣:-)" into three tokens, one per
double-quote character plus one for the string literal’s content.

3.3 Pre-structuring Parse Trees Along Brackets

We observe that Arvada’s first bubble-ranking generalization step
is its most expensive, as it may rank in 𝑂 (𝑛4) all pairs of all pos-
sible sibling token sequences of the input programs. Many such
bubbles are likely illegal as they cross a round/square/curly bracket
“boundary” and thus violate a nesting rule that is common among
languages. This becomes clear on the extreme example program
of 𝑛 = 2𝑏 + 1 tokens that starts with 𝑏 round opening brackets
followed by x and 𝑏 round closing brackets. Arvada’s first bubble
generalization step ranks 𝑂 (𝑛4) bubble pairs. Most such bubbles
cross a nesting boundary and thus the parser likely rejects them.

The deeper-structured the parse-trees become via generalization
steps, the cheaper each subsequent generalization step is. These
later steps are cheaper not so much due to earlier grammar general-
ization but as a more-structured tree only permits shorter (and thus
fewer) sibling token sequences. Our goal is thus to quickly convert
parse trees from flat to richly structured, by essentially enforcing
common nesting rules. In the above extreme nesting example, the
nesting-implied parse tree consists of root node plus a single stack
of 𝑏 layers of a single bracket-wrapped node, reducing 𝑂 (𝑛4) to a
single 𝑂 (𝑛2) step, i.e., the upfront MergeAllValid.

Given the wide use of round/square/curly bracket-defined nest-
ing, TreeVada pre-structures parse trees heuristically—likely with-
out significantly impairing the inferred grammar’s quality. Specif-
ically, TreeVada makes one simple stack-based pass over each
input program, initializing the stack (and the parse tree) with root
𝑡0. TreeVada adds each token to the parse tree as the child of the
current top-of-stack node. When encountering an opening ( [ {
bracket, TreeVada first pushes a new non-terminal onto the stack.
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𝑡0

while ␣ n ␣ = = ␣ 𝑡1

( n + n )

␣ do ␣ L ␣ = ␣ n

𝑡0

L ␣ = ␣ 𝑡2

( 𝑡3

( n + n )

+ n )

␣ ; ␣ skip

MergeAllValid: merge
�� ��skip with

�� ��𝑡0 into
�� ��𝑡0 , merge

�� ��𝑡1 ,
�� ��𝑡2 ,

�� ��𝑡3 with
�� ��n into

�� ��𝑡1

↓

𝑡0

while ␣ 𝑡1

n
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𝑡0 → while ␣ 𝑡1 ␣ = = ␣ 𝑡1 ␣ do ␣ 𝑡0 | L ␣ = ␣ 𝑡1 | 𝑡0 ␣ ; ␣ 𝑡0 | skip
𝑡1 → ( 𝑡1 + 𝑡1 ) | n

Figure 3: Top to bottom: TreeVada’s pre-structured bracket-

implied trees for Figure 2’s 𝑆1 input programs with bracketed

sequences (gray) bubbled, initial node-pair merges (yellow &

lime), and 1
st
bubble via bubble-ranking (green); the inferred

grammar captures 𝑆1’s Figure 1 golden grammar rules.

When encountering a matching closing bracket ) ] }, TreeVada
then pops the top element off the stack. When brackets no longer
match TreeVada reverts to a flat tree.

The subsequent attempt to merge all tree node pairs often merges
some of these new rules with each other or other nodes. For example,
the Figure 3 run merges the bracket-implied 𝑡1, 𝑡2, and 𝑡3 with the
existing node n. If a pre-structured rule remains un-merged it does
not generalize the grammar. As it just adds slightly to grammar
verbosity, we do not remove such rules.

Arvada’s motivating while example language uses brackets only
lightly (i.e., only one rule in the Figure 1 golden grammar contains
brackets). But even then there are several cases (e.g., for the Figure 2

input programs) where TreeVada is faster, infers a better grammar,
or does both. Figures 2 and 3 is an example of the latter.

3.4 Removing Specialized Bubbling Heuristics

As TreeVada creates nesting structure upfront, there is less need
for special cases and we therefore remove the following two rarely
successful strategies Arvada uses.

1-bracket Bubbles: Pre-structuring the parse trees ensures that
each sibling node sequence contains at most two round, curly, or
square brackets. While this prevents a bubble from crossing concept
nesting, we observe that one bracket rarely generalizes the grammar
correctly either. Not generating 1-bracket bubbles thus ensures that
TreeVada never considers a bracket-unbalanced bubble.

Partial 1-char Node Merges: When Arvada cannot merge a
given bubble with any interior node, it also tries merging the bubble
with a subset of interior node instances that represent a terminal
character, e.g., to merge the bubble with one “)” instance but not
others. As both Arvada and TreeVada pre-tokenize their input
programs, such special treatment of 1-char tokens rarely yields a
successful merge and TreeVada thus omits such partial merges.

3.5 Deterministic Grammar Inference

TreeVada addressesArvada’s sources of non-determinism. Several
of these were easy to fix without significant performance degrada-
tion, just by switching the implementation to a deterministic data-
structure. Specifically, TreeVada orders the parse trees’ unique
node types by their shortest distance from any program root node
(in ascending order) for two related operations. First, when try-
ing to merge all node-pairs upfront and after exhausting bubbling.
Second, when ordering merge-target nodes for a given bubble.

Similarly, when there are more than 50 candidate programs that
exercise a candidate rule-merge on one of the two merged rules,
TreeVada makes Arvada’s program sampling strategy determinis-
tic, by switching to deterministic data structures and always using
the same random number generator seed value. Finally, TreeVada
makes Arvada’s terminal expansion deterministic, by fixing the
random number generator’s seed value to sample 10 programs from
the larger character class. Following is a more complex case, where
TreeVada needed a new heuristic to compensate for Arvada’s
benefits from arbitrary order and randomness.

3.5.1 Depth- and Length-aware Bubble Ranking. To avoidArvada’s
non-deterministic shuffling of the top-100 ranked bubbles, Tree-
Vada builds on two observations. First, a longer bubble has a higher
chance of being rejected because it tries to group together more
nodes. A longer bubble, when accepted, also has a higher chance
of getting grammar inference stuck. For example, in Figure 2 Ar-
vada’s last merge is a 5-node bubble 𝑡3 → )␣;␣ 𝑡0. The bubble’s
use of “)” prevents “)” from being used as the closing bracket in an
otherwise possible subsequent bubbling of (𝑡2+𝑡2).

Second, and more importantly, a more deeply nested bubble is
more promising than a bubble closer to the root. The intuition is
that a more deeply nested node sibling sequence is in a more spe-
cialized area of the input program that has more of its immediate
surroundings already correctly structured via other rules. The like-
lihood of correctly generalizing such an already specialized area
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thus tends to be higher and, crucially, the impact of getting it wrong
is lower—as it will only affect a relatively specialized program area.

TreeVada thus refines the bubble ranking, by adding two new
criteria, bubble depth and bubble length. We have found that with
these additions the bubble ranking is more reliable and does not
require shuffling to get to promising candidate bubbles early on.
The resulting ranking scheme ranks by context similarity first,
then resolves ties via bubble depth (i.e., the bubble occurrences’
minimum root-distance), further ties via bubble occurrence counts,
and additional ties via bubble length.

3.6 Applying Learned Rules Recursively

After merging a bubble, Arvada does not recursively reapply the
just learned grammar rule. For example, in Figure 2 Arvada merged
𝑡2 → (n+n) with n into 𝑡2, yielding rule 𝑡2 → (𝑡2+𝑡2) | n. While
Arvada proceeds by re-ranking all bubbles, TreeVada here instead
directly tries to recursively reapply the just learned rule as renamed
by the merge (i.e., 𝑡2 →(𝑡2+𝑡2)).

For the Figure 2 scenario, TreeVada would group (𝑡2+𝑡2) under
a new 𝑡2 node, yielding fewer direct children under the second parse
tree’s root node (L␣=␣𝑡2␣;␣𝑡0). This cheaply adds to the parse trees’
structure we have just accepted as correct. In this case it would
also prevent Arvada from its last bubble step that gets it stuck by
breaking the parse tree’s nesting structure.

4 EVALUATION

Overall we would like to get a better understanding of how Tree-
Vada compares with the state-of-the-art approach Arvada, both
on very small and slightly larger input programs. While the larger
input programs may not yet be representative of how a user would
want to apply these approaches on other languages, it at least gives
us a glimpse of the scalability of the compared approaches. We thus
seek to answer the following research questions.

RQ0 Baseline: How does non-determinism affect Arvada?
RQ1 Grammar quality: At similar runtime, does TreeVada

infer better grammars than Arvada?
RQ2 Runtime: When inferring grammars of similar quality,

does TreeVada have a lower runtime than Arvada?
RQ3 Readability: How compact are the inferred grammars?
RQ4 Ablation study: How do TreeVada’s components influ-

ence its resource consumption and grammar quality?

To ease comparison, we run our experiments inArvada’s Docker
image1. Specifically, from the image we reuse the Arvada, black-
box parser, grammar-sampler, random program generator, and
ANTLR4 parser generator [33] binaries. From the image we also use
the languages’ existing 1k test programs. The following summarizes
the metrics we reuse from Arvada’s work.

Precision: From each Arvada-/TreeVada-inferred grammar
we sample 1k programs and count how many of these 1k programs
the respective existing “golden” black-box parser accepts.

Recall: We compile the Arvada-/TreeVada-inferred grammar
into a parser and count how many of the given 1k (“golden”) test
programs that parser accepts.

1Accessed in January 2024: https://github.com/neil-kulkarni/arvada

F1 score:As usual, the F1 score is the harmonic mean of precision
and recall and ranges from 0 (zero precision or zero recall) to 1 (both
perfect precision and perfect recall).

Runtime: The main measure is the Arvada/TreeVada runtime,
which does not include computing precision or recall.

Averages: We follow Arvada [22] in comparing a deterministic
technique’s result with the average of 10 non-deterministic runs.
The latter estimates what a user may expect from running Arvada
once. We also plot each of our Arvada and TreeVada runs.

4.1 RQ0: Timeouts vs. Precision Results

To get a sense of non-determinism’s effect onArvadawe first repro-
duce (“different team, same experimental setup”)2 Arvada’s main
results [22, Table 1]—i.e., runtime and F1 score. We use Arvada’s
Docker image (same Arvada configuration options, etc., including
the same (“seed”) training input programs) and reran all languages
from Arvada’s experiment as in the Arvada paper 10 times. Here
we used a 24GB RAM Ryzen-9 5900HX 3.30GHz CPU laptop.

Table 1: Arvada study [22, Table 1] (left); our rerun (middle),

and TreeVada (right) on the same input programs; Arvada

values are average over 10 runs; f1 = F1 score; t = runtime;

± = standard deviation; bold = unreliable precision & F1 score.

Earlier study [22] Rerun Arvada TreeVada
f1 t[s] f1 t[s] f1 t[s]

arith 1±.00 3±0 1±.00 1±0.1
fol .91±.18 372±36 .88±.19 127±19 n/a
math. .89±.08 65±6 .82±.13 19±1.8

json .97±.05 76±11 .97±.04 28±3.1 .96 22
lisp .57±.21 16±4 .58±.22 6±1.2 .71 7
turtle 1±.00 84±8 1±.00 31±3.0 1.0 25
while .81±.14 54±5 .83±.12 20±1.6 .38 16
xml .96±.08 205±34 .88±.30 78±8.2 .09 88

curl .68±.11 111±12 .68±.10 60±6.9 .63 102
tinyc .81±.08 6.4k±1.2k .69±.16 5k±1k .81 1.5k
nodejs .29±.16 46k±22k .39±.16 23k±6k .56 4.5k

Table 1 summarizes the results. First, in our rerun the runtime
was consistently lower (likely due to the different machine). For
the main grammar quality measure (F1 score), the average over all
11 languages was similar (80.8% vs our rerun’s 79.3%). For individ-
ual languages the impact was larger. For example, tinyc’s average
F1 score dropped from 81% to 69%. It may thus be misleading to com-
pare Arvada performance across languages. For example, while
in the earlier study Arvada produced much better grammars for
tinyc than for curl (81% vs 68%), this difference all but disappeared
in our rerun (69% vs 68%).

From the source code we learnt that when calling a black-box
parserArvada’s precision calculation enforces a 10s timeout. While
the programs are just a few dozen tokens, arith’s “golden” parser
timed out for many programs sampled from the Arvada-inferred
grammars, with parse time growing quickly with program size. On
one example arith run 76/1k programs timed out. Arvada’s metric
2https://www.acm.org/publications/policies/artifact-review-and-badging-current

https://github.com/neil-kulkarni/arvada
https://www.acm.org/publications/policies/artifact-review-and-badging-current
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tool unfortunately treats a timeout as if the parser accepted the
program, which very likely corrupts precision (and thus F1 score).
As we could not easily solve the problem (e.g., by increasing the
timeout by 10×), we exclude arith from tool comparisons.

Excluding a language for unreliable measurement is not meant
to avoid running TreeVada. On the Table 1 arith seeds TreeVada
“scores” 100% precision via Arvada’s metric tool. Due to the metric
tool’s parser timeout treatment, this result is equally unreliable.

4.2 Experimental Setup for RQ1 to RQ4

While the Arvada work carefully constructed minimal input pro-
grams that cover all rules of a given golden grammar, we aim to
emulate a more realistic scenario where the user does not have a
golden grammar and thus cannot construct a minimal set of mini-
mal input programs. Hence we rely on the Arvada Docker image’s
1k test programs. These programs do not guarantee to cover all
golden grammar rules. For the first 5/8 languages, we randomly
pick seed inputs from this pool of 1k programs (which may slightly
inflate recall but still allows comparing TreeVada with Arvada).

Table 2: Input programs 𝑆 with their avg/max TreeVada

pre-tokenized tokens; # = nr. programs same for R1 and R2;

Q = programs containing a " or ’; c = tinyc; js = nodejs.

𝑆H/R0[22] 𝑆R1/R5 𝑆R2
# avg m # avg m Q avg m Q

json 71 3.0 13 30 8.2 72 20 5.4 25 15
lisp 26 2.3 7 30 76.7 418 0 23.8 120 0
turtle 33 7.0 13 35 30.2 91 0 19.2 63 0
while 10 7.8 12 30 110.7 534 0 135.1 1298 0
xml 40 11.4 20 20 24.4 62 14 25.4 75 13

curl 25 13.7 25 25 15.0 26 1 14.6 29 0
c 25 69.1 207 25 81.5 218 0 72.7 213 0
js 25 49.0 146 15 60.0 116 4 65.9 244 5

c-500 n/a 10 420.3 483 0 n/a
js-500 n/a 5 307.0 385 2 n/a

As in the Arvada work, for the next 3/8 languages (curl, tinyc,
and nodejs) we do not have a golden grammar. We thus use the
same 3rd-party random program generators the Arvada work used
(with their default settings) to create new seed programs. For all
8 languages the new input sets 𝑆 may thus not cover all golden
grammar rules. We call this random input set 𝑅1.

Table 2 compares the 𝑅1 input programs with the ones used
in the Arvada work—the first 5 languages had handpicked seeds
(“H”) and the next 3 used 3rd-party generators (“R0”). We focus on
the token counts via TreeVada’s tokenization scheme, as it only
differs in how it treats " and ’, which only a few input programs
contain. Compared to the Arvada study, the average token count
tends to be larger—for most of the first 5 languages by an order of
magnitude. Especially the largest programs are significantly larger.

To explore larger input programs we generate another set 𝑅5
using the same generator used for tinyc [16] (“tinyc-500”) and
nodejs [32] (“nodejs-500”). Here we skip programs under 200 char-
acters long. Table 2 shows tinyc-500 and nodejs-500 programs are

on average 5× larger than tinyc and nodejs programs by token
count. R1/R5 seed (and test) programs either both did (json, xml,
curl, js, js-500) or did not have some programs with quotes. All
R1/R5 seed (and test) programs had brackets, except for xml. Curl
had one seed program with unmatched brackets.

Here we run each experiment on an EPYC Milan 7763 64-core CPU
machine in TACC’s Lonestar6 cluster3, which does not support
Docker. We thus recreated the Docker image’s setup as closely
as possible (same oracle binaries, etc.). After removing arith we
removed the parser timeouts. First, we removed a 3s parser time-
out Arvada used for its grammar inference. This should improve
the quality of Arvada-inferred grammars as it no longer has to
interpret a parser timeout as “parsed ok”.

After removing the 3s parser timeouts, sampled programs of
fol and math also got stuck (for at least 30 minutes each) in their
“golden” parser (due to poorly written grammars). To protect pre-
cision calculation’s integrity we also removed fol and math. For
precision calculation we could then remove its 10s parser timeout,
which allowed us to just use the first 1k programs sampled from an
Arvada-/TreeVada-inferred grammar (Arvada’s evaluation [22]
silently discarded any sampled program over 300 characters).

We started all experiments with 32GB RAM. As Arvada’s gram-
mar inference ran out of memory on lisp, nodejs, and nodejs-500,
for these three experiments we then used an otherwise identically
configured 256GB RAM machine.

4.3 RQ1, RQ2: Precision, Recall, F1, Resources

Table 3 shows the main evaluation results (on R1 and R5). Across
all 10 experiments, TreeVada on average both produces better
grammars and is faster than Arvada, i.e., TreeVada has a 9.3%
higher recall, a 22.1% higher precision, a 19.5% higher F1 score, and a
2.4× speedup over Arvada. In 9/10 experiments TreeVada inferred
a grammar of the same or higher quality than the average Arvada
run (i.e., TreeVada’s F1 score was at least as high as Arvada’s).

The outlier is curl, where TreeVada’s 72% F1 score is slightly
below Arvada’s 78%. curl has brackets but does not use them for
nesting. TreeVada’s attempts to pre-structure the input programs’
parse trees thus either fail quickly during the initial pass over the
input programs or get TreeVada stuck with a sub-optimal grammar.

Compared to our reruns of the earlier study (Table 1, middle),
Arvada increased its F1 score on 2/8 languages—i.e., for curl from
68 to 78% and while from 83 to 100%, likely due to non-determinism
and differences in input programs. On the other hand, switching
from hand-picked minimal programs to randomly selected input
programs here may have contributed to loweringArvada’s F1 score
in 4/8 other languages—json from 97 to 79%, xml from 88 to 76%,
tinyc from 69 to 62%, and nodejs from 39 to 12%.

At the same time, in all 10 experiments TreeVada was faster
than the average Arvada runtime. For 6/10 experiments TreeVada
was at least twice as fast as Arvada’s average run. On the larger
input programs tinyc-500 and nodejs-500 (which have about double
the total number of input tokens as tinyc and nodejs), TreeVada
remains faster than the average Arvada run and achieves higher
F1 scores, i.e., 63 vs. 67% on tinyc-500 and 12 vs. 46% on nodejs-500.

3Accessed in January 2024: https://tacc.utexas.edu/systems/lonestar6

https://tacc.utexas.edu/systems/lonestar6
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Table 3: Average Arvada & TreeVada results over 10 runs; r = recall; p = precision; f1 = F1 score; t = runtime; tO = oracle time;

q = queries sent to oracle; m =peak memory usage; ± = standard deviation; bold = TreeVada ≥ 2× better in main metrics.

Arvada on randomly selected seeds: R1, R5 (R5 = c-500 & js-500) TreeVada on same set of random seeds, m in GB
Name r p f1 t[ks] tO[ks] q[k] m[GB] r p f1 t[ks] tO[ks] q[k] m

json .97 ±.02 .68 ±.13 .79 ±.09 .13 ±.0 .08 ±.0 18.0 ±4.2 .05 ±.0 .90 .96 .93 .03 ±.0 .03 ±.0 9.0 .03
lisp .53 ±.38 .93 ±.13 .57 ±.27 6.1 ±1.5 .44 ±.4 35.8 ±30.9 25.7 ±20.2 1.0 .98 .99 .70 ±.0 .39 ±.0 58.3 .06

turtle 1.0 ±.01 .95 ±.08 .97 ±.05 .56 ±.1 .17 ±.1 29.1 ±8.3 .06 ±.0 1.0 .94 .97 .12 ±.0 .08 ±.0 16.7 .04
while 1.0 ±.00 .99 ±.03 1.0 ±.01 7.8 ±.9 1.1 ±.2 53.2 ±9.6 .76 ±.2 1.0 1.0 1.0 2.1 ±.0 .19 ±.0 34.2 .13

xml 1.0 ±.00 .70 ±.37 .76 ±.30 .30 ±.0 .12 ±.0 25.2 ±3.8 .05 ±.0 1.0 1.0 1.0 .16 ±.0 .05 ±.0 12.5 .08

curl .90 ±.09 .71 ±.14 .78 ±.09 .15 ±.0 .12 ±.0 20.8 ±2.1 .05 ±.0 .60 .89 .72 .12 ±.0 .09 ±.0 20.3 .05
tinyc .76 ±.20 .54 ±.19 .62 ±.18 7.4 ±1.0 1.9 ±.6 131.5 ±27.2 .77 ±.1 .97 .86 .91 3.1 ±.0 .56 ±.0 164.5 .22

nodejs .06 ±.07 .25 ±.09 .08 ±.09 8.7 ±3.3 5.1 ±2.3 130.5 ±69.2 3.1 ±1.7 .47 .82 .59 5.1 ±.0 4.8 ±.0 169.2 .07

c-500 .55 ±.20 .81 ±.08 .63 ±.16 29.6 ±4.7 9.4 ±3.1 247.8 ±82.7 2.4 ±1.1 .53 .93 .67 6.8 ±.2 .85 ±.0 175.5 .40

js-500 .12 ±.15 .26 ±.19 .12 ±.15 23.0 ±5.0 13.0 ±3.6 218.9 ±56.7 8.9 ±2.7 .37 .62 .46 16.7 ±.3 14.4 ±.3 480.4 .35
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Figure 4: Average (and standard deviation) of time spent on ranking bubbles, sampling strings, and in black-box parser. Each

value is normalized by dividing by Arvada’s average total runtime for that language (R1, R5 seed); A = Arvada; T = TreeVada.

For scalability it is further interesting to consider the group
of 7/10 experiments with the highest total token counts in their
input programs—i.e., lisp, turtle, while, tinyc, nodejs, tinyc-500,
and nodejs-500. In these 7 experiments TreeVada has either much
better grammar quality at similar runtime, much better runtime
at similar grammar quality, or both much better grammar quality
and runtime. For example, on the experiment with the highest total
token count (tinyc-500 with some total 4.2k tokens), TreeVada’s
F1 score is 67% vs Arvada’s 63% while using less than a quarter
of the time. To better understand the differences between Arvada
and TreeVada, we further compare the following metrics.

Bubble Ranking Time: Both Arvada and TreeVada rank their
potential grammar generalization steps (aka bubbles). The main
difference is that TreeVada tries to omit from this ranking bubbles
that may violate common bracket-defined nesting rules.

String Sampling Time: Except for the use of non-determinism,
Arvada and TreeVada use the same scheme for sampling programs
that exercise a proposed grammar rule merge.

Oracle Calls & Time: Arvada and TreeVada call an external
parser during grammar inference in the same way.

Memory Use: We measure the peak memory use during gram-
mar inference via Linux’s time command.

Results: TreeVada consistently uses the same or less memory
than Arvada. In 3/10 experiments this difference is one (nodejs,

nodejs-500) or even two (lisp) orders of magnitude. Figure 4 rein-
forces that the source of this difference is the large difference in
time spent on bubble ranking. Given that in these three experiments
TreeVada also yields significantly higher F1 scores makes clear
that much of Arvada’s bubble ranking is counter-productive as it
prioritizes bubbles that ultimately get the grammar inference stuck.

Bubble ranking is the dominating time expenditure for 4/10 of
the Arvada experiments, but in none of the TreeVada experiments.
Instead the external parser dominates TreeVada’s overall runtime
in 7/10 experiments and in 6/7 of these cases by a large margin. In
the remaining 3/10 cases TreeVada’s bottleneck is string sampling.

4.4 RQ3: Grammar Readability

Neither Arvada nor TreeVada attempt to simplify their inferred
grammars. They just export the state of the grammar when they
cannot find any additional grammar generalization steps. Since
there are use-cases involving human consumption such as program
understanding, it is still interesting to determine if higher grammar
quality comes at the expense of larger grammars.

A related question is if a larger grammar for a given language is
maybe structured more efficiently for parsing, i.e., in parser runtime
and memory consumption. To explore these two related questions
we thus measure the following two metrics.
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Table 4: Grammar size and parse performance on R1 & R5: Averages for grammars inferred in 10 Table 3 runs; NT/T = unique

(non-) terminals; A = rules (alternatives); l(A) = avg. rule length; S = sum of rule lengths; tP = time to parse 1k “golden” test

programs; mP = peak memory while parsing; ± = standard deviation (TreeVada all zero); bold = TreeVada ≥ 2× better.

Arvada TreeVada, mP in GB
NT A l(A) S T tP[ks] mP[GB] NT A l(A) S T tP[ks] mP

json 30 ±4 153 ±11 1.4 ±.0 208 ±19.8 95 ±1 .02 ±.0 .03 ±.0 17 178 1.2 208 82 .01 .03
lisp 18 ±10 91 ±27 14.2 ±9.9 1040 ±639.2 40 ±0 .14 ±.2 .04 ±.0 18 95 1.8 171 40 .08 .04
turtle 28 ±6 123 ±17 1.6 ±.2 197 ±43.9 67 ±0 .03 ±.0 .04 ±.0 15 95 1.4 131 67 .02 .03
while 33 ±5 85 ±13 2.3 ±.1 191 ±26.6 18 ±0 .30 ±.2 .22 ±.1 24 55 2.3 127 18 .09 .08

xml 20 ±3 95 ±7 1.6 ±.1 149 ±13.8 58 ±0 .02 ±.0 .03 ±.0 9 78 2.0 157 58 .02 .03

curl 22 ±2 174 ±28 1.4 ±.1 237 ±29.1 91 ±14 .80 ±.5 .07 ±.0 16 137 1.4 189 82 .16 .04
tinyc 57 ±7 229 ±22 1.9 ±.2 436 ±31.9 52 ±3 .70 ±.7 .08 ±.1 30 149 1.8 264 50 .34 .05
nodejs 46 ±9 273 ±43 2.6 ±.6 699 ±66.4 95 ±3 .16 ±.2 .04 ±.0 36 196 1.8 351 95 .12 .04

c-500 63 ±7 246 ±30 2.2 ±.6 514 ±75.7 51 ±2 .60 ±.3 .09 ±.0 41 187 1.8 345 50 .26 .05
js-500 53 ±6 319 ±38 3.0 ±.4 935 ±47.8 95 ±1 10.6 ±10.4 9.9 ±10.0 45 319 1.9 596 102 .43 .10

Figure 5: F1 score of 10 Arvada (-) and TreeVada (◀) runs on hand-picked (H [22]) and random seeds (R0 [22], R1, R2, R5).

Grammar Size: We count a grammar’s unique non-terminals,
unique terminals, number of rules (i.e., rule alternatives), and each
rule’s length (i.e., the length of a rule’s right-hand-side sequence of
terminals and non-terminals). The grammar’s size is then the sum
its rule lengths.

Parse Time & Memory: We measure the total time required
and peak memory used to parse the 1k “golden” test programs using
a parser generated from an Arvada-/TreeVada-inferred grammar.

Results: Table 4 gives an overview of grammar size and parse
performance. Despite covering more of the golden grammars (higher
recall) and having higher F1 scores, TreeVada’s grammars are
smaller for 8/10 languages. The biggest difference is lisp where
TreeVada’s grammar is less than one sixth the size of the aver-
age Arvada grammar. For json, TreeVada’s grammar size equals
Arvada’s average grammar size. The only outlier is xml (157 vs.
149)—where TreeVada has a significantly higher F1 score.

Arvada’s larger grammars do not improve parsing performance,
as there is no experiment in which Arvada’s average parse time or
memory use is lower than TreeVada’s. On the contrary, for 6/10
experiments, TreeVada’s parse time is less than half of Arvada’s.

4.5 Performance Variance Across Seed Sets: R2

To compare performance across seeds we generate a fresh round
of random input program sets (“R2”) in the same style as for R1.

Table 2 shows R2’s size metrics. In R2 all seed sets contain some
brackets, except for xml and curl.

Figure 6: Runtime of Figure 5 runs; H/R0 runtimes omitted

as done on different machines.

For space we only plot their individual results (with the Table 1+3
results for context), i.e., F1 score in Figure 5 and runtime in Figure 6.
TreeVada’s results were stable compared to Arvada’s in the sense
that across R1, R2, and R5 (except for curl on R1) TreeVada’s F1
score was better than the average Arvada F1 score and sometimes
better than every Arvada F1 score. Similarly, across all R1, R2, and
R5 runs, in the single run where Arvada was faster than TreeVada
(js-500 = R5 nodejs) Arvada’s F1 score was zero.
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Specifically, on the R1 and R2 seeds TreeVada’s F1 score was
better than all Arvada runs for both while and xml. Across all seed
sets, TreeVada had a better F1 score than at least 9/10 Arvada runs
for nodejs. Notable outliers are TreeVada’s while and xml runs
on the Arvada work’s seeds (H). Since the while language uses
C-style bracket nesting, TreeVada does not seem overly overfitted
for C-style programming languages.

4.6 RQ4: Ablation Study

Here we explore the impact of TreeVada’s components, using
Table 3’s experimental setup. We first make Table 3’s Arvada deter-
ministic (Section 3.5). For each language the resulting Table 5 and
following ablation tables show the average of 10 runs. For space
we omit standard deviations (all very small or zero).

Making Arvada deterministic yielded several interesting effects.
For example, for lisp recall and F1 score are down, runtime is up,
parser calls are down, and memory consumption is up—each by
about a factor of two. Overall, though, average F1 scores improved
while runtimes slowed down. This indicates that some of Arvada’s
non-deterministic runs got stuck in sub-optimal grammars and thus
terminated relatively quickly.

From Table 5 to Table 6 we add recursive rule application (Sec-
tion 3.6). For most languages this change had little impact on F1
scores. The notable exception are nodejs, tinyc-500, and nodejs-500,
which all had lower F1 scores and a faster runtime. Since the initial
bracket-implied parse tree are not imposed here and partial merge
is used, this version still has bubbles breaking nesting rules. Re-
applying such learned nesting-breaking rules does not improve F1
scores (but may get the grammar stuck relatively quickly).

From Table 6 to Table 7 we add bracket-based initial parse trees
(Section 3.3) and ignoring likely string literal contents (Section 3.2).
Adding these two features makes the F1 score of lisp jump from 0.34
to 0.99 with a decrease in memory use from 58.7 to only 0.07GB.
Additionally, lisp’s runtime drops from 11.4k to 0.47k seconds. All
10/10 experiments had improvement in runtime, while languages
with more nesting structure benefited the most.

From Table 7 to Table 8 we remove partial merges. The F1 scores
tend to improve. Especially nodejs’s F1 score spiked from 0.09 to
0.56, which indicates that partial merges were responsible for some
invalid merges, which essentially blocked learning. Finally, from
Table 8 to TreeVada in Table 3 we add the new bubble ranking
scheme (Section 3.5.1), which has overall neutral results on F1 scores
but overall reduces runtimes.

5 THREATS TO VALIDITY

We briefly summarize key threats to internal and external validity.
Threats to external validity: Often grammar inference tools

show mixed performance with different seeds [6]. Also relying
on hand-crafted small toy programs as seed does not replicate
real-world situations. To overcome these challenges, we randomly
sample seed sets R1, R2, R5 for our experiments.

Threats to internal validity: TreeVada’s pre-structuring may
fail if brackets serve other language-specific purposes than nesting.
For example, in xml names enclosed in angle brackets < > are used
for nesting, whereas in Java or C++ these are mainly used for
relational or bit manipulation operators. We have carefully chosen

Table 5: Table 3’s Arvada + deterministic

r p f1 t tO tB tS q[k] m

json .98 1.0 .99 .09 .06 .01 .02 18 .05
lisp .21 1.0 .34 11.5 .13 8.6 2.6 14 58.7
turtle 1.0 1.0 1.0 .27 .07 .02 .15 16 .06
while 1.0 1.0 1.0 13.7 .38 1.5 8.8 35 .38
xml 1.0 1.0 1.0 .42 .07 .04 .19 19 .08

curl .87 .75 .80 .14 .11 .00 .01 25 .05
tinyc .81 .60 .69 9.5 .82 1.7 4.0 141 .66
nodejs .05 .41 .08 17.6 11.7 2.5 1.9 420 .73

c-500 .68 .68 .68 52.3 6.4 8.3 22.1 360 1.6
js-500 .40 .29 .33 51.2 39.1 8.5 2.6 692 9.5

Table 6: Table 5 + ReApply learnt rules; rc = reApply count

r p f1 t tO tB tS q[k] m rc

json .98 1.0 .99 .10 .06 .01 .02 20 .05 0
lisp .21 1.0 .34 11.4 .13 8.5 2.6 15 58.7 1
turtle 1.0 1.0 1.0 .32 .09 .02 .17 17 .06 0
while 1.0 1.0 1.0 14.4 .40 1.6 9.2 38 .39 0
xml 1.0 1.0 1.0 .47 .08 .04 .21 21 .08 3

curl .83 .77 .80 .15 .12 .00 .01 27 .05 1
tinyc .81 .60 .69 9.77 .91 1.6 4.2 152 .67 4
nodejs .01 .44 .03 9.71 6.3 2.2 .76 210 1.6 6

c-500 .66 .62 .64 48.2 9.4 6.8 18.7 480 1.7 1
js-500 .00 .73 .00 45.2 31.9 9.6 2.6 548 10.0 13

Table 7: Table 6 + Initial bracket tree + Ignore string literals

r p f1 t tO tB tS q[k] m rc

json .98 .90 .94 .05 .04 .00 .00 10 .03 2
lisp .98 1.0 .99 .47 .32 .00 .07 44 .07 2
turtle 1.0 1.0 1.0 .16 .09 .01 .04 18 .04 0
while .98 1.0 .99 3.7 .65 .29 1.8 75 .21 1
xml 1.0 1.0 1.0 .19 .08 .03 .05 16 .07 2

curl .58 .84 .69 .14 .12 .00 .01 24 .04 1
tinyc .88 .43 .58 3.6 .85 .19 1.4 200 .20 6
nodejs .05 .54 .09 7.1 6.3 .03 .38 183 .08 8

c-500 .66 .74 .69 16.3 2.6 1.2 7.5 459 .60 4
js-500 .56 .35 .43 12.8 10.9 .11 .77 298 .33 13

only three bracket types for pre-structuring parse tree as these
three are the most commonly used for nesting [41]. For terminal
expansion, synthesizing regular expressions for the terminals would
give a more robust grammar, which is future work.

6 RELATEDWORK

Grammatical inference is important as the inferred grammar can
serve many tasks [39] when the language’s golden grammar is
unknown. Rather than probabilistic learning [24, 40], active learn-
ing [3] is a good fit as a parser can serve as a minimally adequate
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Table 8: Table 7 + Remove partial merge

r p f1 t tO tB tS q[k] m rc

json .90 .98 .93 .04 .03 .00 .00 10 .03 0
lisp 1.0 1.0 1.0 .60 .36 .00 .11 47 .07 0
turtle 1.0 .67 .80 .27 .10 .01 .09 22 .04 0
while 1.0 1.0 1.0 2.3 .20 .17 1.2 33 .13 0
xml 1.0 1.0 1.0 .16 .06 .03 .04 13 .07 0

curl .89 .90 .89 .13 .11 .01 .01 26 .05 1
tinyc .87 .56 .68 2.8 .46 .18 1.2 136 .18 0
nodejs .44 .76 .56 5.7 5.1 .02 .30 131 .07 2

c-500 .46 .97 .62 12.3 1.1 .60 6.4 235 .35 0
js-500 .48 .57 .52 17.6 14.7 .11 1.2 410 .34 0

teacher (Mat or oracle). Even as a black-box the Mat/oracle can
answer membership queries. Recent work [5, 22, 42] follows this
setting to infer grammars. Following is other related work.

6.1 Linguistics

The linguistics community has developed several negative [4, 12, 13]
and positive results on grammar inference in a wide variety of
settings, i.e., for various grammar classes (including context-free),
oracles, and availability of additional kinds of input [36]. GRIDS [23]
starts with flat parse trees and iteratively bubbles and merges rules.
Maybe most closely related to Arvada is applying a GRIDS-like
approach iteratively [46] and thus sampling new inputs from an
updated grammar. Maybe most closely related to TreeVada are
Sakakibara’s techniques for inferring a subclass of context-free
grammars when given positive examples with their complete (but
unlabeled) parse trees plus a parser-like oracle and a grammar
equivalence oracle [34, 35].

We observe that a program’s bracket-implied nesting structure
can be captured by a Dyck language [8], i.e., a context free language
comprising of only balanced brackets. TreeVada’s pre-structured
parse trees can thus be seen as instances of the Dyck language 𝐷3
on the alphabet (, ), [, ], {, }. An interesting property is that a
Dyck language captures the “non-regular essence” of a context-free
language. Specifically, the Chomsky–Schützenberger representa-
tion theorem [10] says any context-free language can be mapped
to the intersection of a Dyck language and a regular language.

For TreeVada, this pre-structuring is just a startup heuristic. For
example, in subsequent steps TreeVada may discover additional
balanced structures defined by some other opening and closing
terminal pair (which taken together may then be represented by a
𝐷4 language). Similarly, TreeVada may not be able to merge rules
in the initial parse trees.

6.2 Deep Learning

Several reports have been negative on using deep learning for infer-
ence of a context-free grammar (CFG) [37, 43]. RNNs lack the ability
to learn concrete hierarchical rules, leading to a decline in gener-
alization with increasing input length and recursion depth [7, 44].
LSTMs learn statistical approximations, not a deterministic rule-
based solution [37]. Even the state of the art attention based Seq2Seq

model struggles to understand CFGs [44]. Arvada showed signif-
icantly better precision than an LSTM-based model (measuring
recall is not possible). Deep learning’s under-performance may be
due to solely relying on (many) input samples. Glade, Arvada, and
TreeVada use active learning [3], where an additional oracle guides
the learning process. Another significant deep learning limitation
is that it does not produce an explicit grammar, which makes it also
hard to measure recall and F1 score.

6.3 Grey-box Grammar Inference

The grey-box grammar inference approaches don’t make use of the
entire parser source code. GRIMOIRE [9] is a grey-box fuzzing tool
that makes use of the parser’s coverage information. GRIMOIRE
synthesizes a grammar like structure of the inputs while fuzzing.

6.4 White-box Grammar Inference

White-box grammar inference approaches utilize the parser source
code to extract input grammars that follow the structure of the
input. Lin et al. [25, 26] proposed the first white-box method that
recovers parse trees from inputs using static and dynamic analy-
sis. Autogram [19], introduced by Höschele et al, adopts another
white-box approach that tracks the dynamic data flow between
variables of the program to infer an approximate context-free gram-
mar. Mimid [16] by Gopinath et al. infers a grammar by leveraging
dynamic control flow and tracking input character access across
parser locations.

7 CONCLUSIONS

Black-box context-free grammar inference is a hard problem as
in many practical settings it only has access to a limited num-
ber of example programs. The state-of-the-art approach Arvada
heuristically generalizes grammar rules starting from flat parse
trees and is non-deterministic to explore different generalization
sequences. We observe that many of Arvada’s generalization steps
violate common language concept nesting rules. We thus propose
to pre-structure input programs along these nesting rules, apply
learnt rules recursively, and make black-box context-free grammar
inference deterministic. The resulting TreeVada yielded faster run-
time and higher-quality grammars in an empirical comparison. The
TreeVada source code, scripts, evaluation parameters, and training
data are open-source and publicly available.
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