
A Curated Corpus of Simulink Models for Model-based
Empirical Studies

Shafiul Azam Chowdhury
University of Texas at Arlington

Arlington, Texas

Lina Sera Varghese
University of Texas at Arlington

Arlington, Texas

Soumik Mohian
University of Texas at Arlington

Arlington, Texas

Taylor T. Johnson
Vanderbilt University
Nashville, Tennessee

Christoph Csallner
University of Texas at Arlington

Arlington, Texas

ABSTRACT
Recent years have seen many empirical studies of model-based
cyber-physical systems and commercial CPS development tool
chains such as Matlab/Simulink. To benefit such research, this pa-
per presents the by-far largest corpus of freely available Simulink
models to date, containing over 1,000 models.

Surprising findings based on this corpus include that (a) tool
support for metric collection is not adequate and (b) users do not
reusemodel components as theywould in object-oriented programs.
The paper both confirms and contradicts earlier findings that are
based on significantly fewer models, suggesting the utility of the
corpus for future research. While others have not yet leveraged
this model corpus, we hope that our freely available corpus and
infrastructure will benefit future model-based empirical research
and tool development efforts, by reducing the model-collection
overhead and thus easing evaluation.

CCS CONCEPTS
• Software and its engineering→Model-driven software en-
gineering;

KEYWORDS
Cyber-physical systems, model-based software engineering, empir-
ical study, Simulink

ACM Reference Format:
Shafiul Azam Chowdhury, Lina Sera Varghese, Soumik Mohian, Taylor T.
Johnson, and Christoph Csallner. 2018. A Curated Corpus of Simulink Mod-
els for Model-based Empirical Studies. In SEsCPS’18: SEsCPS’18:IEEE/ACM
4th International Workshop on Software Engineering for Smart Cyber-Physical
Systems , May 27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3196478.3196484

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SEsCPS’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5728-9/18/05. . . $15.00
https://doi.org/10.1145/3196478.3196484

1 INTRODUCTION
In model-based design of cyber-physical systems (CPS), engineers
rapidly prototype their systems using graphical models in sophis-
ticated development environments (e.g., Matlab/Simulink) [9]. In-
creased usage of such models across various industries (e.g., auto-
motive, aerospace, and industrial automation) has elicited interest
in understanding the model properties (e.g., size measures) and
how they relate to quality attributes (e.g., complexity and compre-
hensibility) [5]. Many of these studies investigate structural model
properties and propose new metrics based on the properties.

When evaluating various proposed metrics, most of the model-
based studies only use a handful of models, which could adversely
affect the evaluation. Besides, different studies compute measures
using different sets of Simulink models, which makes their com-
parison problematic. Furthermore, studies often use proprietary
models that are not publicly available, which makes reproducing
results difficult.

A collection of publicly available models would facilitate eval-
uation and comparison of many model-based empirical studies.
Besides, tools that operate on models (e.g., static analysis, refactor-
ing, and clone detection tools) often require models of sufficiently
large size and structural complexity, partly to evaluate scalability
[3].

Building a sufficiently large collection of freely available Simulink
models is thus vital and incurs non-trivial overhead. However, arbi-
trarily adding any model in such a collection may be undesirable.
For example, studies may only be interested in complex models or
in CPS domain-specific (e.g., automotive) models. Similar as for the
corpus of Java programs [7], we investigate the various challenges
in developing a curated collection of models (aka corpus).

Since such a model corpus is currently unavailable, insights into
modeling practices are also unknown. This inspired the SLforge
project to build the only-known large-scale collection of public
Simulink models [2]. However, the main focus of this earlier work
was testing the Simulink tool pipeline automatically.

SLforge collected 391 Simulinkmodels and published their sources,
but it did not focus on crafting a corpus. In contrast, we discuss
the design challenges for creating a corpus and publish a much
larger collection of 1,030 models, along with useful meta informa-
tion, which would significantly reduce model-collection-overhead
in future studies. Models in our corpus are large: 93 models have
over 1k blocks, which is greater than the average number of blocks
in the models used at Delphi, a large industrial Simulink user [4].
Furthermore, SLforge only studied the model metrics relevant to

https://doi.org/10.1145/3196478.3196484
https://doi.org/10.1145/3196478.3196484

SEsCPS’18, May 27-June 3, 2018, Gothenburg, Sweden Chowdhury, Varghese, Mohian, Johnson, Csallner

Figure 1: Example CPS model: Rounded rectangle = model;
shaded = block; oval = I/O; solid arrow = dataflow; dashed
arrow = hierarchy [2].

testing Simulink whereas we investigate interesting modeling prac-
tices as well as Simulink model complexity metrics. The corpus and
the tools are freely available [1].

2 BACKGROUND
This section provides necessary background information on model-
based design using Simulink and next, the most related work.

2.1 CPS Data-flow Models and Simulink
Here, we briefly discuss modeling abstractions in Simulink. A graph-
ical model (of a CPS) consists of blocks, which perform operations
on their inputs and pass outputs to other blocks through connec-
tion lines. Simulink offers a variety of built-in blocks, organized
in libraries and allows establishing implicit or hidden connections
using From and Goto blocks [6]. To facilitate custom block-behavior
Simulink avails placing native code (e.g., C) using the S-function
interface. Besides flat models, Simulink offers hierarchical model
creation using Subsystem and Model Reference features, which we
collectively call child-model representing blocks.

Figure 1 contains an example hierarchical CPSmodel [2]. The par-
ent to child model relation is acyclic. But within a model Simulink
permits feedback loops (circular data flow). During compilation
Simulink may reject a model if it fails to numerically solve feedback
loops (aka algebraic loops) using solvers. Simulink offers different
simulation modes. While in Normal mode Simulink “only” simulates
blocks, it also emits some code for blocks in Accelerator mode. In-
depth descriptions of Simulink modeling features are available [9].

2.2 SLforge
Crafting a curated collection of open-source programs is common
in most programming domains [7]. However, the only large-scale
study of public Simulink models we are aware of is the SLforge
project [2]. While SLforge compiles a list of 391 publicly available
Simulink models, its main focus is developing Simulink testing tech-
niques. Whereas, we discuss corpus design challenges and publish
the redistributable models in a single installation file, to ease repli-
cation and comparison of model-based empirical studies. Besides
the (redistributable) models, our corpus includes meta information
which empirical studies may find useful.

Next, unlike SLforge, we study model metrics relevant to ana-
lyzing complexity and modeling practices in general, based on the
largest collection of 1,030 publicly available models. While SLforge
investigated metrics (i.e., the number of blocks and connections

and maximum hierarchy depth in a model and library-usage infor-
mation) relevant to automated testing, we define and investigate
metrics mostly to explore model complexity. Based on our metrics
data, we further perform a lightweight comparison with other em-
pirical studies and discuss interesting findings. Furthermore, we
extend SLforge’s tools to support the new metrics.

3 CORPUS DESIGN CHOICES
To identify the corpus contents we have used the following criteria,
which we expect to be useful for many model-based studies.

CPS Domain. To support various domain-specific studies, we
identified the qualitative attribute CPS domain (e.g., Automotive or
Avionics) whenever possible for each project, from author-provided
descriptions and “tags”.

Trivial Models. Some studies filter out example, toy Simulink
models and examine them separately [2]. We included the manually-
identified “trivial” models in the Simple group (Section 4.1).

Choice of Projects. Extending SLforge’s model collection [2],
we included 96 additional projects (each containing one or more
models) from the Matlab Central repository, filtering by highest
download count, and 12 projects from the SourceForge public repos-
itory.

Content Type. We only include a project in the corpus if it re-
leases models in themdl or slx formats since these formats are most
widely accepted by both engineers and analysis tools. Additionally,
when projects distribute code and generated executables we include
them as well since studies may choose to analyze them.

Test Harnesses and Libraries. Many projects come with test har-
nesses and custom libraries, which may themselves be Simulink
models. Since studies may choose to analyze them separately, we
identified and published their list.

Toolbox Requirements. We extract and include the (mandatory
and optional) toolbox requirements information whenever available
from the project websites.

4 A STUDY OF MODEL METRICS
Here, we define interesting model metrics and utilizing the corpus,
investigate metrics related to complexity and modeling practices.
We discuss findings and compare with earlier work.

4.1 Model Groups
Similar to SLforge [2], we groupmodels into four groups: (1) Tutorial
(t)—the Simulink proprietary models ; (2) Simple (s)—the models we
manually filtered out as toy-example ones; (3) Advanced (a)—the
non-trivial models; (4) Other (o)—the models we were not able to
manually study for time reasons.

4.2 Model Metrics
Mostly using min-max whisker box-plots, we discuss the following
model metrics. We have not considered the custom library files
(Section 3) as CPS models in this study.

A Curated Corpus of Simulink Models for Model-based Empirical Studies SEsCPS’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 1: Overview of the collected models: Total number of models (M), models we could compile readily—without installing
additional toolboxes (Cm), hierarchicalmodels (H), number of blocks (B), non-hidden connections (C), and all connections (Ch).
We could not compute solver (Fixed-step (Fixed) and Variable-step (Var)) and simulation mode (Normal (Nor.), External (Ext.),
PIL, and Accelerator (Acc.)) information for all of the models.

SLforge Our Corpus
Group M Cm H B C M Cm H B C Ch Solver Simulation Mode

Fixed Var Nor. Ext. PIL Acc.
t Tutorial 41 40 40 10,926 11,541 41 40 40 10,926 11,541 11,828 13 28 41 0 0 0
s Simple 156 99 136 7,187 7,121 442 208 325 14,203 14,013 14,261 210 198 389 18 1 0
a Advanced 167 66 165 118,632 116,608 452 147 347 406,185 403,503 429,033 122 227 344 0 0 5
o Other 28 14 21 8,317 9,577 136 29 124 13,117 14,379 14,600 111 24 80 53 0 2

Total 391 219 362 145,062 144,847 1,071 424 836 444,431 443,436 469,722 456 477 854 71 1 7

Table 2: Most frequently used blocks (besides the top-3 Inport, Outports, and SubSystem), in descending order.

Blocks
t Product, Constant, Sum, Gain, From, Selector, Mux, Demux, Terminator, Goto, UnitConversion, BusSelector, Fcn, Integrator, Math, Trigonom.
s Constant, Gain, S_Fun, Terminator, Sum, DataTypeConv., Demux, Mux, Scope, PMIOPort, From, Product, RelationalOp., Goto, Ground, Integr.
a Constant, From, PMIOPort, Sum, Gain, Goto, Product, Mux, Demux, RelationalOp., Switch, Fcn, SimscapeMulti., PMComp., Ground, Terminator
o Constant, Gain, Sum, Product, Termin., Mux, S_Fun, Delay, RelationalOp., Demux, From, ZeroOrderHold, DataTypeConv., Integr., Saturate

t s a o
10

0

10
1

10
2

10
3

10
4

B
lo

ck
s

(a)

t s a o

0

10

20

30

40

50

60

70

Un
iq

ue
 B

lo
ck

s

(b)

t s a o
10

0

10
1

10
2

10
3

10
4

C
on

ne
ct

io
ns

(c)

t s a o
10

0

10
1

10
2

10
3

10
4

C
on

ne
ct

io
ns

 W
ith

 H
id

de
n

(d)

Figure 2: Model metrics: Total blocks (a), unique blocks (b),
connections excluding hidden (c), and including hidden (d).

t s a o
10

0

10
1

10
2

10
3

C
hi

ld
-m

od
el

 B
lo

ck
s

(a)

t s a o
100

101

102

103

Su
bS

ys
te

m
s

(b)

t s a o
10

-1

10
0

10
1

10
2

S
C

C

(c)

t s a o

100

102

104

Cy
clo

m
at

ic
Co

m
pl

ex
ity

(d)

Figure 3: Metric results: Number of (a) child-model repre-
senting blocks, (b) contained subsystems, and (c) strongly-
connected components; (d) cyclomatic complexity.

4.2.1 Blocks and Connections. The current CPS literature heav-
ily uses the number of blocks and connections, but many studies

do not specify if they include “hidden” blocks (those inMasked sub-
systems) and implicit (aka hidden) connections. We include hidden
blocks and give counts for both hidden and regular connections
(Figure 2). A related source of confusion is that two publicly avail-
able tools (sldiagnostics and the tool in [8]) report different block
counts (e.g. 5,700 vs. 10,953) for the same model, as the second
tool multiplies the number of blocks in a referenced model by the
number of time that model is re-used [8]. The second tool captures
the “net functionality” represented by a model, so we use it for our
counts.

4.2.2 Simulation Complexity. We investigated whether the num-
ber of strongly-connected components in the graph representation
of a model captures its complexity in terms of numerically simu-
lating it (Figure 3c). While algebraic loops also incur simulation
complexity, we found that only 18 models have such loops.

4.2.3 Child-model Representing Blocks. We count child-model
representing blocks (Figure 3a) and the number of contained subsys-
tems (NCS) (i.e., the number of blocks in that subsystem) (Figure 3b),
as earlier work relates the latter to model complexity [5]. Interest-
ingly, the distribution of the two metrics is almost identical, imply-
ing that model-referencing, which is considered as good modeling
practice in general, is not widely used in the corpus-models [9].

4.2.4 Hierarchical Modeling. We found that the median number
of blocks in a particular hierarchy level does not exceed 17—an
observation similar to the “small class phenomenon” in object-
oriented (OO) programs [10], where some 57% of the studied Java
classes are smaller than 65 LOC on average. One drawback of the
small class phenomenon in OO is that much of the conceptual com-
plexity of understanding an OO program (vs. traditional procedural
ones) is now in the inter-procedural call and override relationships
(vs. the traditional intra-procedural control and data flow within

SEsCPS’18, May 27-June 3, 2018, Gothenburg, Sweden Chowdhury, Varghese, Mohian, Johnson, Csallner

each large method body). In Simulink, we note that most of the
hierarchies are incurred by the subsystems, which are not reused
or “subclassed”. Consequently, this drawback of the small-class
phenomenon in OO may not apply to Simulink.

4.2.5 Child-model Reuse. Simulink allows reusing some Refer-
enced Model in multiple places in the same model, which in OOmay
be similar to multiple instantiations of a class. However, our study
found only one model using this feature, in the Tutorial group. So,
at least from our model sample, it appears as if this feature is not as
widely used as multiple object instantiation in OO languages. To
reuse functionality, do Simulink users instead reuse S-functions?
We found very low (< 0.5% median value) S-function reuse rate
across all model groups.

4.2.6 MathWorks Cyclomatic Complexity. MathWorks defines
an object’s cyclomatic complexity (e.g., of a block) as

∑n
i=1(oi − 1),

where n is the number of the object’s decision points and oi is the
number of possible outcomes at the ith decision point [9]. We adopt
the definition as it is widely used [5] (Figure 3d), further noting
that the MathWorks tool cannot compute cyclomatic complexity
for non-compilable models. Consequently, we could not use the
tool for a large portion of the models in the corpus.

4.2.7 Most-used Blocks. In Table 2, we examine the most fre-
quently used 15 blocks, noting that Advanced models more fre-
quently use blocks from the Simscape toolbox (e.g., PMIO and Sim-
scapeBlock), which enables rapid creation of complex physical sys-
tems [9].

4.2.8 Simulation Configuration. Although these metrics do not
relate to complexity, we explore the usage of solvers and simulation
modes in Table 1 as these are major configuration options [2].

4.2.9 Others. We compute the number of unique blocks (distinct
block-types) in a model and compilation time, primarily to explore
whether these metrics correlate with cyclomatic complexity.

4.3 Replicating Earlier Model-based Studies
To compare with the findings of a recent model-based study by
Olszewska et al., we conduct a pairwise correlation analysis on the
metrics, namely cyclomatic complexity, compilation time, number
of blocks and connections, number of child-model representing
blocks and NCS, number of strongly connected components and
maximum hierarchy depth [5]. We compute pairwise Kendall’s τ
mainly to compare with the other study. All the metrics are posi-
tively correlated to each other (0.05 significance level).

From our observation, cyclomatic complexity is mostly corre-
lated with the maximum hierarchy depth in a model (0.5509) and
the NCS metric (0.5297). In contrast, Olszewska et al. identified
NCS as mostly correlated, however, they do not compute correla-
tion with hierarchy depth count and used a single Simulink model
in their study whereas we used our full model collection (minus
those for which we could not collect all metrics and Simple models)
models (listed in [1]).

Other observations diverge from earlier work. For example, ear-
lier work found Matlab Central models to have ten times fewer
blocks than industrial models (the latter had some 752 blocks on

average) [4]. However, our current collection contains much larger
Matlab Central models.

5 CONCLUSIONS
In this work, we present the largest corpus of freely available
Simulink models to date. Using the corpus, we explore interest-
ing modeling and complexity metrics. Previously unknown find-
ings in modeling practices and a lightweight evaluation of earlier
model complexity study suggest the utility of the corpus in future
model-based studies, by reducing the model-collection overhead
and supporting evaluation and comparison of such studies. We will
endeavor to grow the corpus and investigate metrics to capture
model complexity utilizing our infrastructure.

ACKNOWLEDGMENTS
The material presented in this paper is based upon work supported
by the National Science Foundation (NSF) under grant numbers
CNS 1464311, CNS 1713253, EPCN 1509804, SHF 1527398, and SHF
1736323, the Air Force Research Laboratory (AFRL) through the
AFRL’s Visiting Faculty Research Program (VFRP) under contract
number FA8750-13-2-0115, as well as contract numbers FA8750-
15-1-0105, and FA8650-12-3-7255 via subcontract number WBSC
7255 SOI VU 0001, and the Air Force Office of Scientific Research
(AFOSR) through AFOSR’s Summer Faculty Fellowship Program
(SFFP) under contract number FA9550-15-F-0001, as well as under
contract numbers FA9550-15-1-0258 and FA9550-16-1-0246. The U.S.
government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation
thereon. Any opinions, findings, and conclusions or recommenda-
tions expressed in this publication are those of the authors and do
not necessarily reflect the views of AFRL, AFOSR, or NSF.

REFERENCES
[1] Shafiul Azam Chowdhury. 2018. Project Homepage. https://github.com/verivital/

slsf_randgen/wiki. (2018).
[2] Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane,

Taylor T. Johnson, and Christoph Csallner. 2018. Automatically Finding Bugs in
a Commercial Cyber-Physical System Development Tool Chain With SLforge. In
40th International Conference on Software Engineering (To Appear). ACM.

[3] Florian Deissenboeck, Benjamin Hummel, Elmar Jürgens, Bernhard Schätz, Stefan
Wagner, Jean-François Girard, and Stefan Teuchert. 2008. Clone Detection in Au-
tomotive Model-based Development. In Proc. of the 30th International Conference
on Software Engineering (ICSE). ACM, 603–612.

[4] B. Liu, Lucia, S. Nejati, and L. C. Briand. 2017. Improving fault localization for
Simulink models using search-based testing and prediction models. In Proc. 24th
IEEE International Conference on Software Analysis, Evolution and Reengineering.

[5] Marta Olszewska, Yanja Dajsuren, Harald Altinger, Alexander Serebrenik, Ma-
rina A. Waldén, and Mark G. J. van den Brand. 2016. Tailoring complexity metrics
for simulink models. In Proccedings of the 10th European Conference on Software
Architecture Workshops, November 28 - December 2, 2016. 5.

[6] Vera Pantelic, Steven Postma, Mark Lawford, Monika Jaskolka, Bennett Macken-
zie, Alexandre Korobkine, Marc Bender, Jeff Ong, Gordon Marks, and Alan
Wassyng. 2017. Software engineering practices and Simulink: bridging the gap.
International Journal on Software Tools for Technology Transfer (2017), 1–23.

[7] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and J. Noble.
2010. The Qualitas Corpus: A Curated Collection of Java Code for Empirical
Studies. In 2010 Asia Pacific Software Engineering Conference. 336–345.

[8] The MathWorks Inc. 2017. How Many Blocks are in that Model?
MathWorks Blog. https://blogs.mathworks.com/simulink/2009/08/11/
how-many-blocks-are-in-that-model/. (2017). Accessed Jan. 2018.

[9] The MathWorks Inc. 2017. Simulink Documentation. http://www.mathworks.
com/help/simulink/. (2017). Accessed Jan. 2018.

[10] Hongyu Zhang and Hee Beng Kuan Tan. 2007. An Empirical Study of Class Sizes
for Large Java Systems. In Proc. 14th Asia-Pacific Software Engineering Conference
(APSEC). 230–237.

https://github.com/verivital/slsf_randgen/wiki
https://github.com/verivital/slsf_randgen/wiki
https://blogs.mathworks.com/simulink/2009/08/11/how-many-blocks-are-in-that-model/
https://blogs.mathworks.com/simulink/2009/08/11/how-many-blocks-are-in-that-model/
http://www.mathworks.com/help/simulink/
http://www.mathworks.com/help/simulink/

