
Challenge:

Automatically pinpoint the domain model

classes: The high-level business concepts

Reverse Engineering Object-Oriented Applications

Into High-Level Domain Models With Reoom

Tuan Anh Nguyen, Christoph Csallner

tanguyen@mavs.uta.edu, csallner@uta.edu

Computer Science and Engineering Department

University of Texas at Arlington (UTA), USA

Which of these N classes

should I look at first?

Maintain large

software system

- Design documents typically not

up to date with code.

- Business concepts not readily

available in the code.

- Requires reasoning about

large complex code base.

Reoom Approach: Light-weight Static Analysis

Observations / Heuristics Problem

(O1) If an intermediate result is a domain

model object, the code more likely refers to

it explicitly:

 - Assign to local variable, field, etc.

 - May aid debugging

 - May be seen as more stable over time

(O2) A domain model class is likely used

together with other domain model classes

 - To navigate domain relations

 - To provide business functions

(1) Check O1: Annotate each method m with classes m’s code refers to explicitly. Example: 8 methods, 3 classes

(2) Check O2: Remove m from call graph if m does not appear in a call chain that explicitly refers to ≥2 classes

(3) Rank classes that annotate remaining methods, by how often they are referenced explicitly

Reoom vs. closest competitor—Womble*: Higher precision (p) and recall (r) values are better; SH =

SweetHome3D 1.5; c = classes and interfaces; d = domain model classes in c; t = runtime (Womble seeded:

sum of d runs, Reoom Light: sum of three runs) ; ∩/∪ = results for classes identified by each or any seeded

Womble run; Ø = average precision and recall of Womble’s seeded runs. Experimental setup: 16 GB RAM 2.6

GHz Core i7 MacBook Pro running OS X 10.10.2.

(*) D. Jackson and A. Waingold: "Lightweight extraction of object models from bytecode," in Proc. 21st

ACM/IEEE International Conference on Software Engineering (ICSE). ACM, May 1999, pp. 194—202.

Reoom Light:

Reoom without

step (2)

- jMusic: “These [five] classes form the backbone of the jMusic data structure”

- pdf-sam: Identified domain classes with our own domain knowledge

- pizza_wo: Plain Java version of well documented pizza shop tutorial

- SweetHome3D: “This UML diagram should help you understand which classes are available [..]”

Subjects

Implementation

- On top of static inter-procedural

Java analysis framework

MoDisco

- Call graph: Explicit method and

constructor calls in analyzed

public methods and constructors

- Over-approximates virtual calls

- Not captured: Calls via reflection,

bytecode, or native code

- How do Reoom and Womble compare in runtime performance (RQ1) and precision and recall (RQ2)?

- What is the benefit of step (2), which requires relatively expensive inter-procedural analysis (RQ3)?

Research Questions (RQ)

