SPEjs: A Symbolic Partial Evaluator for JavaScript

Siimeyye Susli
Computer Science & Engineering Department
University of Texas at Arlington
Arlington, TX, USA

ABSTRACT

Partial evaluation is widely performed statically, to perform a source
to source transformation on a source program that yields a spe-
cialized source program. A key observation is that current partial
evaluation schemes perform fast but relatively shallow static analy-
ses. In this paper we propose to deepen the reach of such partial
evaluation schemes by selectively adding local symbolic execution.
Concretely, we describe the SPEjs symbolic partial evaluator for
JavaScript that is built on Babel and the SMT solver Z3. To gauge
the promise of this approach we compared SPEjs with Facebook’s
state-of-the-art partial evaluator Prepack. Our results on a set of
micro benchmarks and Prepack’s test suite indicate that, within
Prepack’s runtime budget, SPEjs was able to simplify additional
expressions and therefore remove dead code branches that Prepack
failed to remove, yielding smaller residual programs.

CCS CONCEPTS

« Human-centered computing — Ubiquitous and mobile com-
puting theory, concepts and paradigms; - Software and its
engineering — Compilers;

KEYWORDS

Mobile applications, partial evaluation, symbolic execution

ACM Reference Format:

Stumeyye Suslii and Christoph Csallner. 2018. SPEjs: A Symbolic Partial
Evaluator for JavaScript. In Proceedings of the 1st International Workshop on
Advances in Mobile App Analysis (A-Mobile ’18), September 4, 2018, Mont-
pellier, France. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3243218.3243220

1 INTRODUCTION

Partial evaluation is widely performed statically, to perform a source
to source transformation that yields specialized code [10, 11]. A
key observation is that current partial evaluation schemes perform
fast but relatively shallow static analyses. For example, existing
techniques check if all variables in a given expression are already
resolved to constants. But existing techniques typically do not per-
form further analysis on expressions that contain non-resolved

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

A-Mobile ’18, September 4, 2018, Montpellier, France

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5973-3/18/09...$15.00
https://doi.org/10.1145/3243218.3243220

Christoph Csallner
Computer Science & Engineering Department
University of Texas at Arlington
Arlington, TX, USA

variables. The result is that current techniques leave open opportu-
nities for more aggressive program specialization.

The size of the code shipped to users and its execution speed are
important. For example, the Facebook mobile application runs daily
on hundreds of millions of smart phones. It consists of a relatively
small native portion, whereas the majority is written in JavaScript.
Minimizing the size and execution speed of this JavaScript code is
the goal of Facebook’s partial evaluator Prepack [7]. Prepack mainly
compacts the program’s initialization code. This code calls general-
purpose libraries and uses variables that are ultimately assigned
to constants, opening many code size reduction opportunities for
partial evaluation. In such a setting, it would make sense to extend
partial evaluation with more heavy-weight program analysis tech-
niques, to further reduce the size of the specialized program (which
is then shipped to hundreds of millions of users).

Beyond the Facebook mobile app, JavaScript is one of the most
widely used programming languages in general. For example, as of
July 2018, 94.8% of all web sites use JavaScript [33]. In addition to
web sites, JavaScript is widely used in iOS and Android applications
as well as in server-side components of mobile and web apps.

It is well-known that most program analysis questions are unde-
cidable in general, even for simple programming languages. Large
and dynamic languages such as JavaScript pose many additional
technical challenges. Previous partial evaluation research has made
significant progress on supporting dynamic language features such
as pointers [4, 16], dynamic method call dispatch [6, 24], Java re-
flection [27], native x86 code [28], removing object allocations and
runtime type checks [1], and implementing high-performance dy-
namic language virtual machines [34]. While these are all important
contributions, we are not aware of approaches that enrich partial
evaluation with symbolic execution to further specialize code.

Fully symbolic execution can be very expensive and may not be
the right fit for partial evaluation, even in a high-value setting such
as the Facebook example. So a key challenge is how to selectively
extend traditional partial evaluation with deeper program analysis,
to get some benefits while avoiding the excessive runtime that, for
example, full symbolic execution would impose.

The most closely related approach is Prepack, which is a state-
of-the-art partial evaluator for JavaScript. While it uses program
analysis techniques such as abstract interpretation, it currently does
not deeply analyze expressions that contain abstract variables (i.e.,
variables that do not have a clear value assignment). Also related are
Jeene and Google’s Closure compiler, which both partially evaluate
JavaScript code but are more limited [8, 13].

This is the first paper that enriches partial evaluation with sym-
bolic execution for the purpose of further specializing the analyzed
code. In our initial formulation, the partial evaluation traverses a
program’s abstract syntax tree and identifies expressions that could
be resolved via constraint solving. (A more traditional treatment

https://doi.org/10.1145/3243218.3243220
https://doi.org/10.1145/3243218.3243220
https://doi.org/10.1145/3243218.3243220

A-Mobile ’18, September 4, 2018, Montpellier, France

of traversing a CFG is future work.) Our approach infers from an
abstract syntax tree (AST) partial execution traces, encodes them
as queries for a SMT solver, and interprets the solver’s results as
program values, which can allow further partial evaluation. We im-
plement a prototype symbolic partial evaluator for JavaScript in the
SPEjs tool on top of Babel and Z3 [14, 17]. We then compare SPEjs
to Prepack on a set of micro benchmarks. On these benchmarks,
SPEjs could specialize programs more aggressively than Prepack,
leading to specialized programs of smaller size and shorter runtime.
To summarize, this paper makes the following contributions.

e This paper presents the first approach to enriching tradi-
tional partial evaluation with symbolic execution.

e We evaluate this technique by implementing it in the SPEjs
prototype tool for JavaScript and comparing it with the state-
of-the-art tool Prepack on a set of micro benchmarks.

o In some cases, SPEjs yielded specialized programs that are
both smaller and faster than Prepack-generated code. SPEjs
is available as open-source software [30].

2 MOTIVATING EXAMPLE

Listing 1 shows a small code example with three nested if state-
ments, where (at least) one branch is infeasible. However at this
point we ignore the semantics of the Date.now function and just as-
sume it can return any value. Regardless of the Date.now semantics,
the second branch can never be executed, as x cannot be smaller
than four and larger than eight at the same time.

1 var k = Date.now();
2 function foo(x) {

3 var a;

4 if (x < 0) a = 4;
5 else if (x < 4 & x > 8) a = 6;
6 else if (x > @) a = 8;
7 return a;

5

9 var t = foo(k);

Listing 1: Motivating example: The foo function contains
an infeasible branch (“a=6”).

1 (function () {

2 var _$1 = this;

3 var _$0 = _$1.Date.now();
4 var _F = _$0 < 0;

5 var _B = _$0 < 4;

6 var _D = _$0 > 8;

7 var _A = _B && _D;

8 var _7 = _$0 > 0;

9 var _4 = _7 ? 8 void 0;
10 var _2 = _A? 6 _4;

11 var _0 = _F ? 4 : _2;

12 t = _0;

13 }).call(this);
Listing 2: Residual code produced by the state-of-the-art
partial evaluator Prepack for the Listing 1 code.

While the Listing 1 example is simplistic, clearly a larger program
could involve longer execution traces and thus expressions that are

Siimeyye Siislii and Christoph Csallner

harder to reason about. However the key observation remains that
variable x is being assigned a value that is not known statically. So a
traditional (static) partial evaluator such as Prepack quickly gives up
on expressions that contain such an “abstract” variable as x, without
analyzing or partially evaluating such expressions further, yielding
Listing 2, which is essentially equivalent to Listing 1, keeping all
three branches.

To evaluate code such as Listing 1 further than existing partial
evaluators do, SPEjs collects symbolic expressions during partial
evaluation and converts them to SMT queries. In this example, SPEjs
produces one query per branch condition. Since the SMT solver does
not find a satisfiable assignment for the second branch condition,
SPEjs infers that the expression is always false, which in this
scenario means that an entire branch is infeasible. Listing 3 shows
SPEjs’s residual code, which is shorter, eliminates unnecessary
branches, and empirically runs faster.

1 function foo(x) {

2 var a;
3 if (x < 0) a = 4;
4 else if (x > @) a = 8;
5 return a;

6

Listing 3: Residual code SPEjs produces for the Listing 1
code. In contrast to a traditional partial evaluator
(Listing 2), SPEjs has removed the infeasible “a=6” branch.

3 BACKGROUND

This section provides necessary background information on partial
evaluation, the Babel JavaScript source-to-source compiler, sym-
bolic execution, and the Microsoft Z3 SMT solver.

Partial evaluation is a program transformation technique that
creates a specialized version of the input program, by evaluating
expressions whose variables have known values. Such a variable
whose value is already known is also called static, whereas a vari-
able whose value is not yet clear is called dynamic. Evaluating
expressions in this manner allows removing dead branches, propa-
gating constants throughout the program, inlining function calls,
and unrolling loops. Partial evaluation is often used to create a
version of a function that is specialized for a specific input value. A
classic example is the power function, e.g., as shown in Listing 4.

1 function power(n,x) {

2 var p=1;

3 while (n>0) {
4 if (n%2===0) {
5 X = X*X;
6 n =n/2;
7 } else {

8 p = p*X;
9 n = n-1;
10 }

11 }

12 return p;
13}

Listing 4: The original power function takes two input
parameters, n and x.

SPEjs: A Symbolic Partial Evaluator for JavaScript

If we know that the program will be computing the cube of x
several times, it may make sense to include a version of power that
is specialized to n==3. With n fixed to three, a partial evaluator can
then derive the specialized version shown in Listing 5.

1 function power_3(x) {

2 return X*x*x;

s 3

Listing 5: A partial evaluator has specialized the Listing 4
code to this residual power function for n==3.

In the context of JavaScript applications, such a situation often
arises with initialization code, which typically is written in a generic
form, e.g., calling functions such as power, but often or always with
the same fixed input such as n==3, where n typically is a hard-coded
configuration parameter.

Generally speaking, a partial evaluator does not change execu-
tion semantics, so passing n==3 and x to the Listing 4 code always
yields the same result as passing x to the Listing 5 code (for all values
of x). In the notation from the literature [19]: [[power]] is [3,x] =

[[powerj]]jS X.

3.1 Babel

Babel is a source-to-source compiler (or transpiler) for JavaScript [14].

It is widely used to convert JavaScript code written in ES6 to other
versions of JavaScript. Figure 1 gives an overview of Babel’s three
main phases: parsing source code to an AST, transforming the AST,
and converting the AST back to source code.

Program
var x = 3; t
Parse, _/_ Transform /=\Genera e g
NSO NN\ X 8

X 3 X +

x 5

Figure 1: Overview of Babel’s three main stages.

3.2 Symbolic Execution

Symbolic execution is a program analysis technique that evaluates
a given program not on concrete input values but on symbolic vari-
ables [12]. At runtime, a symbolic execution engine thus represents
a runtime value as a symbolic expression over the program’s input
variables. A symbolic execution engine iteratively traverses a pro-
gram’s control-flow graph and creates a symbolic execution tree. It
considers all possible paths during the generation and decides path
feasibility using a constraint solver.

// Symbolic

1 var x, y, z;
2 var a = 0; b = 0; c = 0;

3 if (x > z) {a = 253}
4 else if (y < x)

5 {

6 if (z < 3) {b = -2;3}
7 c = 4;

8 }

s

Listing 6: Example JavaScript code.

A-Mobile ’18, September 4, 2018, Montpellier, France

As an example, Figure 2 shows the result of full symbolic execu-
tion of the Listing 6 example program. While traversing a program’s
control flow graph, symbolic execution adds the outcome of each
taken branch decision as a conjunct to the current path condition.
At each point in the traversal, the symbolic execution engine can
call a constraint solver to check if the current path condition is still
satisfiable.

a=0;b=0;c=0;

X=2Z

ZN

y=X
T
) /\
z=3
Path T/\F
Condition

F
!
b=-2 c=4
\ I(x > Z) && (y < X) && /(2 <3)

Voom
N

(X

(x=2z)&& (y <x)

c=4
Ix>z)&& (y <x) && (z < 3)

Figure 2: Symbolic execution tree of the Listing 6 code.

3.3 Analyzing JavaScript with the Microsoft Z3
SMT Solver

Constraint solvers are widely used by program analysis tools [5].
Satisfiability Modulo Theories (SMT) solvers are both expressive
and powerful, since they contain theories and reasoning strate-
gies for data structures that are commonly used in programming
languages, such as bit-vectors to model integer types and their
overflow behavior.

Z3 is a modern SMT solver that answers both satisfiability ques-
tions and produces sample solutions for such questions. While Z3
provides native bindings for several languages including Python
and C#, there is currently no native binding to JavaScript. A com-
mon workaround is expressing queries for Z3 in the standard SMT2
language and passing such queries as text files to Z3 [18].

4 SPEJS OVERVIEW AND DESIGN

This section proposes a unified solution SPEjs for the partial eval-
uation problem using the design principles of partial evaluators
and symbolic execution techniques. We designed SPEjs as a Babel
plugin and combined it with Microsoft’s Z3 SMT solver to overcome
the mentioned issues.

Js Residual
Code BABE \1 Code
Z3

Figure 3: High-level overview of SPEjs’s workflow.

A-Mobile ’18, September 4, 2018, Montpellier, France

Figure 3 gives an overview of SPEjs’s workflow. At a high level,
SPEjs uses the Babel transpiler to convert a program’s JavaScript
code into an AST and traverse the AST. SPEjs uses the Microsoft Z3
SMT solver to decide if branches are feasible. After SPEjs performs
partial evaluation, it uses Babel to export the resulting AST to a
residual JavaScript program.

4.1 Partial Evaluator Design

The design of a symbolic partial evaluator shares many aspects
with the design of a corresponding traditional partial evaluator.
(1) First, both types of partial evaluator traverse an abstraction of
the program, which is typically a control-flow graph. (Our prototype
implementation traverses an AST, but later versions will traverse
a CFG.) (2) Second, both types maintain environment information
on the state of the program’s variables. In the traditional case,
the environment keeps track of a variable’s concrete value (if it is
known) or the fact that the concrete value is currently unknown.

(3) Third, once a variable has been resolved to a concrete value,
both evaluator types propagate this value throughout the program
abstraction. (4) Finally, where an expression only contains resolved
variables, both evaluator types evaluate the expression and iter-
atively propagate the resulting value. Both types of evaluators
perform standard transformations such as expression folding, loop
unrolling, function inlining, and elimination of dead code branches.

However the design of a symbolic partial evaluator diverges
from its traditional counterpart, as its environment can in some
scenarios selectively maintain for some program variables sym-
bolic expressions, similar to the environment a symbolic execution
engine maintains during symbolic execution. A key difference to
a symbolic execution engine is that a symbolic partial evaluator
can operate much more locally (and therefore be more lightweight)
while still maintaining its utility. For example, for code such as
Listing 1, a symbolic partial evaluator does not need to maintain
any symbolic expressions for any of the program variables but can
still achieve the desired effect of removing an infeasible branch,
even if the code contained additional assignment statements that
mutate the x variable.

A symbolic partial evaluator can then convert symbolic expres-
sions to satisfiability queries for an SMT solver. In the motivating
example of Listing 1, we can convert each branch condition to an
SMT satisfiability query, to determine if the branch is infeasible
and can thus be removed from the AST.

Beyond these difference, the usual caveats of static analysis apply,
such as merging the updates performed in two branches of an if
statement. Our prototype implementation just represents such an
update in the environment with a symbolic variable.

4.2 Implementation with Babel and Z3

We developed a custom Babel plugin using a visitor pattern. SPEjs
creates SMT files and passes them to a Node.js child process running
Microsoft Z3. The design of the communication, processing, and
resolving tasks are adapted from the design of the Leena symbolic
execution engine for JavaScript [18].

Figure 4 shows two examples of SPEjs’s processing. Figure 4a
shows an example infeasible if-condition as it may appear in a
JavaScript program. SPEjs builds its AST and converts the relevant

Siimeyye Siislii and Christoph Csallner

declare-const x Int) Child

(
(assert (and (<x 0)(>x 4))) Frocess
if(x <0&&x>4) —» (check-sat) 3 UNSAT
C (get-value (x))
JS Code
C’ SMT
(a)

Child
(declare-const x Int)
(assert(and (<x 0)(<x 4)) | 0¢e%8 SAT
T >08&x<4) —» (nocksan 3 3 ((x1)
¢ JS Code (get-value (x))
QP SMT

(b)

Figure 4: Stages for the resolution of path conditions using
Z3.

AST sub-tree into SMT conditions. SPEjs currently only supports
integral types. Support for more complex types such as strings
is future work. For this example, Z3 cannot find any satisfying
solution. So SPEjs proceeds to remove the corresponding if-branch
from the AST. Figure 4b gives an example of a satisfiable if-condition.
Since Z3 can find a satisfying assignment, SPEjs judges the branch
feasible and at this point does not modify the program’s AST.

5 EXPERIMENTS AND RESULTS

To evaluate symbolic partial evaluation, we would like to know both
if symbolic partial evaluation (i.e., as implemented in SPEjs) is fea-
sible with realistic resources and if the resulting residual programs
are smaller and run faster than both the input programs and, more
importantly, programs obtained via a traditional state-of-the-art
partial evaluator (i.e., Prepack). We thus investigate the following
three research questions (RQ), expectations (E), and hypotheses (H).

e RQ1: What is SPEjs’s runtime compared to Prepack?

- E1: Due to the traditionally high overhead of symbolic
execution and constraint solving, we expect SPEjs to take
longer than Prepack.

— H1: If SPEjs issues SMT solver queries then SPEjs takes
longer than Prepack.

e RQ2: How does the original program’s runtime compare to
the runtime of the programs produced by SPEjs and Prepack?

— E2: On program constructs both SPEjs and Prepack sup-
port we expect SPEjs to perform more aggressive partial
evaluation.

— H2: On certain micro benchmarks SPEjs-produced pro-
grams should have the shortest runtime.

e RQ3: How does the original program’s code size compare to
the size of the code produced by SPEjs and Prepack?

— E2: On program constructs both SPEjs and Prepack sup-
port we expect SPEjs to perform more aggressive partial
evaluation.

— H2: On certain micro benchmarks SPEjs-produced pro-
grams should have the smallest code size.

To explore these research questions, we use two sets of bench-
marks. The first set consists of micro benchmarks we have hand-
crafted such that they only use language features supported by

SPEjs: A Symbolic Partial Evaluator for JavaScript

both SPEjs and Prepack. These benchmarks are available on the
SPEjs web site [30]. The second set is a subset of the test cases in
Prepack’s public code repository. We picked these tests because
they have a relatively high chance that Prepack can handle them.
(As we later found out, the public Prepack version we used could
in fact only handle a relatively small portion of these test cases.)

We ran all experiments in the same environment, which con-
sisted of Node.js version 9.2.0 on a 6 GB RAM virtual machine
running Ubuntu 16.04 LTS. The VM’s host platform had a 2.2 GHZ
64 bit 15-5200 processor, 12 GB RAM, and Windows 10 OS. We used
Prepack version 0.2.19-alpha.0.

We measured tool runtimes using Unix’s built-in time function.
We used the chrt mechanism to raise the task priority to near real
time and computed the average over 100 runs for each sample. For
the original and residual code runtimes, we used Benchmark.js [3],
which is a statistical benchmarking tool for JavaScript. To determine
code size we used jsmeter [21], which counts program statements
instead of code lines.

5.1 Micro Benchmark: Seven Sample Programs

The micro benchmarks combine various basic JavaScript language
features that both SPEjs and Prepack are designed to handle. List-
ings 7 and 8 show two representative examples.

1 var z = Date.now();
2 var b = Date.now();
3 function foo (z, b) {
4 var x = 5, a = 9;

5 if (z>2 && z<0) { b =5 - a; 3
6 else if (x>=5) { a = 2; 3
7 else { a =a+2; b =b-1; }
8 a = a - 6;

9 return a;

0}

n var a = foo(z, b);

Listing 7: Sample 6 writes to various variables.

The Listing 7 code writes to the same variable in two branches.
Ruling out some of these branches as infeasible will enable a partial
evaluator to reflect the correct state update in its symbolic state,
which in turn allows subsequent code simplifications.

1 var a = foo(Date.now());
2 function foo (a) {

3 var x = 0;

4 while (a < 10) {
5 a += 1;

6 X += 1;

7 3

8 if (a < 5)

9 var y = 2;
0}

Listing 8: Sample 7: Infeasible if-branch after while loop.

The Listing 8 code branches on the value of a variable that a
previous while loop branches on and updates in its loop body.
Keeping track of the symbolic expression of this variable will enable

A-Mobile ’18, September 4, 2018, Montpellier, France

a partial evaluator to decide the feasibility of the subsequent if-
branch.

5.2 Micro Benchmark Results

Table 1 gives an overview of the micro benchmark experiments.
Prepack could not process Sample 7.

Table 1: Results on micro-benchmark samples: Both SPEjs it-
self and SPEjs-generated programs had in most cases a lower
runtime than with Prepack (PP).

Tool [ms] Residual [ns] Residual [stmt]
PP SPEjs Orig. PP SPEjs Orig. PP SPEjs
1 1160 607 1.51 143 1.46 9 6 9
2 1114 652 1.55 1.34 1.30 14 5 8
3 1263 644 1.54 141 1.44 9 6 7
4 1213 670 1.65 1.60 1.63 9 8 9
5 1147 842 1.68 1.54 1.51 11 11 8
6 1190 721 1.56 1.54 1.46 17 9 1
7 1103 670 1.71 n/a 1.37 10 n/a 7

5.2.1 RQI: SPEjs With Lower Runtime. Despite making relatively
heavy-weight calls to the Z3 SMT solver, to our surprise SPEjs
had generally a lower runtime. However this can be explained by
Prepack’s larger overall machinery and SPEjs’s prototype status. So
it likely does not generalize to a setting in which SPEjs is fully built
out with a similar coverage of JavaScript language features that
Prepack supports. However we did observe that SPEjs’s runtime
increased as expected with its number of SMT solver calls.

5.2.2 RQ2: Partially Evaluated Code Faster. Both tools produced
code that was faster than the original. But the differences were
small and due to the tiny code size may be misleading. Prepack em-
phasizes that it optimizes its residual code for runtime performance.
This lead to overall similar results as SPEjs’s residual code that is
wholly un-optimized outside its more aggressive partial evaluation.

5.2.3 RQ3: Partially Evaluated Code Smaller. The main results are
in RQ3, as for micro benchmarks code size is a good proxy for
partial evaluation performance. Both tools generally reduced code
size. SPEjs in some cases benefited from its more aggressive par-
tial evaluation. A good example is Sample 6, for which Prepack
produced the Listing 9 residual code, which removes only one of
Listing 7’s two infeasible branches.

1 (function () {

2 var _$2 = this;

3 var _$0 = _$2.Date.now();
4 var _3 = _$0 > 2;

5 var _6 = _$%$0 < 0;

6 var _2 = _3 && _6;

7 var _1 = _2 ?7 9 : 2;

8 var _0 = _1 - 6;

9 a = _0;

0 }).call(this);
Listing 9: Prepack’s residual code for Listing 7.

A-Mobile ’18, September 4, 2018, Montpellier, France

On the other hand, SPEjs produced Listing 10, which removed
both infeasible branches, which in turn reduces the entire code to a
single line. While Prepack fails to process Sample 7, SPEjs removes
its infeasible branch.

1 a = -4;

Listing 10: SPEjs’s residual code for Listing 7.

5.3 Prepack Test Suite Results

We repeated the experiments on the Prepack test suite. While we
could only get a small subset to work with the public Prepack ver-
sion, we manually injected mutations to make some of the branches
infeasible. On these subjects we received results that generally
matched what we observed for the micro benchmarks.

6 RELATED WORK

Researchers have implemented both static and dynamic symbolic
execution systems for JavaScript and applied them to various tasks
such as testing and finding and correcting security vulnerabili-
ties [15, 23, 25, 26]. Besides Prepack, other partial evaluation schemes
for JavaScript have been developed, for example, for finding vul-
nerabilities [31], speeding up browser-specific code [13], reducing
code size [8], or pre-computing results on the server-side [20].

While previous work has combined partial evaluation with sym-
bolic execution, it was done differently and for a different goal.
In these earlier approaches, partial evaluation is used to speed up
static symbolic execution, i.e., by tackling its path explosion prob-
lem [2, 9, 22, 32]. The SPEjs M.S. thesis contains additional details
on SPEjs and the experiments [29].

7 CONCLUSIONS

This paper proposed to deepen the reach of current partial eval-
uation schemes by selectively adding local symbolic execution.
Concretely, we described the SPEjs symbolic partial evaluator for
JavaScript that is built on Babel and the SMT solver Z3. To gauge
the promise of this approach we compared SPEjs with Facebook’s
state-of-the-art partial evaluator Prepack. Our results on a set of
micro benchmarks and Prepack’s test suite indicate that, within
Prepack’s runtime budget, SPEjs was able to simplify additional
expressions and therefore remove dead code branches that Prepack
failed to remove, yielding smaller residual programs.

REFERENCES

[1] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, Michael Leuschel, Samuele
Pedroni, and Armin Rigo. 2011. Allocation removal by partial evaluation in a
tracing JIT. In Proc. 20th ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation (PEPM). ACM, 43-52.

[2] Richard Bubel, Reiner Hahnle, and Ran Ji. 2010. Interleaving symbolic execution
and partial evaluation. In Proc. 9th International Symposium on Formal Methods
for Components and Objects (FMCO). Springer, 125-146.

[3] Mathias Bynens and John-David Dalton. 2010. Benchmark.js v2.1.2. https:
//benchmarkjs.com/. accessed July 2018.

[4] Charles Consel, Julia L. Lawall, and Anne-Francoise Le Meur. 2004. A tour of
Tempo: a program specializer for the C language. Science of Computer Program-
ming 52 (Aug. 2004), 341-370.

[5] Leonardo De Moura and Nikolaj Bjerner. 2011. Satisfiability Modulo Theories:
Introduction and Applications. Commun. ACM 54, 9 (Sept. 2011), 69-77.

Siimeyye Siislii and Christoph Csallner

[6] Jeffrey Dean, Craig Chambers, and David Grove. 1995. Selective Specialization for
Object-Oriented Languages. In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). ACM, 93-102.

[7] Facebook. 2017. Prepack. https://prepack.io/. accessed July 2018.
Google. 2015. Closure Compiler. https://developers.google.com/closure/compiler;/.

accessed July 2018.

[9] Ran Ji and Richard Bubel. 2012. PE-KeY: A Partial Evaluator for Java Programs.
In Proc. 9th International Conference on Integrated Formal Methods (IFM). Springer,
283-295.

[10] Neil D. Jones. 1996. An Introduction to Partial Evaluation. Comput. Surveys 28, 3
(Sept. 1996), 480-503.

[11] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial Evaluation and
Automatic Program Generation. Prentice-Hall.

[12] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM

19, 7 (July 1976), 385-394.

Karl Krukow. 2008. Jeene: An automatic partial evaluator for JavaScript. http:

//blog.higher-order.net/2008/09/14/jeene.html. accessed July 2018.

[14] Jamie Kyle. 2017. Babel Plugin Handbook. https://github.com/thejameskyle/

babel-handbook/. accessed July 2018.

Guodong Li, Esben Andreasen, and Indradeep Ghosh. 2014. SymJS: Automatic

Symbolic Testing of JavaScript Web Applications. In Proc. 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE). ACM,

449-459.

[16] Dylan McNamee, Jonathan Walpole, Calton Pu, Crispin Cowan, Charles Krasic,
Ashvin Goel, Perry Wagle, Charles Consel, Gilles Muller, and Renaud Marlet.
2001. Specialization tools and techniques for systematic optimization of system
software. ACM Transactions on Computer Systems 19, 2 (May 2001), 217-251.

] Microsoft. 2013. Z3. https://github.com/Z3Prover/z3. accessed July 2018.

[18] Mmicu. 2016. Leena. https://github.com/mmicu/leena. accessed July 2018.

] Torben Mogensen and Peter Sestoft. 1997. Partial evaluation. Encyclopedia of

Computer Science and Technology 37 (1997), 247-279.

[20] Ravi Netravali and James Mickens. 2018. Prophecy: Accelerating mobile page
loads using final-state write logs. In Proc. 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI). USENIX.

[21] Noah Peters. 2016. jsmeter: JavaScript code metrics. http://jsmeter.info. accessed

July 2018.

José Miguel Rojas and Corina S Pasareanu. 2013. Compositional symbolic execu-

tion through program specialization. BYTECODE’ 13 (ETAPS) (2013).

Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,

and Dawn Song. 2010. A symbolic execution framework for JavaScript. In Proc.

IEEE Symposium on Security and Privacy (Oakland). IEEE, 513-528.

[24] Ulrik Pagh Schultz, Julia L. Lawall, and Charles Consel. 2003. Automatic program

specialization for Java. ACM Transactions on Programming Languages and Systems

(TOPLAS) 25, 4 (July 2003), 452-499.

Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.

Jalangi: A Selective Record-replay and Dynamic Analysis Framework for

JavaScript. In Proc. 21th ACM SIGSOFT Symposium on the Foundations of Software

Engineering (FSE). ACM, 488-498.

Koushik Sen, George C. Necula, Liang Gong, and Wontae Choi. 2015. MultiSE:

Multi-path symbolic execution using value summaries. In Proc. Foundations of

Software Engineering (FSE). ACM, 842-853.

Amin Shali and William R. Cook. 2011. Hybrid partial evaluation. In Proc. 26th

Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA). ACM, 375-390.

Venkatesh Srinivasan and Thomas W. Reps. 2015. Partial evaluation of ma-

chine code. In Proc. ACM SIGPLAN International Conference on Object-Oriented

Programming (OOPSLA). ACM, 860-879.

Stimeyye Siislii. 2018. JSSpe: A Symbolic Partial Evaluator for JavaScript. Master’s

thesis. University of Texas at Arlington.

Stmeyye Siisli. 2018. SPEjs: A Symbolic Partial Evaluator for JavaScript: Project

home page. https://github.com/SumeyyeSuslu/SPEjs.

Omer Tripp, Pietro Ferrara, and Marco Pistoia. 2014. Hybrid Security Analysis

of Web JavaScript Code via Dynamic Partial Evaluation. In Proc. International

Symposium on Software Testing and Analysis (ISSTA). ACM, 49-59.

German Vidal. 2012. Closed symbolic execution for verifying program ter-

mination. In Source Code Analysis and Manipulation (SCAM), 2012 IEEE 12th

International Working Conference on. IEEE, 34-43.

[33] W3Techs. 2018. Usage of JavaScript for websites. https://w3techs.com/

technologies/overview/client_side_language/all. accessed July 2018.

Thomas Wiirthinger, Christian Wimmer, Christian Humer, Andreas W68, Lukas

Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. 2017.

Practical partial evaluation for high-performance dynamic language runtimes.

In Proc. 38th ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI). ACM, 662-676.

=
&

jpory
&

&
o)

I
&

[25

[26

[27

[28

[29

@
=

[31

[32

[34

https://benchmarkjs.com/
https://benchmarkjs.com/
https://prepack.io/
https://developers.google.com/closure/compiler/
http://blog.higher-order.net/2008/09/14/jeene.html
http://blog.higher-order.net/2008/09/14/jeene.html
https://github.com/thejameskyle/babel-handbook/
https://github.com/thejameskyle/babel-handbook/
https://github.com/Z3Prover/z3
https://github.com/mmicu/leena
http://jsmeter.info
https://w3techs.com/technologies/overview/client_side_language/all
https://w3techs.com/technologies/overview/client_side_language/all

	Abstract
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Babel
	3.2 Symbolic Execution
	3.3 Analyzing JavaScript with the Microsoft Z3 SMT Solver

	4 SPEjs Overview and Design
	4.1 Partial Evaluator Design
	4.2 Implementation with Babel and Z3

	5 Experiments and Results
	5.1 Micro Benchmark: Seven Sample Programs
	5.2 Micro Benchmark Results
	5.3 Prepack Test Suite Results

	6 Related Work
	7 Conclusions
	References

