SLGPT: Using Transfer Learning to Directly Generate Simulink
Model Files and Find Bugs in the Simulink Toolchain

Sohil Lal Shrestha
Computer Science and Engineering Department
University of Texas at Arlington
Arlington, Texas, USA

ABSTRACT

Finding bugs in a commercial cyber-physical system (CPS) develop-
ment tool such as Simulink is hard as its codebase contains millions
of lines of code and complete formal language specifications are not
available. While deep learning techniques promise to learn such
language specifications from sample models, deep learning needs a
large number of training data to work well. SLGPT addresses this
problem by using transfer learning to leverage the powerful Gen-
erative Pre-trained Transformer 2 (GPT-2) model, which has been
pre-trained on a large set of training data. SLGPT adapts GPT-2 to
Simulink with both randomly generated models and models mined
from open-source repositories. SLGPT produced Simulink models
that are both more similar to open-source models than its closest
competitor, DeepFuzzSL, and found a super-set of the Simulink
development toolchain bugs found by DeepFuzzSL.

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging; Model-driven software engineering; « Computing method-
ologies — Transfer learning; « Information systems — Lan-
guage models.

KEYWORDS

Cyber-physical system development, Simulink, tool chain bugs,
deep learning, programming language modeling, GPT-2

ACM Reference Format:

Sohil Lal Shrestha and Christoph Csallner. 2021. SLGPT: Using Transfer
Learning to Directly Generate Simulink Model Files and Find Bugs in the
Simulink Toolchain. In Evaluation and Assessment in Software Engineering
(EASE 2021), June 21-23, 2021, Trondheim, Norway. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3463274.3463806

1 INTRODUCTION

Finding bugs in a commercial cyber-physical system (CPS) develop-
ment tool such as Simulink is hard as its codebase contains millions
of lines of code and complete formal language specifications are
not available. While deep learning techniques promise to learn
such language specifications from sample models, deep learning
needs a large number of training data to work well and the closest

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

EASE 2021, June 21-23, 2021, Trondheim, Norway

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9053-8/21/06.

https://doi.org/10.1145/3463274.3463806

Christoph Csallner
Computer Science and Engineering Department
University of Texas at Arlington
Arlington, Texas, USA

related deep learning tool DeepFuzzSL [21] is severely limited by
the relatively small number of available training models.

Testing CPS development tools is important as engineers design
and develop dynamic safety-critical systems using these develop-
ment tools. For example, MathWorks’s Simulink is widely used in
industry such as automotive, medical, and aerospace [25]. Engi-
neers use Simulink to design, simulate, test, and generate embedded
code from CPS models and deploy it to end-user hardware. At worst
a subtle bug in the Simulink tool chain could result in unexpected
behaviour in safety-critical applications such as in cars or airplanes.

Given the complexity of the Simulink language, training a deep
learning tool such as DeepFuzzSL from scratch would require a
very large number of training models. However relatively few open
source Simulink models are available. While random model genera-
tors such as SLforge [2] could fill in some of these gaps, it is not
clear how well SLforge can cover the various features (and their
combinations) of the Simulink language.

Given the limited amount of Simulink training models, this paper
proposes to use transfer learning for generating Simulink models.
Transfer learning is a promising alternative to learning from scratch,
as it leverages a machine learning model trained on a large set
of related training data. We can then use a relatively small set
of Simulink-specific training data to fine-tune such a pre-trained
model for generating Simulink models.

Precisely we fine-tune the Generative Pre-trained Transformer 2
(GPT-2) [17] model using both randomly generated models and
models we mined from the open-source repositories GitHub and
MATLAB Central. Our experimental results suggest that GPT-2 gen-
erated Simulink models are of higher quality and address the short-
comings of earlier deep learning approaches. SLGPT also found
a wider range of similar bugs found by DeepFuzzSL in Simulink
versions R2018b, R2019b, and R2020b confirmed by Mathworks Sup-
port. To summarize, the paper makes the following contributions.

e SLGPT is the first use of transfer learning for generating
graphical block-diagram models.

o The paper implements SLGPT for Simulink, collects a train-
ing set of 400 open-source Simulink models, and compares
SLGPT with the closest related tool DeepFuzzSL.

e SLGPT-created models were more similar to open-source
models and SLGPT found a super-set of the Simulink devel-
opment toolchain bugs DeepFuzzSL found.

o The SLGPT implementation, parameter settings, and training
sets are open-source [20].

2 BACKGROUND

Simulink [15] is a powerful commercial tool-chain for model-based
design and has become a de-facto standard in several domains

https://doi.org/10.1145/3463274.3463806
https://doi.org/10.1145/3463274.3463806

EASE 2021, June 21-23, 2021, Trondheim, Norway

1 Model { Name "toy"

2 System {

3 Block {

4 BlockType Sum
5 Name "Add" ... }
6

7

8

Block {
BlockType Constant
Name "C1" ... }

Cl

3
El 9 Line {

c2 10 SrcBlock "C1"
11 DstBlock "Add"

12 N N

Figure 1: Simulink model (left) and excerpt of its 1.1k line
(Simulink-generated) model file representation (right).

such as automotive and aerospace. An engineer typically designs a
model via Simulink’s graphical modeling environment. A Simulink
model is a (potentially hierarchical) block diagram, where each
block represents equations or modeling components. A Simulink
user can also define custom blocks in custom “native” code using
the S-function interface. Simulink typically stores a model in its
proprietary model file format, i.e., as a structured ASCII file that
contains keywords and parameter-value pairs (many of which are
case-sensitive) [12]. Figure 1 shows a flat Simulink model and parts
of its model file representation.

Depending on the block type, each block can accept input via
input ports, perform some operation on its inputs, and pass output
via output ports to other blocks through (directed) edges. Simulink
users can add blocks from various built-in libraries and toolboxes.
A source block generates signals in a Simulink model while a sink
block is used to display or output signals[14]. A model’s maximum
source-to-sink path length is the longest directed non-circular path
from a source to a sink node (and includes source and sink).

When a user opens a model, Simulink’s parser performs its
checks and prevents corrupt models from opening. Once opened,
a user can compile and then simulate the model, where the tool
chain uses configurable solvers to iteratively solve the model’s net-
work of mathematical relations via numerical methods, yielding
for each output block a sequence of outputs. After simulation, the
user may use Simulink’s embedded code generation workflow for
deployment on a target platform.

2.1 Transfer Learning & NLP Language Models

Transfer learning [16] is a promising technique for generating
Simulink models, as transfer learning can work well in scenarios
that suffer from relatively small amounts of training data. Transfer
learning achieves this by using a machine learning model trained
for a source task or domain (“pre-training”, e.g., programs in any
programming language) as a starting point to train on a different
but related target task or domain (“fine-tuning”, i.e., Simulink mod-
els). This works well if pre-training uses huge amounts of training
samples, learns features common to both tasks, and fine-tuning
can apply the learned knowledge on a target task. Successful ap-
plications include computer vision, where large datasets such as
ImageNet [6] have been used to pre-train deep learning models
that are later fine-tuned for tasks such as image segmentation.

Sohil Lal Shrestha and Christoph Csallner

Training
Corpus

Configuration

Software
Repositories

Parameter

Random
Program o Code
Generato Mining Tool Restructure
[]]

Code
Rewriter
(;/r?z!g:gr Simulink Validity
T models Checker

Figure 2: SLGPT obtains Simulink models from a random
generator and open-source repositories, simplifies them,
and uses them to adapt GPT-2 for finding Simulink crashes.

Simulink
models

Simulink
models

In natural language processing (NLP), language modeling is the
use of statistical techniques to determine the probability of a given
word sequence. A language model basically estimates the probabil-
ity of a word based on the words already observed in a sequence.
An effective language model not only understands language struc-
ture (syntax) but also long-term context (semantics). For example,
a Simulink language model should predict tokens that are both
syntactically correct and produce valid connections between blocks
(e.g., respecting Simulink language rules on define-before-use).

Transfer learning in natural language processing is relatively
new. ULMFIT presents a specific training schedule enabling trans-
fer learning using LSTMs [10]. GPT-2 uses transformer decoder
as a building block and trains a language model on the WebText
dataset [17]. Using transformers instead of LSTMs allows longer-
range context capture. GPT-2’s byte pair encoded vocabulary also
supports Unicode (and does not require common pre-processing
steps such as lower-casing and stemming). So GPT-2 is a great
candidate to learn Simulink model files.

3 OVERVIEW AND DESIGN

Figure 2 gives an overview of SLGPT. To obtain a variety of Simulink
models for machine learning, we both ran the random model genera-
tor SLforge and mined open-source repository sites, i.e., GitHub and
MATLAB Central. Since GitHub currently does not treat Simulink
as a searchable language, we used the GitHub API with "Simulink"
as search keyword. Since MATLAB Central does not provide an
API for downloading Simulink models, we used its RSS feed! to
heuristically construct Simulink project download links.

We want our training corpus to only contain valid Simulink
models. So we automate the process of checking if a Simulink
model is compilable on Simulink. The validity checker also helps
detect any crashes caused by an input Simulink model, which is
then manually reviewed and reported to the developers. To limit
the number of Simulink language features in our training data, we
only used flat models that do not have additional toolbox or library
dependencies, yielding 400 valid open-source Simulink models for
training.

!https://www.mathworks.com/company/rss.html

SLGPT: Using Transfer Learning to Find Simulink Toolchain Bugs

1 Model { Name "toy"
2 System {

3 Block {

4 BlockType Constant
5 Name "a" ... }

6 Line {

7 SrcBlock "a"

8 DstBlock "b"

9 ...}

10 Block {

11 BlockType Sum

12 Name "b"

13 ... }...1)

Figure 3: Figure 1 Simulink model and excerpt of its model
file, after SLGPT simplified it to 45 lines, by removing layout
info, restructuring code via BFS, etc.

1 Model { Name "toy"
2 System {
1 > 3 Block {
4 BlockType Constant
a + 5 Name "a" ... }
] 6 Block {
3 7 BlockType Sum
4 8 Name "b" ... }...
9 Line {
d 10 SrcBlock "a"
C 11 DstBlock "b"

2 . b

Figure 4: Figure 3 Simulink model and excerpt of its 45 line
model file, after SLGPT restored it to Simulink-compliant
style (plus manual layout changes for readability).

3.1 Training Data Preparation: Simplification

SLGPT simplifies training models to (1) remove model features we
currently cannot handle given the limited number of training mod-
els and to (2) restructure models to fit GPT-2’s learning style. While
both simplification types may change model semantics, SLGPT
compensates for type-2 simplifications (restructuring), by rewriting
generated models into equivalent Simulink-compliant style.

Specifically, we pre-process the model file to remove macros,
default configuration settings, comments, duplicate white spaces,
annotations, and block-position information. We similarly rewrite
model identifiers (e.g., block names) to short but unique names
(a,b,c, ..., aa, ab, ac, ...), based on their appearance order in our
restructured model file.

The ASCII style in which Simulink saves its models to files is
problematic for state-of-the-art deep learning language models, as
Simulink files are long and verbose. Furthermore, these files also
list all nodes before all edges. Taken together, this is a poor fit for
current language models, which model context with a text window
of limited size.

To make such files easier to learn, SLGPT’s Algorithm-1 rewrites
these files in a breath-first search (BFS) style. Specifically, we first
parse the Simulink model file and maintain an adjacency representa-
tion of the Simulink model in the graph_info map, which maintains
two disjoint sets: source_blks has blocks with in_degree = 0 and

EASE 2021, June 21-23, 2021, Trondheim, Norway

Algorithm 1: Restructuring Simulink model. “Neighbour”
refers to both incoming and outgoing blocks and edges.

Require: source_blks (S), other_blks (B), graph_info (G)
Result: BFS-rewrite of Simulink model file (Cgfs)
1 while S# 0 and B # 0 do

2 Q = empty queue

3 b = remove element from (S # 0)?S : B
4 add b to back of Q

5 while Q # 0 do

6 curb = pop element from front of Q
7 if curb ¢ Cgrs then

8 add curb to Cpps

9 remove curb from B

10 Bnei, Enei = curb’s neighbour blocks, edges in G
1 forall e € Ej¢; do

12 if e ¢ Cgrs then

13 ‘ add e to Cgrs

14 end

15 end

16 forall b € Bye; do

17 if b ¢ Cgrs then

18 ‘ add b to back of Q

19 end

20 end

21 end

22 end
23 end

other other_blks has all remaining blocks. Algorithm-1’s outer loop
iterates over both S and B as some Simulink models have dangling
blocks (blocks that are not source blocks and are not connected to
any other block). Also some models (especially from SLforge) have
no source blocks because they have cycles.

3.2 Synthesizing Simulink Models with GPT-2

Given the complexity of the Simulink language, generating valid
Simulink model files is an ambitious task for unsupervised machine
learning, especially given our small amounts of training data. In-
stead of training from scratch, we thus use the pre-trained language
model GPT-2. GPT-2 is a good fit, as it employs byte pair encoding
to construct its vocabulary, meaning all tokens in a Simulink model
file can be mapped to the vocabulary set.

Second, GPT-2’s architecture is based on the transformer archi-
tecture [23], which has benefits over a traditional LSTM architec-
ture, as transformers avoid recursive computation by processing
sequences as a whole and learning relationships between tokens by
using multi-head attention mechanisms and positional embeddings.
This enables better prediction, which is typically lost with LSTM
over long-term dependencies in the text.

SLGPT’s Algorithm-2 iteratively samples from the fine-tuned
language model to generate Simulink model files. We seed the model
with the sequence “Model {” and then sample token by token. In
this early project stage we followed the best sampling techniques
of DeepFuzzSL (nucleus or top-p sampling [9]). Specifically, given a

EASE 2021, June 21-23, 2021, Trondheim, Norway

start text S, sampling parameters nucleus N and temperature T, the
fine-tuned GPT-2 model G computes the probability mass function
PMEF representing the probability distribution of all tokens in the
vocabulary. We normalize the PMF after scaling with T to introduce
randomness. To reduce the size of next plausible tokens, we select
the smallest subset of PMF such that the sum of all values in the
subset is greater than N. The normalized subset PMF is then used
to perform a multinomial experiment to choose the next token.

Algorithm 2: Sampling a candidate Simulink model from
a seed text.
Require: Fine-tuned GPT-2 model (G), temperature (T),
nucleus (N)
Result: Completed sample string S
1 S ="Model {"
2 while <endoftext> ¢ S do
3 PMF = get_distribution_of_next_predicted_tokens(G, S)
4 Scale the obtained PMF by T
5 Sort PMF in descending order

6 Subset PMF such that the smallest possible set sum is
greater than N

7 R = Perform multinomial experiment on subset PMF
8 S=S+R
9 end

Since the resulting Simulink model file S is (as the training sam-
ples) in BES style (as Simulink expects block definitions before edge
definitions in a model file), SLGPT restructures S such that the
model defines all blocks before defining edges. To continue the
Figure 1 example, if we assume Figure 3 shows a model produced
by Algorithm-2, SLGPT then reorders its element definitions to the
Simulink-friendly style of Figure 4.

In lieu of full differential testing, SLGPT just uses its validity
checker to detect crashes of the Simulink tool. We then manually
investigate each crash, judge if a crash is an example of a known bug,
and report representatives of the remaining crashes to MathWorks
Customer Support.

4 INITIAL EXPERIENCE

While a full evaluation is future work, this paper compares SLGPT
to its most closely related competitor, i.e., DeepFuzzSL. We first
used DeepFuzzSL’s evaluation setup of a SLforge-generated training
corpus, in which each Simulink model has 5-57 blocks. SLGPT’s
pre-processing reduced the number of tokens by 75%, yielding
987 Simulink models with a total of 0.5M lines. We ran a related
experiment on the 400 open-source Simulink models. SLGPT’s pre-
processing removed the 23 of the 400 models that only contained
annotation blocks, yielding 3.5k blocks represented in 87k lines.
OpenAl has released four different sizes of pre-trained GPT-2
models ranging from 0.1 to 1.5 billion parameters. To limit compu-
tational resource needs, for these initial experiments we used the
smallest model. We fine-tuned the GPT-2 model remotely in the
high performance Texas Advanced Computing Center (TACC)’s

Sohil Lal Shrestha and Christoph Csallner

Maverick 2 cluster [22]. We ran our experiments on a single Maver-
ick 2 GTX node? of two 8-core 2.1 Ghz Intel Xeon processors, 128
GB RAM, and 4 NVidia 1080-TI GPUs.

As in DeepFuzzSL'’s experimental setup we used the Adam opti-
mizer (here to fine-tune the GPT-2 model). We could not use a mini
batch size of 64 as it triggered out-of-memory errors on TACC. In-
stead, we used batch size of 1. To compensate for the low batch size,
we set the learning rate to 0.00002 (vs. 0.002) and trained SLGPT for
24 hours on SLforge-generated models and in a separate experiment
for 24 hours on the open-source models.

We trained DeepFuzzSL on the same hardware as SLGPT but oth-
erwise as described in its paper, i.e., for 400 epochs with mini batch
size 64. While this “only” took about 6.5 hours, DeepFuzzSL’s loss
function tapered off after 100-150 epochs (so it was not learning
much after that). While sampling, we let DeepFuzzSL run until it
either emits a terminating token or reached 15k tokens (correspond-
ing to the largest open-source training model). In the latter case
the resulting file typically contained several model-start sequences.
When opening such a file, Simulink and our counts just ignore all
but the first model. We use the following research questions.

RQ1 Can SLGPT generate valid Simulink models? How does
the structure of DeepFuzzSL and SLGPT generated Simulink
models compare to open-source models?

RQ2 How do DeepFuzzSL and SLGPT compare in the bugs
they find in the Simulink tool chain?

4.1 SLGPT Can Generate Valid and More
Realistic Simulink Models (RQ1)

Earlier approaches were evaluated in terms of the validity of gener-
ated models and their bug-finding ability (e.g., in SLForge, SLEMI,
and DeepFuzzSL [2, 3, 21]). In addition, to evaluate the quality of a
model generator, we compare structural properties of the generated
Simulink models against open-source Simulink models. Specifically,
we use the number of nodes in the generated Simulink model and
metrics based on the common notion of a connected subgraph (i.e.,
a subgraph in which each node is connected to at least one other
node in the subgraph).

To explore SLGPT’s ability to generate valid Simulink models,
we continuously generate Simulink models for 24 hours. Sampling
the version trained on SLforge-generated models yielded 2,912
Simulink models of which 43% compiled. The version trained on
open-source models yielded 709 Simulink models of which 47%
compiled. The most frequent cause of compile errors include data
type mismatches between two connecting blocks and assigning
an alphanumeric value to a numeric block attribute. Most of these
could be fixed easily by adding data type conversion blocks to the
model and changing alphanumeric to numeric values.

We trained DeepFuzzSL on the same training sets as SLGPT
and sampled around 1k samples each with DeepFuzzSL’s sampling
heuristics. To make the comparison consistent we removed Deep-
FuzzSL’s output token bound and allowed DeepFuzzSL to gener-
ate complete Simulink model files. Of around 1,200 DeepFuzzSL-
generated models trained on Slforge-generated models, 89% com-
piled, closely aligning with the 90% validity rate reported in the

Zhttps://portal.tacc.utexas.edu/user-guides/maverick2

SLGPT: Using Transfer Learning to Find Simulink Toolchain Bugs

DeepFuzzSL paper. On the other hand, out of 1,024 DeepFuzzSL-
generated Simulink models trained on open-source models only
42% compiled.

The valid models generated by DeepFuzzSL were not as similar to
the training models as SLGPT-generated valid models. Figure 6 com-
pares these models along four metrics. For example, DeepFuzzSL-
generated models tend to have many subgraphs that only contain
2 blocks, many blocks have unconnected input and output ports,
and there is often no connection between source and sink.

4.2 SLGPT Found Superset of Bugs DeepFuzzSL
Found (RQ2)

Trained on SLforge-generated Simulink models, from nearly 3k
SLGPT-generated models 13 crashed Simulink. Upon analysis these
13 instances belong to the same two bug categories DeepFuzzSL
found (MathWorks confirmed both types as known bugs). The first
issue is a Simulink crash while opening a model. The second issue is
Simulink opening a model but crashing while compiling the model.

Trained on our open-source models, 30 DeepFuzzSL-generated
and 14 SLGPT-generated models crashed Simulink while compiling.
13 of the SLGPT-generated (and all DeepFuzzSL-generated) models
get rejected by Simulink R2018b but crash version R2020b (case
04777147). The last one crashes R2018b but is accepted by R2020b
(case 04767975). Following are brief summaries of these two cases.

4.2.1 Case 04777147 (Non-bug). This SLGPT-generated Simulink
model triggered an interesting behavior, where Simulink R2018b
rejects it as corrupt and the newer R2020b version crashes. Math-
Works told us that the way Simulink parses MDL files has changed
since R2020a, which may have caused the crash. As it is impossible
to create this model via Simulink’s graphical editor or standard API,
MathWorks Support marked it as a non-bug. DeepFuzzSL-generated
models triggered similar Simulink crashes.

(.]

Figure 5: Scope (left) and Floating Scope (right).

4.2.2 Case 04767975 (Known bug). Figure 5 shows two types of
Simulink scope blocks: Scope and Floating Scope. Floating Scope
does not have any physical ports while Scope does. A SLGPT-
generated model set floating parameter off (indicating that it is
a normal scope) while setting the ports attribute to 0 (instead of a
vector), causing the crash. Simulink’s graphical editor or standard
API cannot create this model. This issue exists in R2018b and has
been fixed in later versions. DeepFuzzSL did not trigger this bug.

5 RELATED WORK

Small training datasets are a common problem in deep learning ap-
plications. Researchers thus often use synthetic datasets [7]. Robbes
et. al. showed a promising avenue to alleviate the dataset problem
by using transfer learning [19], i.e., that a small natural-language
software engineering dataset can be used to improve sentiment
analysis using pre-trained neural networks.

EASE 2021, June 21-23, 2021, Trondheim, Norway

In the CPS domain, Chowdhury et al. developed a randomized
differential testing tool using semi-formal specifications to test the
Simulink toolchain [2]. Subsequently SLEMI generated semantic-
preserving mutants of a seed model for differential testing of the
Simulink toolchain [3]. While these approaches are tightly coupled
with Simulink, SLGPT is only loosely coupled and does not rely on
explicit Simulink language specifications.

Success of modeling natural language using deep learning has
garnered interest to model source code for program generation. Re-
searchers have used language models to improve software engineer-
ing task such as code completion and code clone detection [1, 8, 18].
For compiler validation, DeepSmith [5], DSmith [24], and Deep-
Fuzz [13] uses deep learning based sequence modeling to model
the OpenCL and C languages from real world programs and found
compiler bugs. All of these approaches target languages with com-
plete available specifications while we target Simulink, which does
not have such a specification publicly available.

The most closely related work DeepFuzzSL [21] use LSTM archi-
tecture to model Simulink. However they only train on synthetic
models, citing the need for a larger training corpus. In contrast, we
use a pre-trained language model and fine-tune it with open-source
Simulink models.

Transfer learning for source code modeling is relatively new.
Benito et al. studied the use of pre-trained models for source code
generation and completion [4]. Hussain et al. proposed a transfer-
learning based attention learner approach to improve code sugges-
tions [11]. While earlier work focused on traditional languages we
focus on a graphical CPS language.

6 CONCLUSIONS

Testing a commercial CPS development tool such as Simulink is
hard as its codebase contains millions of lines of code and complete
formal language specifications are not available. While deep learn-
ing techniques promise to learn such language specifications from
sample models, deep learning needs a large number of training
data to work well. SLGPT addressed this problem by using trans-
fer learning, to leverage the powerful GPT-2 model that has been
pre-trained on a large set of training data. SLGPT adapted GPT-2 to
Simulink with both randomly generated models and models mined
from open-source repositories. SLGPT produced Simulink models
that are both more similar to open-source models than its closest
competitor, DeepFuzzSL, and found a super-set of the Simulink
development toolchain bugs found by DeepFuzzSL.

ACKNOWLEDGMENTS

The authors acknowledge the Texas Advanced Computing Center
(TACC) at The University of Texas at Austin for providing HPC
resources that have contributed to the research results reported
within this paper. Christoph Csallner has a potential research con-
flict of interest due to a financial interest with Microsoft and The
Trade Desk. A management plan has been created to preserve ob-
jectivity in research in accordance with UTA policy. This material
is based upon work supported by the National Science Foundation
(NSF) under Grant No. 1911017 and a gift from MathWorks.

EASE 2021, June 21-23, 2021, Trondheim, Norway

60 Nos=400(Solid) ¥ 20 Nos=400(Solid)
50l Nsi=987(Dotted) 7| 150 Ns,=987(Dotted) 20
40 ' 40 B
30 30 10
20
20 s
10
10
0 0 0
0% 20% 40% 60% 100% 0% 20% 40% 60% 100%
40
Nos=434(Solid) Nos=434(Solid) 150
Ns,=1081(Dotted) 200 307 ng =1081(Dotted) 125
30
150 100
20
20
100 7
50
10
10 50
25
0 0 0L 0
0% 20% 40% 60% 100% 0% 20% 40% 60% 100%
Nos=330(Solid) 50 251 Nos=330(Solid) 30
30] Ns.=1256(Dotted) Ns;=1256(Dotted)
< a0 2
20
20 30 15
20 10
10 10
10 5
0 0 0
0% 20% 40% 60% 100% 0% 20% 40% 60% 100%

Sohil Lal Shrestha and Christoph Csallner

50 27
Nos=400(Solid) 50 24| Nos=400(Solid)
40| Nsi=987(Dotted) 1 511 Ns.=987(Dotted) 20
40
15
30
10
20
5
10
o 0
0% 20% 40% 60% 100% 0% 20% 40% 60% 100%
; 7) 0
Nos=434(Solid) Nos=434(Solid) i
Ns,=1081(Dotted) 6 Ns,=1081(Dotted) |16
5 2]
6 i,
4]
4 [
3 1 promeemeneemennc) 2
!
2 2 i
1 0 : 0
0% 20% 40% 60% 100% 0% 20% 40% 60% 100%
12 ; 7)
Nos=330(Solid) 30 Nos=330(Solid) 15
10{ Ns.=1256(Dotted) 25 6| Ns =1256(Dotted)
! 5 i
8 ¢ 20 4
. g 10
6 15 3 m:_j‘
4 L 2 5
24 poT 5 A
o 0 0
0% 20% 40% 60% 100% 0% 20% 40% 60% 100%

Figure 6: Training models (top), DeepFuzzSL-generated models (middle), and SLGPT-generated models (bottom). Left y-axis is
for open-source training models and right y-axis is for SLforge-generated training models. X-axis is (valid) Simulink models
sorted in ascending order for metric (from left to right column): Blocks per model, connected subgraphs, blocks in largest
connected subgraph, maximum path length from a source to a sink block. Metrics of SLGPT-generated models are overall
closer to the training models than DeepFuzzSL-generated models.

REFERENCES

(1]

[12]
[13]

Qingying Chen and Minghui Zhou. 2018. A neural framework for retrieval and
summarization of source code. In ASE 2018.

Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane,
Taylor T. Johnson, and Christoph Csallner. 2018. Automatically finding bugs in a
commercial cyber-physical system development tool chain with SLforge. In Proc.
40th ACM/IEEE International Conference on Software Engineering (ICSE). 981-992.
Shafiul Azam Chowdhury, Sohil L Shrestha, Taylor T. Johnson, and Christoph
Csallner. 2020. SLEMI: Equivalence modulo input (EMI) based mutation of CPS
models for finding compiler bugs in Simulink. In ICSE. ACM, 335-346.

Juan Cruz-Benito, Sanjay Vishwakarma, Francisco Martin-Fernandez, and Ismael
Faro. 2021. Automated Source Code Generation and Auto-Completion Using
Deep Learning: Comparing and Discussing Current Language Model-Related
Approaches. Al 2,1 (2021), 1-16. https://doi.org/10.3390/ai2010001

Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018.
Compiler fuzzing through deep learning. In ISSTA 2018.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09.

Sarah Fakhoury, Venera Arnaoudova, Cedric Noiseux, Foutse Khomh, and Giu-
liano Antoniol. 2018. Keep it simple: Is deep learning good for linguistic smell
detection?. In SANER’18. IEEE, 602-611.

Muhammad Hammad, Onder Babur, Hamid Abdul Basit, and Mark van den Brand.
2020. DeepClone: Modeling Clones to Generate Code Predictions. In ICSR 2020.
Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi. 2019. The Curious Case
of Neural Text Degeneration. CoRR abs/1904.09751 (2019). arXiv:1904.09751
Jeremy Howard and Sebastian Ruder. 2018. Universal Language Model Fine-
tuning for Text Classification. In ACL 2018. ACL, 328-339.

Yasir Hussain, Zhiqiu Huang, Yu Zhou, and Senzhang Wang. 2020. Deep Transfer
Learning for Source Code Modeling. Int. J. Softw. Eng. Knowl. Eng. 30, 5 (2020).
MathWorks Inc. 2007. Simulink® 7 Reference. Chapter 9, Pg. 9-2 — Pg.9-10.
Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. 2019. DeepFuzz:
Automatic Generation of Syntax Valid C Programs for Fuzz Testing. In Proc. 33rd

(14

(16

(17

[18

[19

[20
[21]

~
3,

[23

[24

[25

AAAI Conference on Artificial Intelligence (AAAI). AAAI 1044-1051.
MathWorks Inc. 2021. Block Libraries. Retrieved April 27, 2021 from https:
//www.mathworks.com/help/simulink/block-libraries. html

MathWorks Inc. 2021. MATLAB & Simulink. Retrieved April 27, 2021 from
https://www.mathworks.com/products/simulink html/

Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22, 10 (2009), 1345-1359.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).
Veselin Raychev, Martin T. Vechev, and Eran Yahav. 2014. Code completion with
statistical language models. In PLDI 2014. 419-428.

Romain Robbes and Andrea Janes. 2019. Leveraging small software engineering
data sets with pre-trained neural networks. In Proc. 41st International Conference
on Software Engineering: New Ideas and Emerging Results, ICSE (NIER). IEEE.
Sohil L Shrestha. 2021. 50417/SLGPT. https://doi.org/10.5281/zenodo.4734223
Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph Csallner. 2020.
DeepFuzzSL: Generating models with deep learning to find bugs in the Simulink
toolchain. In DeepTest 2020. ACM.

TACC at The University of Texas at Austin. 2021. Texas Advanced Computing
Center - Homepage. Retrieved April 27, 2021 from https://www.tacc.utexas.edu/
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In 30th Annual Conference on Neural Information Processing Systems.
Haoran Xu, Yongjun Wang, Shuhui Fan, Peidai Xie, and Aizhi Liu. 2020. DSmith:
Compiler Fuzzing through Generative Deep Learning Model with Attention. In
2020 International Joint Conference on Neural Networks, [JCNN 2020.

Xi Zheng, Christine Julien, Miryung Kim, and Sarfraz Khurshid. 2017. Perceptions
on the State of the Art in Verification and Validation in Cyber-Physical Systems.
IEEE Systems Journal 11, 4 (2017), 2614-2627.

https://doi.org/10.3390/ai2010001
https://arxiv.org/abs/1904.09751
https://www.mathworks.com/help/simulink/block-libraries.html
https://www.mathworks.com/help/simulink/block-libraries.html
https://www.mathworks.com/products/simulink.html/
https://doi.org/10.5281/zenodo.4734223
https://www.tacc.utexas.edu/

	Abstract
	1 Introduction
	2 Background
	2.1 Transfer Learning & NLP Language Models

	3 Overview and Design
	3.1 Training Data Preparation: Simplification
	3.2 Synthesizing Simulink Models with GPT-2

	4 Initial Experience
	4.1 SLGPT Can Generate Valid and More Realistic Simulink Models (RQ1)
	4.2 SLGPT Found Superset of Bugs DeepFuzzSL Found (RQ2)

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

