
Doodle2App: Native App Code by Freehand UI Sketching
Soumik Mohian

soumik.mohian@mavs.uta.edu
University of Texas at Arlington

Arlington, Texas, USA

Christoph Csallner
csallner@uta.edu

University of Texas at Arlington
Arlington, Texas, USA

ABSTRACT
User interface development typically starts with freehand sketch-
ing, with pen on paper, which creates a big gap in the software
development process. Recent advances in deep neural networks that
have been trained on large sketch stroke sequence collections have
enabled online sketch detection that supports many sketch element
classes at high classification accuracy. This paper leverages the re-
cent Google Quick, Draw! dataset of 50M sketch stroke sequences
to pre-train a recurrent neural network and retrains it with sketch
stroke sequences we collected via AmazonMechanical Turk. The re-
sulting Doodle2App website offers a paper substitute, i.e., a drawing
interface with interactive UI preview and can convert sketches to a
compilable single-page Android application. On 712 sketch samples
Doodle2App achieved higher accuracy than the state-of-the-art
tool Teleport. A video demo is at https://youtu.be/P4sb0pKTNEY

CCS CONCEPTS
• Software and its engineering→ Software prototyping; •Human-
centered computing → User interface toolkits.

KEYWORDS
User interface design, sketching, prototyping, GUI, deep learning

ACM Reference Format:
Soumik Mohian and Christoph Csallner. 2020. Doodle2App: Native App
Code by Freehand UI Sketching. In IEEE/ACM 7th International Conference
on Mobile Software Engineering and Systems (MOBILESoft ’20), October 5–6,
2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3387905.3388607

1 INTRODUCTION
User interface development of many apps starts with freehand
sketching, typically with pen on paper [3, 4, 12, 17, 23]. Integrating
such freehand sketching more tightly into the software development
process is a long-standing research challenge. The long-term goal
is to directly convert designers’ freehand on-paper sketching to
ready-to-compile app code. As a step toward this goal, in this paper
we replace pen and paper with mouse or touchpad.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7959-5/20/05. . . $15.00
https://doi.org/10.1145/3387905.3388607

While much progress has been made toward our sub-goal of
supporting computer-based sketching (e.g., with a mouse), exist-
ing approaches such as SILK and Teleport are still limited [8, 13].
Some only support a few sketch primitives (e.g., ellipse, rectangle,
straight line, and squiggly line) and thus support few user-app in-
teraction styles [2, 5, 6, 12, 13, 21]. The others have low recognition
accuracy [8].

Tightly integrating freehand user interface (UI) sketching would
bridge a significant gap in today’s software development process.
Specifically, after iterating on paper-based prototypes, UI designers
today have to manually recreate prototypes in “high fidelity” tools
such as Photoshop or in an IDE, which is laborious and costly
(even with GUI builders). This gap also decouples UI designers from
the code their team eventually produces, which often leads to UI
designs that are hard to implement in programming constructs.

Integrating freehand UI sketching is hard if we aim to main-
tain paper’s well-known benefits, e.g., as documented in a study of
87 CHI attendees who had experience creating or testing UI proto-
types [4]. To create UI prototypes the top used tools (72/87) were
art supplies (i.e., paper), because they make it both quick and easy
to create and use prototypes and because they promote creativity.
For usability studies, the top tool was also art supplies, because they
facilitate discussion, allow quick changes, and yield good feedback.

The common limitation of existing computer-based freehand
sketching approaches is their reliance on traditional image classifi-
cation techniques, which do not scale to many sketch primitives or
have low accuracy. Computer vision has seen tremendous progress
over the last years, especially in deep neural networks that have
been trained on large sample collections.

The first key insight is that in image classification generally,
having more training samples that are correctly labeled (e.g., “this
is a rectangle”) enables both distinguishing between more image
classes (e.g., rectangle vs. ellipse) and doing so more accurately.
This is true even if the target image classes have little overlap
in features with the training samples. The second insight is that
humans create a sketch as a sequence of strokes (e.g., with their pen
or computer mouse) and to sketch a given object many designers
produce a similar stroke sequence (e.g., a rectangle as a single
counter-clockwise stroke starting from left-top). So recognizing a
stroke sequence is easier than recognizing a final sketch.

At the core of our approach is Google’s Quick, Draw! (“Quick-
Draw”) collection of over 50M labeled sketches of 345 categories,
from “aircraft carrier” to “zigzag”, each given as a stroke sequence [9].
While this sample collection is crucial for high accuracy, it only con-
tains 4 classes we considered relevant for UI design. We, therefore,
collected some 12k sketches of 16 UI specific classes via Amazon
Mechanical Turk. While the resulting Doodle2App tool is just an
early prototype, it already supports several times more classes of
graphical primitives than the earlier work on SILK, while being

https://youtu.be/P4sb0pKTNEY
https://doi.org/10.1145/3387905.3388607
https://doi.org/10.1145/3387905.3388607
https://doi.org/10.1145/3387905.3388607

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Soumik Mohian and Christoph Csallner

Figure 1: Drawing interface and generated Android app.

more accurate than the current state of the art tool Teleport (94% vs.
17%). At the same time, by adding to the 12k UI element sketch col-
lection, the Doodle2App approach promises to scale well to more
than 20 UI element classes, as its architecture is very similar to
QuickDraw, which already supports over 300 categories at high
accuracy.

The Doodle2App tool is currently web-based and provides a
canvas for sketching via touchscreen or mouse (Figure 1). The user
creates one sketch (or “doodle”) of a UI element at a time (e.g., a
container, text, menu button, forward button, etc.), Doodle2App
classifies the element via its recurrent neural network, and corre-
spondingly updates an HTML-based preview of the resulting UI.
This gives the designer immediate feedback on the UI construction
process. At any time the designer can tell Doodle2App to export
the current UI as source code that is ready to compile and run as
a single-page app on stock Android devices. To summarize, this
paper makes the following major contributions.

• This paper provides the first accurate conversion of freehand
UI sketches that have a substantial variety of UI elements.

• To evaluate the approach, the paper implements the novel
Doodle2App tool and compares it to the state-of-the-art
sketch to code conversion tool Teleport.

• The tool is freely available at http://pixeltoapp.com/doodle/.

2 BACKGROUND
This section contains necessary background information on sketch
recognition, the state-of-the-art UI sketch to code conversion tool
Teleport, and recurrent neural networks (RNNs).

An offline approach processes a finished sketch (e.g., as RE-
MAUI [18] or Teleport [8]). In contrast, an online approach pro-
cesses a sketch’s strokes in the order they are drawn (e.g., as
SILK [13]). Offline recognition provides additional use cases (e.g.,
historical sketches), whereas online recognition has access to more
information and thus promises higher accuracy.

Existing approaches also differ in the most basic (aka “atomic” or
“primitive”) graphical elements they recognize. For example, SILK
recognizes four atomic elements (ellipse, rectangle, straight line,

and squiggly line). Some approaches then recognize certain atomic
element combinations as a compound element (e.g., SILK considers a
small box in a long rectangle a slider). While a compound element is
still a single UI element, some approaches also support nesting, e.g.,
a primitive rectangle may contain two other primitives, which are
then considered three UI elements, a container with two children.

2.1 Sketch to Code with Teleport
The most closely related approach is Teleport’s vision API v2 [8].
It supports 21 classes of hand-drawn UI element sketches. Doo-
dle2App’s atomic UI element classes (Figure 2) overlap with Tele-
port’s in the sense that the respective example sketches on the
Teleport website look like our samples. This overlap is squiggle
(text), square (which Doodle2App treats as a container, Teleport as
a text area or container), checkbox, switch (toggle), star (rating),
dropdown, and slider.

Teleport works offline. To adjust for users’ varying light condi-
tions, background noise, camera alignment, and paper skew and
rotation, Teleport employs a sophisticated computer vision pipeline.
It then classifies elements with a convolutional neural network
(CNN). The Teleport website reports an experiment that yielded
85% accuracy, but describes this number as “optimistic”.

2.2 Recurrent Neural Networks (RNNs)
State-of-the-art approaches for image recognition typically use deep
learning and especially convolutional neural networks (CNNs) [11].
CNN assumes that training data is of fixed dimension and indepen-
dent from each other. For online sketch detection this is a problem,
as sketch strokes are ordered and vary in their edge counts. Recur-
rent neural networks (RNNs) support both of these sketch proper-
ties [15]. Doodle2App builds on QuickDraw’s network architecture
to leverage its recent sketch recognition success [9]. QuickDraw
uses bi-directional RNNs [20], which use both stroke sequences
and reverse stroke sequences.

3 UI ELEMENTS & SKETCH SAMPLES
Doodle2App currently focuses on Android. The Rico dataset [7]
assembled 66k unique Android app screens from 9.3k apps from
27 app categories of the Google Play app store. Rico also captured
the runtime UI hierarchy of each screen and clustered all screens’
elements by visual similarity. The Rico clusters thus do not only rep-
resent the base Android elements but also UI elements of third-party
apps. We calculate the occurrence of each Rico-inferred element
cluster by parsing all screen hierarchies. According to Rico, the
most common Android UI element type was container, followed
by (in order) image, icon (a small interactive image), text, text
button, web view, input, list item, switch (a toggle element), map
view, slider, and checkbox. Rico further breaks down the most
common icon (#3 in the above list) types as back, followed bymenu
(the hamburger), cancel (close), search (loupe), plus (add), avatar
(user image), home (house), share, settings (gear), star, edit, more,
refresh, and forward.

To demonstrate the flexibility of the approach, Doodle2App sup-
ports several of these top UI elements (i.e., the boldfaced ones
above), mostly as graphical primitives (Figure 2). Besides primi-
tives, Doodle2App also supports an example compound element:

http://pixeltoapp.com/doodle/

Doodle2App: Native App Code by Freehand UI Sketching MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

Figure 2: The 20 graphical primitives Doodle2App currently
recognizes. Samples for 4 classes (right) are fromQuickDraw,
the rest (left) is from Mechanical Turk.

A squiggle (text) that fills most of a rectangle is a text button. Fi-
nally, Doodle2App supports nested elements, i.e., a rectangle is a
container that can contain several other elements.

Combining Doodle2App with optical character recognition for
text detection is future work, e.g., by adding an OCR engine. As a
work-around, Doodle2App currently treats a squiggly line as text.
Further work-arounds deal with detecting arbitrary images and
treating an avatar image as an arbitrary image.

The QuickDraw dataset [9] contains 345 sketch categories (from
“aircraft carrier” to “zigzag”), with some 100k samples each, drawn
by anonymous users [10]. QuickDraw stores each sketch as a se-
quence of strokes. Each stroke is a sequence of straight lines, given
by their x/y endpoint coordinates.

To collect sketches for the 16 remaining categories from Figure 2
we built a website similar to Sketchy [19]. To encourage users to
draw from memory, our website shows a UI element repeatedly
for one second before blacking it out for 5 seconds. We recruited
participants via Amazon Mechanical Turk (with IRB approval) and
asked each participant to produce 15 sketches of graphical primi-
tives. We thereby collected 11,500 drawings. After manual review,
each of our 16 categories contained some 600 sketches.

4 OVERVIEW AND DESIGN
Doodle2App currently side-steps the complications of capturing
designers’ paper-based freehand sketching activities. Instead, a
designer directly sketches on Doodle2App’s website via mouse or
touchscreen (Figure 1 left). Since a UI element can consist of several
strokes, the designer draws one UI element at a time and indicates
the end of one UI element by pressing the “z” key or double-tapping
the canvas. To give the designer immediate feedback, the website
also shows an interactive HTML-based preview.

Doodle2App currently supports 21 UI element types, the 20
primitives from Figure 2 plus the compound text button. On a
double-tap, Doodle2App passes the collected strokes to its custom
RNN-based UI element classifier, resolves overlap and nesting, and
updates its HTML preview. At any time the designer can export
the current UI state to a compilable Android app.

4.1 RNN-based UI Element Sketch Classifier
Since deep learning works best when training samples are equally
distributed over the classes, we only used a small subset of the
samples from our four QuickDraw classes, i.e., some 600 (instead of

the full 100k).We selected these 2.4k samples bymanually reviewing
the first samples from QuickDraw, rejecting clear outliers.

Since deep learning has millions of parameters and works best
with larger training sets [14], we used transfer learning [22] to
benefit from a network that has been pre-trained on more samples.
Specifically, we randomly picked 20 QuickDraw classes outside
our 4 QuickDraw classes, split their 2M samples into training and
test (80/20), normalized and converted them into TensorFlow’s
binary storage format tfrecords [1], trained the existing QuickDraw
network architecture [9] on the training set, and initially achieved
94% accuracy on the test set.

Since our application has 20 classes (vs. 345 in QuickDraw) we
changed the network architecture, to pick up additional subtleties
in the training set and thus improve accuracy. The resulting ar-
chitecture consists of a convolutional neural network (CNN) layer
(with filter size 5, kernel size 48), followed by a CNN layer (5, 64),
another CNN layer (3, 96), 8 Bi-RNN layers (as opposed to 5 in
QuickDraw), and a fully-connected layer. We trained this network
for 155,138 steps with a batch size of 8. Overall, adding 3 bidirec-
tional RNN (Bi-RNN) layers to QuickDraw’s 5 existing Bi-RNN
layers increased accuracy to 98%.

We further trained this pre-trained network with 80% of our 12k
sample set for 32,500 steps with a batch size of 8. Our complete
sample set is available both at the stroke sequence level and as
visualizations. This yielded 96.1% accuracy on our test dataset of
2.4k samples [16].

4.2 Generating UI Code
After classifying a new UI element, Doodle2App deals with overlap
and nesting. If the element overlaps with a rectangle (container),
then Doodle2App moves it either inside or outside the container,
depending on the overlap. If the new element is a squiggle (text) and
takesmore than half of the container, Doodle2App considers it a text
button, otherwise it becomes a nested element. If the new element
overlaps with a non-container element, Doodle2App disregards the
element if the overlap is greater 50%, otherwise it moves the new
element outside the area of the existing element.

The nesting relation defines the app screen’s UI hierarchy. Doo-
dle2App creates a compilable single-page Android app, complete
with the UI hierarchy’s layout code and resource files for style and
images. Doodle2App rescales element positions into default An-
droid screen resolution. Figure 1 (right) shows an example generated
Android app. In both preview and app the buttons and checkbox
are clickable, dropdowns have sample items, and sliders and toggles
show state change on click. Both preview and generated app use a
basic interactive graphical representation of the detected elements.
Inferring custom element styles is future work.

5 PRELIMINARY MICRO EVALUATION
To gauge the potential of Doodle2App, we performed an initial eval-
uation at the micro-benchmark level, i.e., at the level of recognizing
and converting individual atomic UI elements. We consider this a
necessary first step, as without good micro-level performance it
is unlikely the technique will do well in the more complex whole-
screen or whole-app setting. We thus evaluate Doodle2App in terms

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Soumik Mohian and Christoph Csallner

of runtime and precision, and compare it with the most closely re-
lated competitor, Teleport, using the following research questions.

RQ1 What is Doodle2App’s runtime to classify a UI element
sketch and convert it to Android code?

RQ2 How does Doodle2App compare with the state-of-the-art
tool Teleport in terms of classification accuracy?

We trained our classifier with an 8 GB RAM Nvidia GeForce
GTX 1080 GPU on a local 16 GB RAM 64-bit Windows 10 machine
with a 3.4 GHz Intel i7-6700 CPU. We first trained our network for
some 62 hours on the 20 random QuickDraw categories for 155,138
steps. Then we continued training the network on our dataset for
32,500 steps, for another 18 hours, for a total of some 80 hours.

5.1 RQ1: Fast Classification & Conversion
For a preliminary exploration of Doodle2App’s runtimewe sketched
and processed some 20 atomic UI elements, both locally on a 16 GB
RAM 64-bit Windows 10 machine with a 2.20 GHz Intel i7-8750H
CPU and on an AMD64 Ubuntu 16.04.5 Amazon EC2 t2.micro in-
stance. The average runtime to process and classify a UI element
sketch was 26 ms (locally) and 20 ms (EC2). These times include
neither transmission delays between user and EC2 nor the time it
took to update Doodle2App’s interactive HTML preview.

After detecting a UI element drawn on the interface, the average
runtime to convert it to an Android app was 526 ms (locally) and
94 ms (EC2). While the faster EC2 runtime seems surprising, code
generation involves copying and instantiating a template Android
folder and Windows 10 is known1 for slower file copying.

5.2 RQ2: More Accurate Than Teleport
To compare Doodle2App with Teleport, we used our test samples
of the 7 classes that overlap with Teleport (i.e., squiggle, square,
checkbox, switch, star, dropdown, and slider), yielding 712 samples.
We converted each of these samples from a QuickDraw stroke
sequence to an image and passed the image to Teleport’s vision API.
The average response time (between request and response) was
some 313 ms, which was likely dominated by internet transmission
delays between us and the Teleport server.

Out of the 712 test samples Teleport classified correctly 124
(17.4%). To put this low value into the context of the 85% accuracy
given on Teleport’s website, the same website also calls out prob-
lems with recognizing sliders and ratings (stars) due to the Teleport
designers using fewer training samples on these two classes com-
pared with their other classes. On the same set of 712 samples
Doodle2App achieved an accuracy of 93.9%.

6 CONCLUSIONS
User interface development typically starts with freehand sketching,
with pen on paper, which creates a big gap in the software develop-
ment process. Recent advances in deep neural networks that have
been trained on large sketch stroke sequence sample collections
have enabled online sketch detection that supports many sketch
element classes at high classification accuracy. This paper lever-
aged the recent Google Quick, Draw! dataset of 50M sketch stroke

1https://superuser.com/questions/1124472/why-is-linux-30x-faster-than-windows-
10-in-copying-files, accessed March 2020.

sequences to pre-train a recurrent neural network and retrained it
with sketch stroke sequences we collected via Amazon Mechanical
Turk. The resulting Doodle2App website offers a drawing interface
and an interactive UI preview and can convert sketches to a com-
pilable Android application. On 712 sketch samples Doodle2App
achieved higher accuracy than the state-of-the-art tool Teleport.

ACKNOWLEDGMENTS
Christoph Csallner has a potential research conflict of interest
due to a financial interest with Microsoft and The Trade Desk.
A management plan has been created to preserve objectivity in
research in accordance with UTA policy. This material is based
upon work supported by the National Science Foundation (NSF)
under Grant No. 1527398 and 1911017.

REFERENCES
[1] Martín Abadi et al. 2016. TensorFlow: A system for large-scale machine learning.

In Proc. OSDI. USENIX, 265–283.
[2] Anabela Caetano, Neri Goulart, Manuel Fonseca, and Joaquim Jorge. 2002. JavaS-

ketchIt: Issues in sketching the look of user interfaces. In Proc. AAAI Spring
Symposium on Sketch Understanding. AAAI, 9–14.

[3] Pedro Campos and Nuno Jardim Nunes. 2007. Practitioner tools and workstyles
for user-interface design. IEEE software 24, 1 (Jan. 2007), 73–80.

[4] Adam S. Carter and Christopher D. Hundhausen. 2010. How is user interface
prototyping really done in practice? A survey of user interface designers. In Proc.
VL/HCC. IEEE, 207–211.

[5] Adrien Coyette, Suzanne Kieffer, and Jean Vanderdonckt. 2007. Multi-fidelity
prototyping of user interfaces. In Proc. INTERACT. Springer, 150–164.

[6] Marco de Sà, Luís Carriço, Luís Duarte, and Tiago Reis. 2008. A mixed-fidelity
prototyping tool for mobile devices. In Proc. AVI. ACM, 225–232.

[7] Biplab Deka et al. 2017. Rico: A mobile app dataset for building data-driven
design applications. In Proc. UIST. ACM, 845–854.

[8] Dimitri Fichou. 2019. Teleport Vision API v2. https://teleporthq.io/blog-new-
vision-api Accessed March 2020.

[9] David Ha and Douglas Eck. 2018. A neural representation of sketch drawings. In
Proc. ICLR. OpenReview.net.

[10] Jonas Jongejan, Henry Rowley, Takashi Kawashima, Jongmin Kim, and Nick
Fox-Gieg. 2016. Quick, Draw! https://quickdraw.withgoogle.com/ Accessed
March 2020.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classifi-
cation with deep convolutional neural networks. In Proc. NIPS. NIPS, 1106–1114.

[12] James A. Landay and Brad A. Myers. 1995. Interactive sketching for the early
stages of user interface design. In Proc. CHI. ACM, 43–50.

[13] James A. Landay and Brad A. Myers. 2001. Sketching interfaces: Toward more
human interface design. IEEE Computer 34, 3 (March 2001), 56–64.

[14] Fei-Fei Li, Rob Fergus, and Pietro Perona. 2004. Learning generative visual models
from few training examples: An incremental Bayesian approach tested on 101
object categories. In Proc. CVPRW. IEEE.

[15] Zachary C Lipton, John Berkowitz, and Charles Elkan. 2015. A critical review of
recurrent neural networks for sequence learning. (2015). arXiv:1506.00019

[16] Soumik Mohian and Christoph Csallner. 2020. Repository for DoodleUINet Draw-
ings Dataset and Scripts. https://doi.org/10.5281/zenodo.3653552

[17] Mark W. Newman and James A. Landay. 1999. Sitemaps, storyboards, and spec-
ifications: A sketch of Web site design practice as manifested through artifacts.
Technical Report UCB/CSD-99-1062. EECS Department, UC Berkeley.

[18] Tuan A. Nguyen and Christoph Csallner. 2015. Reverse engineering mobile
application user interfaces with REMAUI. In Proc. ASE. IEEE, 248–259.

[19] Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. 2016. The
Sketchy database: Learning to retrieve badly drawn bunnies. ACM Transactions
on Graphics 35, 4 (July 2016), 119:1–119:12.

[20] Mike Schuster and Kuldip K. Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing 45, 11 (1997), 2673–2681.

[21] Julian Seifert et al. 2011. Mobidev: A tool for creating apps on mobile phones. In
Proc. Mobile HCI. ACM, 109–112.

[22] Lisa Torrey and Jude Shavlik. 2009. Transfer learning. In Handbook of Research on
Machine Learning Applications and Trends: Algorithms, Methods, and Techniques.
IGI Global, 242–264.

[23] Yin Yin Wong. 1992. Rough and ready prototypes: Lessons from graphic design.
In Proc. CHI, Posters and Short Talks. ACM, 83–84.

https://superuser.com/questions/1124472/why-is-linux-30x-faster-than-windows-10-in-copying-files
https://superuser.com/questions/1124472/why-is-linux-30x-faster-than-windows-10-in-copying-files
https://teleporthq.io/blog-new-vision-api
https://teleporthq.io/blog-new-vision-api
https://quickdraw.withgoogle.com/
https://arxiv.org/abs/1506.00019
https://doi.org/10.5281/zenodo.3653552

	Abstract
	1 Introduction
	2 Background
	2.1 Sketch to Code with Teleport
	2.2 Recurrent Neural Networks (RNNs)

	3 UI Elements & Sketch Samples
	4 Overview and Design
	4.1 RNN-based UI Element Sketch Classifier
	4.2 Generating UI Code

	5 Preliminary Micro Evaluation
	5.1 RQ1: Fast Classification & Conversion
	5.2 RQ2: More Accurate Than Teleport

	6 Conclusions
	Acknowledgments
	References

