
EvoSL: A Large Open-Source Corpus of
Changes in Simulink Models & Projects

Sohil Lal Shrestha
Computer Science & Eng. Dept.
University of Texas at Arlington

Arlington, TX 76019, USA
sohil.shrestha@mavs.uta.edu

Alexander Boll
Software Engineering Group

University of Bern
3012 Bern, Switzerland

alexander.boll@inf.unibe.ch

Shafiul Azam Chowdhury
Computer Science & Eng. Dept.
University of Texas at Arlington

Arlington, TX 76019, USA
shafiulazam.chowdhury@mavs.uta.edu

Timo Kehrer
Software Engineering Group

University of Bern
3012 Bern, Switzerland

timo.kehrer@inf.unibe.ch

Christoph Csallner
Computer Science & Eng. Dept.
University of Texas at Arlington

Arlington, TX 76019, USA
csallner@uta.edu

Abstract—Having readily available corpora is crucial for
performing replication, reproduction, extension, and verifica-
tion studies of existing research tools and techniques. MAT-
LAB/Simulink is a de-facto standard tool in several safety-critical
industries for system modeling and analysis, compiling models
to code, and deploying code to embedded hardware. There is
no commonly used corpus for large-scale model change studies
because there is no readily available corpus. EvoSL is the first
large corpus of Simulink projects that includes model and project
changes and allows redistribution. EvoSL is available under a
permissive open-source license and contains its collection and
analysis tools. Using a subset of EvoSL, we replicated a case study
of model changes on a single closed-source industrial project.

Index Terms—reproducibility, replication, Simulink, open sci-
ence, Simulink model changes, corpus, evolution

I. INTRODUCTION

There is currently no well-packaged, single source of
open-source MATLAB/Simulink projects suitable for studying
changes in Simulink models or projects. This is primarily
due to the overhead associated with mining open-source
repositories for such projects. For instance, GitHub’s API
does not readily facilitate filtering Simulink projects. Addition-
ally, many open-source projects have been rendered inactive,
adding another layer of complexity to the task of filtering out
unwanted noise [26]. So creating a centralized and diverse set
of Simulink projects is currently challenging.

This is a significant problem, as Simulink is a powerful tool
that is widely used in several safety-critical industries such as
automotive, aerospace, healthcare, and industrial automation
for system modeling and analysis, compiling models to code,
and deploying code to embedded hardware. As models become
increasingly complex, understanding the impact of changes on
the overall system becomes challenging and maintaining the
consistency between models becomes harder. To alleviate the
problem, researchers often collaborate with industry to study

evolution patterns and develop tools and techniques [50], [23],
[38]. But this has significantly hampered the advancement of
the research as the software artifacts they used are generally
not made available due to confidentiality agreements hindering
replication, reproduction, extension, and verification of results.

In software engineering research, there has been steady
progress towards making research artifacts publicly available,
which in turn has increased the impact of the research [16].
The full adoption of the open-source mindset in model-based
development research has been limited, due to a prevailing
view that publicly accessible models have limited research
utility or because of non-disclosure agreements between re-
searchers and industry partners [6]. Recent work has created
increasingly larger corpora of open-source Simulink mod-
els [7], [8], [46], [42]. A recent empirical study has shed
light on the potential of using open-source Simulink models
in model evolution studies [5]. However to date these corpora
do not contain Simulink model or project change data.

To address the issue, we present EvoSL, a curated corpus
of 924 Git repositories consisting of over 140k commits.
EvoSL is self-contained and redistributable, automatically
(apart from occasional license reviews) collected from GitHub.
We demonstrate EvoSL’s usefulness by replicating on a EvoSL
subset a model evolution study originally performed on an
industry project. Our results share several similarities, while
also bringing to light significant differences. For instance, our
analysis found that engineers spend a substantial amount of
time managing signal data rather than implementing algo-
rithms and documentation is often neglected. To summarize,
the paper makes the following major contributions.

• We created EvoSL, a corpus of 924 Simulink repositories.
We mined GitHub to extract and filter Simulink-based
Git repositories that permit redistribution. To the best of
our knowledge, EvoSL is the first corpus of third-party

000-0-0000-0000-0/00$31.00 © 2023 IEEE

https://orcid.org/0000-0002-0837-8388
https://orcid.org/0000-0002-9881-9748
https://orcid.org/0000-0001-9019-6067
https://orcid.org/0000-0002-2582-5557
https://orcid.org/0000-0003-0896-6902

Simulink projects to perform model change studies.
• To assess EvoSL’s usefulness, we tried to replicate a prior

study that analyzed changes of closed-source industrial
models. We found several of the original findings could
be observed on the open-source models.

• All artifacts of the paper including tools and mined data
are open sourced on Zenodo [43], [44] and Figshare [45].

II. BACKGROUND

Simulink [29] is a popular model-based development tool
that allows scientists and engineers to design, analyze, and
implement complex systems. For example, it is widely used in
the aerospace, automotive, healthcare, and robotics industries.

Fig. 1: Two tiny example Simulink models: The left model (a)
reuses the functionality of the referenced model (b).

A Simulink user designs a system via a graphical modeling
environment as a block diagram, by connecting parameterized
blocks that represent components, signals, and mathematical
operations. Figure 1 shows a tiny example. Each block pro-
cesses the input it receives via input ports and passes its
outputs via output ports via signal lines to subsequent blocks.

Simulink users can pick blocks from a wide variety of
libraries and create custom blocks. A block mask [30] can add
user-defined constraints and user-interface elements to a block.
A Simulink user can annotate a model using annotations and
alter its behavior via configurations [31].

Simulink’s built-in Model Comparison Tool [35] compares
two model versions at various levels of granularity—from
blocks to the overall model structure. The example in Figure 2
shows the differences between two versions of a Simulink
tutorial model (sf car [32]), i.e., the addition of an Output
block (Out1) and the corresponding update of the Vehicle-to-
transmission connection line (partially highlighted in yellow).

A. Studies of Changes in Simulink Models & Projects

Despite the importance of Simulink in practice, to the
best of our knowledge there are only a few studies of how
practitioners develop Simulink projects and how Simulink
models change during development [49], [5], [21]. While
studying the development history of large Simulink projects
in both closed-source industrial [49], [21] and open-source
development [49], such work has mostly consisted of case
studies of one or two projects.

The one exception we are aware of is the recent study [5]
that collected the commit histories of 35 open-source Simulink
projects of an earlier corpus [8] that were still online. Besides
the limited number of projects, the study also remained
focused on high-level project history change data and thus did

not analyze changes within a model file, e.g., which model
elements are changed and how the elements are changed.

B. State of Open-source Simulink Corpora

While several services provide open-source Simulink mod-
els, to the best of our knowledge, none of these services can
currently be used directly as a corpus of Simulink project
repositories. For example, GitHub does not list Simulink as
a separate language, has many projects that are unclearly
licensed or are duplicates, and over time many projects dis-
appear. Similarly, Software Heritage is not set up for frequent
public download of full repositories and MATLAB Central
File Exchange does not support commit-level project histories.

The lack of a corpus of Simulink repositories has been
partially addressed by recent efforts to create ever-larger
corpora of open-source Simulink models [7], [8], [5], [42].
On the positive side, these corpora have already been used as
a training set for machine-learning based approaches [46] and
to evaluate a variety of novel techniques [1], [46], [13], [2].
Unfortunately, these corpora do not contain model changes.

To gauge the promise of open-source projects for studying
Simulink project and model changes, Boll et al. [5] studied the
Git repositories of 35 GitHub projects of Chowdhury et al.’s
corpus [8]. With a Simulink expert many of these 35 projects
were found to not mirror industrial Simulink projects for
various reasons (i.e., under 50 day project duration, single
author, and few merge commits). On the positive side, the
study mentions three projects as promising for—due to their
low total number—case study research.

While we could add model changes to one of the above
corpora (e.g., by adding Git commits from GitHub), the
maximum size of such a complemented corpus would still
be relatively limited. Specifically, the corpus with the by-far
most potentially available project histories is SLNET with its
225 GitHub projects [42].

C. Available Open-source Simulink Project Histories

As of March 2023, the major non-GitHub services we are
aware of hosting code repositories, GitLab and SourceForge,
host orders of magnitude fewer open-source Simulink repos-
itories than GitHub. Specifically, before removing projects
that are empty, forks, duplicate, or have an unclear license,
a quick search for “Simulink” yields 52 SourceForge projects
and one GitLab project.

While Software Heritage preserves many important open-
source code repositories long-term, we do not use it for the
following reasons. First, Software Heritage is not meant as a
primary source, downloading Software Heritage repositories is
expensive and should only be done if the primary source be-
comes unavailable [47]. Second, it contains fewer repositories
(i.e., missing over a third of the 14k EvoSL+ Simulink root
repositories we located on GitHub). Finally, Software Heritage
currently does not provide GitHub project data such as issues,
comments, and pull requests.

Beyond centralized project hosting services, a recent
study [52] found the three most-used decentralized code

Fig. 2: Sample Simulink Model Comparison tool report comparing two versions of the sf car Simulink tutorial model [32].

repository sources GitLab Community Edition, Gogs, and
Gitea to provide over 45k public open-source Git repositories,
which tend to be longer-running, more academic, and more
collaborative than GitHub projects. We did not attempt to mine
these services as overall they had three orders of magnitude
fewer projects than GitHub and do not provide uniform project
data such as issues, comments, and pull requests.

III. CORPUS OF SIMULINK MODEL & PROJECT CHANGES

Downloading Simulink projects from GitHub is not straight-
forward, as GitHub does not label Simulink projects.
To heuristically address this issue, EvoSL-Miner queried
GitHub’s public REST API (via PyGitHub [19]) in February
and March 2023 to first download root repositories (i.e., not
forks) that (a) are marked as using the MATLAB programming
language or (b) match when searching their repository name,
description, or README file for “Simulink”. EvoSL-Miner
extends SLNET-Miner, by downloading the full Git repository
instead of a snapshot, while still satisfying the GitHub REST
API limits (30 search requests per minute per authenticated
user, yielding 1k results per request; 5k other requests per
hour per authenticated user) [11]. This yielded over 360k such
MATLAB/“Simulink” projects.

In the second step (labeled “2” in Figure 3), we only
keep a MATLAB / “Simulink” project in EvoSL+ (and down-
load from the GitHub API its summary data, issues, pull
requests, and comments) if the project’s latest default-branch
version has at least one mdl or slx file we can open with
Simulink 2022b (Simulink’s default file format changed with
the R2012b release from the proprietary ASCII mdl file to the
(binary) zip container slx). This yielded EvoSL+’s 13,919 root
Simulink Git repositories with metadata. (3) Third, we use
the root project metadata to similarly download all (transitive)
project forks, yielding EvoSL+’s 13,786 Simulink fork GitHub
repositories and their metadata.

Table I summarizes the further pre-processing, which adds
to EvoSL+’s metadata but for license and storage space reasons

Fig. 3: Overview of EvoSL collection and cleaning steps:
EvoSL-Miner downloads EvoSL+ (Git projects and metadata),
from which EvoSL-Cleaner removes certain Git repositories.

TABLE I: Data cleaning steps: Root = project with 1+
Simulink models; License = has a license; Permissive = license
allows re-distribution; MC = has 2+ model commits; ND = no
duplicates; EvoSL = has model with 2+ commits.

Root License Permissive MC ND EvoSL

13,919 2,323 2,282 1,081 1,071 924

only includes the EvoSL subset (Git repositories and all
metadata including issues, comments, pull requests, etc.) in the
EvoSL distribution. (4) Fourth, EvoSL-Cleaner only includes
an EvoSL+ root project in EvoSL if the project has a license
(2,323/13,919 projects) and the license allows redistribution.
GitHub has a structured way for authors to set their project’s
license, which GitHub then converts into a corresponding
license file (and subsequently exposes via an API). For the
291 project licenses GitHub did not understand (i.e., the
API returns “Other”), we realized on manual review that
many of them just appear to be common open-source licenses
applied manually—without using GitHub’s structured license
settings. We conservatively judged 250/291 projects to allow

redistribution.
While for many applications (e.g., as a machine learning

training set) a larger corpus is better, we also had to satisfy
long term storage size limitations. We thus (5) prioritized the
projects with the most changes to Simulink model files (as
opposed to changes to other files). Specifically, we extract
commit metadata via PyDriller [48]. While EvoSL contains
the full Git repositories and all issues, pull requests, and
comments, we configure PyDriller to only process the commits
of each project’s default-branch. We then only keep a Git
repository in EvoSL if it has at least two commits across
its (default-branch) Simulink model files, yielding 1,081 Git
repositories with Simulink model commits.

After removing forks, the dataset may still contain other
duplicates [36], which we remove heuristically. In step (6) we
first mark two EvoSL Git repositories as potential duplicates if
they have the same Figure 4 Project Commit Summary metric
values (e.g., the same number of default-branch commits, same
number of default-branch merge commits, etc.) and confirm
this if they also have the same commit hashes. We keep the
Git repository with the smaller GitHub project ID, yielding
1,071 Git repositories. (7) Finally, we remove Git repositories
that do not change any default-branch Simulink model after
that model file’s initial (“check-in”) commit, yielding EvoSL’s
924 Git repositories.

Finally, we compare the size of EvoSL to the largest open-
source Simulink corpus to date—SLNET (which does not
contain project histories). To ease comparison, we focus on
the 36 EvoSL projects we could open with Simulink R2019a
that have the most commits of mdl/slx files (“EvoSL36”). The
latest version of the main branch of the projects in this EvoSL
subset alone contains 714k Simulink blocks, significantly more
than all of SLNET’s 190k blocks in its 225 GitHub projects.

A. EvoSL Long-term Storage and Metadata

At writing we were aware of three permanent storage
options that are publicly accessible, easy to cite, and offer free
data deposit and download. Since Dataverse’s 2.5 GB per-file
limit [15] conflicts with some EvoSL projects and Figshare’s
free 20 GB per-user limit [9] restricts EvoSL’s overall size,
we upload EvoSL into Zenodo’s 200 GB hard limit [43].

What EvoSL adds to the repositories (bundling, some
metadata, etc.) has the permissive CC BY 4.0 license. The
distribution contains EvoSL’s 924 full Simulink Git root
repositories (last updated in early March 2023). The size of
the distribution is some 73 GB. Each of the 924 projects is in
a zipped folder named after the project’s GitHub project ID.

In addition to the 924 full Simulink Git root repositories,
EvoSL also contains the Figure 4 metadata. Specifically, the
metadata is in a SQLite1 database. The metadata mainly
records the information EvoSL-Miner downloaded from the
GitHub API, e.g., project popularity and engagement, issues,
pull requests, and comments associated with issues and pull

1SQLite is widely used, free, self-contained, server-less, zero-configuration,
backwards compatible, and cross-platform.

requests. To make it easier to select projects with certain
Simulink model changes, we derive and add metadata.

First, for each project’s default-branch we break down every
commit that changes Simulink models into one model commit
per model changed by that (project) commit. Specifically,
we process each Git repository’s default-branch commits to
create one model commit per Simulink model whose slx
or mdl file was touched by a given project commit (Fig-
ure 4 Model Commits). A commit belonging to a merge
commit is distinguished by listing more than one parent
commit. We further summarize commits, e.g., the total num-
ber of default-branch commits, their number of authors, and
a Simulink model’s lifetime—i.e., the difference between a
model file’s first and last default-branch commit (Figure 4
Project Commit Summary and Model Commit Summary).

TABLE II: Simulink root projects before (EvoSL+) and after
filtering (EvoSL): Issues, pull requests (PR), comments on
issues and pull requests, and default-branch commits.

Projects Commits Issues PR Comments

EvoSL+ Root 13,919 419,404 5,973 7,490 14,923
EvoSL (Root) 924 143,571 3,228 1,933 10,290

Finally, Table II compares the amount of metadata for
EvoSL+ and EvoSL. From a project change data perspective,
EvoSL is clearly an interesting (but non-representative) sample
of the full EvoSL+ root projects. For example, while EvoSL+

contains over 15 times of the root projects of EvoSL, EvoSL
contains over one third of all EvoSL+ default-branch project
commits and over two thirds of all EvoSL+ issue and pull
request comments.

B. Overview of EvoSL’s Simulink Model and Project Changes

It is well-known that for the entirety of GitHub the distribu-
tion of commits over projects is heavily skewed toward a few
very active projects, with a long tail of projects having under
50 commits [26]. It is thus no surprise that GitHub’s Simulink
projects default branches follow a similar long-tail distribution
(Figure 5). For example, in EvoSL+ the median number of
default-branch project commits is six and the median number
of model commits per project default-branch is one. Further,
91% of projects have under 50 total default-branch commits
and 56% of projects only have one model default-branch
commit.

To better understand model change timing and the share
of Simulink models that is changed during the project,
Figure 6 breaks each project default-branch’s duration into
10 buckets of equal length (normalized to each project default-
branch’s duration). Here project duration is the duration from
a project default-branch’s first to last commit as recorded by
the timestamps assigned by the committers’ machines. While
this approach has its pitfalls, the more-active projects are
usually less affected and we performed the basic recommended
sanity checks to ensure there are no impossible outliers (e.g.,
commits with Unix time zero) [10].

Fig. 4: EvoSL’s metadata relational database schema with multiplicity constraints, e.g.: each (default-branch) project commit
is broken down into one model commit per Simulink model file change and each model commit is part of one project commit;
bold = primary key; forked projects do not contain their parent project’s commits (except for one initial commit).

0 2 4 6 8 10 12 14 16
Number of (CommitsMS | Issues | Pull request) in Project

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
op

or
tio

n
of

 P
ro

je
ct

s

CommitsMS(EvoSL +)
Issues(EvoSL +)
Pullrequest(EvoSL +)
CommitsMS(EvoSL)
Issues(EvoSL)
Pullrequest(EvoSL)

0 20 40 60 80 100 120 140 160 180
Number of Project Commits in Project

0.0

0.2

0.4

0.6

0.8

1.0

Commits(EvoSL +)
Commits(EvoSL)

Fig. 5: Root project percentage (y-axis) with up to the given
number of default-branch commits, default-branch commits of
1+ mdl/slx files, issues, and pull requests (x-axes).

Specifically, if a project only has one default-branch commit
then Figure 6 assigns this commit (only) to the last bucket (90–
100%). This explains Figure 6a’s spike in the 90–100% bucket,
as EvoSL+ is skewed towards projects with few default-branch
commits. Similarly, the spike in its 0–10% bucket says that
many EvoSL+ projects commit (or “dump”) much of their
changes (and especially changes to Simulink model files)
together around the time of the initial default-branch commit.

The last-bucket concentration of commits, commits of 1+
mdl/slx files (commitsMS), and share of mdl/slx files in a
commit (“models under development”) all decrease in EvoSL,
again when looking at the subset of EvoSL projects with 10+

default-branch commitsMS (Figure 6c), and yet again when
looking at the 36 top-commitsMS EvoSL projects we could
open with Simulink R2019a (Figure 6d). At the same time,
these measures trend upward for the non-start/finish buckets.
For example, for EvoSL projects with 10+ default-branch
commitsMS, each bucket contains commits that overall include
at least 10% of the default-branch mdl/slx files.

The Figure 6 distributions over normalized project lengths
further resemble traditional software development projects
(rather than file dumps) when putting them into context of
the Table III project metrics. First, EvoSL’s, EvoSL+’s, and
EvoSL36’s absolute project lengths range up to 16 years, with
average project lengths of 116, 443, and 1,553 days and
median project lengths of 4, 135, and 1,207 days. Finally,
EvoSL and EvoSL36 projects have a median of two and 11
authors, of which more than half also commit slx/mdl files.

IV. REPLICATING AN INDUSTRIAL STUDY WITH EVOSL
Our main contribution is the EvoSL corpus itself, as it al-

lows exploring various research questions on Simulink model
and project changes, including commits, GitHub issues, pull
requests, other project metadata, and their correlations. While
open-source projects will never be exactly like industrial
closed-source development in all aspects, here we are asking
if studying open-source projects can yield results that are
comparable to studying closed-source Simulink projects.

At a minimum, this would allow the research community
to develop hypotheses and tools that could then be tested and
validated more easily in an academic-industrial collaboration.
This may lead to faster progress than relying on all the heavy
lifting of developing hypotheses and tooling from scratch be-
ing done in closed-source academic-industrial collaborations.

To explore this question, we pick one recent representative
empirical study of the changes in a closed-source Simulink
project and replicate the study using EvoSL projects. Jaskolka

TABLE III: Default-branch metrics: Commits, commits per day during project duration, merge commits (≻), and commits of
1+ mdl/slx files (MS); commit authors and commitMS authors; l = low; h = high; med = median; std = standard deviation.

EvoSL+ (root) EvoSL (root) EvoSL36 (root)
Default-branch: l h avg med std l h avg med std l h avg med std

Commits 1 15,060 30 6 305 2 15,060 155 22 992 102 1,452 499 381 349
Commits / day 0 91 2 1 4 0 50 1 0 3 0 1 0 0 0
Commits≻ [%] 0 55 2 0 6 0 48 5 0 7 0 17 9 9 5
CommitsMS [%] 0 100 43 33 31 0 100 36 31 25 6 88 35 27 19
Authors 1 103 2 1 3 1 103 4 2 8 1 45 14 11 11
AuthorsMS [%] 1 100 84 100 25 2 100 73 67 28 25 100 62 56 21
Durations [days] 0 5,909 116 4 326 0 5,909 443 135 703 264 5,909 1,553 1,207 1,076

0-10% 40-50% 90-100%
Project life time

0%
5%

10%
15%
20%
25%
30%
35%
40%
45% Commits

CommitsMS
Models under development

(a) All 13,919 EvoSL+ Simulink root projects.

0-10% 40-50% 90-100%
Project life time

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

Commits
CommitsMS
Models under development

(b) All 924 EvoSL Simulink (root) projects.

0-10% 40-50% 90-100%
Project life time

0%
5%

10%
15%
20%
25%
30%
35%
40%

Commits
CommitsMS
Models under development

(c) The 292 EvoSL Simulink (root) projects with 10+ commitsMS.

0-10% 40-50% 90-100%
0%

5%

10%

15%

20%

25%

30%
Commits
CommitsMS
Models under development

(d) The 36 EvoSL36 (root) projects.

Fig. 6: Across projects’ normalized duration on x-axis: Total
default-branch commits, default-branch commitsMS, and per-
centage of mdl/slx files included in bucket’s commits.

et al. [21] examined changes across different model versions
of a proprietary industrial software repository of an automotive
control system to understand how Simulink models evolve
over time. Their analysis shows that well-accepted software

engineering principles (such as low degree of change to
interfaces) are not practiced and engineers spend significant
amounts of time in non-value added work such as migrating
the project to new Simulink versions. Specifically, we are
investigating the following three research questions, all copied
verbatim from Jaskolka et al. [21].

RQ1 What basic elements change the most?
RQ2 Which blocks are involved in changes most fre-

quently?
RQ3 Which are identified categories of change?

A. Experimental Setup Following C-study

To replicate the earlier study [21] (which we call C-study,
where C may stand for closed-source or car industry), we try to
follow C-study’s setup and procedures as closely as possible,
using both the same conceptual framework of Simulink model
changes and tooling for collecting change data.

Fig. 7: Simplified Simulink meta-model: 6 element types [21].

For the conceptual framework, Figure 7 summarizes the
relevant parts of C-study’s meta-model of Simulink models.
Here a block diagram is composed of six element types—
block, line, port, mask, annotation, and configuration. For
each of these six element types, C-study collects four change
types—add, delete, rename, and (otherwise) modify.

C-study detects a change by comparing two snapshots of a
model. An added element does not exist in the before- but in
the after-model. A deleted element exists in the before- but
not in the after-model. A renamed and modified element each
exist in both the before- and the after-model but have their
name or another parameter changed.

On the tooling side, Figure 8 gives an overview of how
we adapted C-study’s model change computation. C-study
queried a Rational Synergy commercial issue tracking system

to extract before- and after- model file versions from a Rational
Change commercial change management system [17], [18].
Given EvoSL’s use of standard Git repositories and its inferred
model commit metadata, it is straight-forward to similarly
extract such before- and after- model file versions from EvoSL.

Fig. 8: Using C-study’s Model Comparison Utility [21], [20]
to mine Simulink model changes in EvoSL.

Since we do not know how C-study treated merge commits
(or commits from non-default branches) we focus on non-
merge default-branch commits. C-study’s open-source Model
Comparison Utility [21], [20] passes each pair of before- and
after- file versions to Simulink’s built-in model comparison
tool and breaks its output down into individual model element
changes. Due to Simulink API limitations, C-study’s Model
Comparison Utility discards non-functional changes (such
as layout) and block defaults. We store and distribute the
remaining derived element changes in a SQLite database.

For this replication study we had to make a trade-off
between model selection and replication accuracy. The key
reason is that using two different Simulink versions and their
built-in model comparison tools on the same before- and after-
model pair can produce vastly different results, even when both
Simulink versions directly support the model file versions.

Concretely, as C-study used Simulink R2019a we passed
random Simulink models developed with R2019a to both
Simulink R2019a and the (ostensibly backward-compatible)
R2022b. Despite the tool documentation being silent on this,
about a quarter of changes were only reported by one of the
two Simulink versions, with no report being a superset of
the other. As we cannot run R2022b on the closed-source
C-study repository we are stuck with Simulink R2019a and
(as Simulink is not directly forward-compatible) we exclude
from this study model files developed with R2019b or later
that Simulink R2019a refuses to open.

B. Simulink Model Changes From EvoSL Sample: EvoSL36

As C-study focuses on Simulink model changes we pick the
50 EvoSL projects that have the most default-branch changes
to mdl/slx files (“commitsMS”). Due to our experimental
setup constraints, we remove 9 (newer) projects Simulink
R2019a cannot open. We remove five additional projects who
have a subset of the default-branch commitsMS of another
project. (EvoSL removed all explicit fork projects and exact

non-fork duplicate project histories but not such non-forked
almost-duplicates.) We are thus left with 36 EvoSL projects
(“EvoSL36”). Following C-study, we ran its Model Compari-
son Utility [21], [20] on each default-branch before- and after-
commit model pair of EvoSL36, yielding 590,300 Simulink
model changes (C-study analyzed 2.8M such changes).

TABLE IV: Basic project metrics copied from C-study [21]
and EvoSL36’s default-branch distributions; l = low; h = high;
med = median; std = standard deviation; m = model size.

[21] EvoSL36 (default branches)
l h avg med std

Largest m. [blocks] 37,814 6 51,655 2,368 357 8,642
Avg m. [blocks] 1,200 5 8,366 424 113 1,438
CommitsMS 1,354 60 598 141 111 105
Duration [months] 75 9 197 52 40 36
Changed model files 3,945 1 176 25 13 37

Table IV puts EvoSL36 in context of C-study’s published
basic project characteristics [21]. While EvoSL36 has default-
branch changes in fewer mdl/slx files (some 900 in total vs
3,945), has fewer total default-branch commitsMS in a single
project (598 vs 1,354), and has a lower average default-
branch model size (424 vs 1,200 blocks), on all the measures,
except changed model files, EvoSL36 is within the same
order of magnitude as C-study. On the flip side, EvoSL36
has a larger maximum default-branch model size (52k vs.
38k blocks), longer maximum default-branch project duration
(16 vs. 6 years), and more total default-branch commits with
mdl/slx file changes in total (5k vs 1,354 commitsMS)—again
all within the same order of magnitude.

To further gauge EvoSL36’s suitability, we checked the
criteria recently laid out with the help of a Simulink expert [5]
when analyzing the suitability of an earlier corpus [8]. Of
these criteria, we did not reach a conclusion on a steady
increase of commits towards project end (as we do not know
EvoSL36 projects’ future timelines) and a non-low percentage
of commits being merge commits (it is unclear if EvoSL36’s
median 9% of commits meets this bar).

That paper’s remaining provided metrics and example val-
ues [5] all largely align with EvoSL36 (Table III), i.e., a high
project duration (2.3k vs. EvoSL36’s median 1.2k days in
the default-branch), many authors (16 vs. median 11), many
project commits (589 vs. median 381), and many default-
branch commits affecting mds/slx files (44% vs. median 27%).
Together with our manual sampling of commit messages,
we conclude that EvoSL36 projects are not synthetic outliers
generated by a random generator, but represent suitable human
development activity.

C. RQ1: What Basic Elements Change the Most?

Breaking EvoSL36’s 590,300 default-branch element
changes down by element and change type as C-study did
yields Table V’s right columns. To ease comparison, we
normalize each element type’s change count (e.g., EvoSL36’s
30k block renames) by dividing that element type’s total

changes (e.g., EvoSL36’s 300k total block changes—yielding
EvoSL36’s 10.1% block rename rate).

C-study makes several observations about this element
change breakdown and draws two main conclusions, all of
which could equally be done with EvoSL36’s corresponding
(default-branch) data, as follows. (1) First, C-study observes
that the most frequently changed element type is blocks,
which aligns with 300k of 590k total EvoSL36 changes being
blocks. (2) Second, C-study finds that line changes follow
closely behind block changes, which again aligns closely with
EvoSL36’s 246k line vs. 300k block changes.

(3) Third, C-study notices that line changes are dominated
by first add (59%) and then delete (39%), which similarly
occurs in EvoSL36 (55% add and 43% delete). Combined
with add- and delete-line having higher absolute numbers than
add- and delete-block, C-study explains how replacing a block
triggers a deleting and adding a line.

(4) Fourth, not directly referencing any additional data,
C-study determines that a similar dynamic is at play with
ports. As all of the previous data observations are equally
true in EvoSL36, we could have equally used EvoSL36 to
conclude to omit both line and port changes from further
analysis. (5) Finally, C-study observes that masks, annotations,
and configurations have the least changes (some 3% overall),
which again aligns with some 3% in EvoSL36.

Beyond C-study’s observations, there are several other sim-
ilarities. For example, in both data sets the most common
change type is add, followed by (in order) delete, modify, and
rename. The one big outlier in both datasets is configuration,
which is dominated by modify and followed by add. In both
datasets blocks have the highest rename rate, followed by
annotations, and lower rates for the remaining element types.

Insight 1: Besides additional similarities, all observations
C-study makes about its change data are equally true for
EvoSL36. We thus assume researchers could draw the same
conclusions C-study drew.

D. RQ2: Most Frequently-changed Block Types

To analyze which blocks change most frequently, C-study
aggregates blocks by their block type (as given by the block’s
BlockType parameter). C-study’s five block types with the
most changed block instances are Inport (11.8% of all C-study
changes), Outport (9.2%), From (5.4%), Constant (4.4%),
and SubSystem (4.2%). These five block types are also in
EvoSL36’s top-six block types by most block instance changes.
The one exception is the Reference block type, which domi-
nates EvoSL36 likely because it represents custom blocks we
did not load from one of EvoSL36’s custom libraries.

Figure 9 shows all block types whose block instances have
over 50 changes across the EvoSL36 default branches. The
frequency of the six block types with the most block instance
changes are Reference (16% of all EvoSL36 changes), SubSys-
tem (7.3%), Inport (4.9%), Outport (3.5%), Constant (1.8%),
and From (1.5%).

Besides Reference, EvoSL36 also has a higher rate of
Subsystem changes. Subsystem blocks are typically used to
modularize and organize a large model into smaller and more
manageable components. We assume C-study’s slightly lower
rate of Subsystem block changes stems from each project
tending to become relatively more stable over time. This
progression playing out for each EvoSL36 project would ex-
plain EvoSL36’s overall higher rate of such structural changes.
EvoSL36’s next two most frequently changed block types,
Inport and Outport, appear in this order also in C-study.

Finally, we examine the ordering of block types by most-
changed total block instances with Kendall’s rank and p-value
less than 0.05. Based on this test, the trend of most-to-least
frequently changed block types in C-study and EvoSL36 are
strongly positively correlated (τ = 0.99).

Insight 2: EvoSL36 mimics several characteristics of C-
study’s block type change distribution, including the most-
changed block types and a strong correlation between the
order of block types by block changes.

E. RQ3. Which Are Identified Categories of Change?

The standard Simulink language block libraries categorize
blocks pertaining to their purpose or a common quality.
However, block types in these groups overlap with the other
groups. To categorize each block type to a non-overlapping
category, Jaskolka et al. created a new category scheme in
which each block type falls under a single category according
to their purpose. They also introduced new categories such
as Documentation and Interface. Table VI shows the list of
categories with some example blocks, and full details can be
found in their work [22]. We adopted the new category scheme
and analyzed the changes according to it. Block types not
listed in Jaskolka’s category scheme we marked as “Others”.

Table VII shows the ratio of (default-branch) block changes
by block category. Most EvoSL36 changes are on structural
blocks, followed by signal routing, math, and source blocks.
Unlike C-study where interface changes contributed to over
one-third of block changes, in EvoSL36 interfaces are stable
with under 1% of block changes, indicating good modeling
practices. We delve into a few categories below.

a) Changes to Signal Routing and Structural Blocks:
In Simulink, data produced and processed by blocks is routed
via signal lines. Rather than analyzing the signal lines (as dis-
cussed in Section IV-C), analyzing changes to the blocks that
are responsible for routing, combining, creating, and selecting
data is more revealing. Table VII shows that engineers spend
a substantial amount of time managing signal data, as 29% of
block changes are signal routing changes.

The many changes to signal routing blocks go hand in hand
with the most frequently changed block category, i.e., Struc-
tural. In model based development, complexity is abstracted
through creating hierarchical models. The many changes to
SubSystem and Reference blocks (Figure 9), contributed to
significant changes to signal routing between the models’
hierarchical layers.

TABLE V: Types of Simulink model element changes in C-study and EvoSL36 (default branches); normalized = element type’s
specific changes divided by that element type’s total changes; Re = rename; Mod = modify; Del = delete; EC/TC = element
type’s total changes divided by total changes; Anno = annotation; Conf = configuration.

C-study (normalized) EvoSL36 (normalized) EvoSL36 (absolute)
Re Mod Del Add EC/TC Re Mod Del Add EC/TC Re Mod Del Add Total

Block 12.0 24.9 22.9 40.2 55.3 10.1 35.4 23.4 31.1 50.7 30,183 106,093 69,985 93,295 299,556
Line 0.2 2.0 39.2 58.6 38.9 0.2 1.8 43.3 54.6 41.6 558 4,385 106,575 134,340 245,858
Port 0.3 27.6 27.6 44.5 3.2 0.0 0.5 43.4 56.1 4.2 0 124 10,774 13,951 24,849
Mask 0.0 19.8 16.9 63.2 1.8 0.0 43.7 23.7 32.5 1.2 0 3,148 1,709 2,343 7,200
Anno 4.0 10.4 34.2 51.4 0.8 6.3 7.4 44.3 42.0 1.1 407 482 2,871 2,723 6,483
Conf 0.0 98.5 0.0 1.5 0.0 2.2 65.0 3.5 29.3 1.1 142 4,130 220 1,862 6,354

All 6.7 15.9 29.4 48.0 100.0 5.3 20.1 32.5 42.1 100.0 31,290 118,362 192,134 248,514 590,300

Fig. 9: EvoSL36’s 299,556 (default-branch) Simulink block changes by block type (showing block types with 50+ changes).

TABLE VI: C-study’s 13 Simulink block categories [21].

Category Example Blocks

(Model) Interface root-level Inport/Outport, global
DataStoreRead/DataStoreWrite,
FromFile/ToFile, FromSpreadsheet,
ToWorkspace/FromWorkspace

Signal Routing non-root Inport/Outport, Goto/From, local
DataStoreRead/Write, BusCreator, Merge,
Assignment

Signal Attributes RateTransition, DataTypeDuplicate, Signal-
Conversion, DataTypeConversion

Structural SubSystem, Reference
Conditional If, Switch, SwitchCase, ManualSwitch
Discrete Delay, UnitDelay, Filter, Integrator
Math Sum, MinMax, Rounding, Abs, Gain
Logic RelationalOperator, LogicalOperator
Trigger TriggerPort, EnablePort, ActionPort
Sources Ground, Step, Clock, Constant
Sinks Terminator, Scope, Display
Documentation ModelInfo, DocBlock
Custom S-Function

b) Changes to Documentation Blocks: Simulink provides
various options for documenting models. Similar to code
comments for understanding textual programs, in Simulink one
can use annotations including text and images embedded in the
model. Users can also embed plain text or a document via a

TABLE VII: EvoSL36’s block changes by C-study’s Table VI
categories; Others = all newer and uncategorised blocks types.

Block Category % Block Category %

Structural 49.55 Signal Routing 28.90
Math 6.18 Sources 3.96
Others 3.10 Discrete 2.80
Sinks 2.08 Signal Attributes 1.03
Conditional 0.97 Logic 0.85
Custom 0.75 Interface 0.62
Trigger 0.19 Documentation 0.01

DocBlock [33], which may contain a more thorough descrip-
tion of the design. Finally, Simulink’s Model Info [34] block
shows (automatically updating) revision control information
such as creator and the last modified date.

Compared to block changes overall, EvoSL36 has signif-
icantly fewer changes to documentation-related blocks. The
low documentation change frequency is inline with existing
software documentation for Simulink models [37] and most
other software systems [25], [3]. 99% of the documentation-
related changes are made through annotations. Unlike in
industrial development where Model Info is encouraged to
keep track of the original model’s creator and other metadata,
the EvoSL36 open-source projects do not follow the practice.

Insight 3: As in C-study, EvoSL36 engineers made much
more changes to signal routing and structural blocks
than to implementing algorithms, leading to the same key
conclusion as C-study.

V. THREATS TO VALIDITY

One threat to validity is that we do not know if C-study
analyzed model changes from production and all development
branches. As C-study does not mention branches at all [21],
[22], our replication focuses on model changes that are either
direct commits to the default branch or added to the default
branch via merging. By skipping analysis of commits from
branches not ultimately merged back into the default branch
(including those that got removed via squashing before merg-
ing to the default branch), we missed 1,084 commitsMS (and
their 2,540 model commits), beyond the 5,070 commitsMS (and
their 9,845 model commits) we analyzed for EvoSL36.

EvoSL is curated from GitHub and may not be represen-
tative of all open-source Simulink repositories. GitHub does
not recognize Simulink as a programming language. We did
a thorough search via GitHub’s API, filtering GitHub projects
written in MATLAB on top of a “Simulink” keyword search.
Note that projects that only contain Simulink models are not
tagged with a programming language, so our search may have
missed them. It is impractical to search 330 million GitHub
repositories to filter Simulink projects.

C-study’s Model Comparison Utility captures Stateflow
block changes in the model snapshots but did not label any
of the EvoSL36’s change with Stateflow. To assess EvoSL’s
potential to facilitate research on Stateflow changes, we ran
the utility using MATLAB/Simulink 2022b on EvoSL, which
yielded no Stateflow-related changes. Our attempts to identify
relevant projects were also unsuccessful, despite finding at
least 15 projects that mentioned Stateflow in their descriptions
in our metadata. While EvoSL may not be suitable for State-
flow change studies, a few EvoSL projects could still contain
Stateflow-related blocks. Also, we provide the EvoSL element
change data with its metadata for further analysis.

VI. RELATED WORK

Simulink models have largely been curated with manual or
semi-automated approaches [7], [5], [40], [8]. Sánchez et al.
used Google’s BigQuery to filter and extract the largest open-
source Simulink models to test their tool [40]. Chowdhury
et al.’s SLforge project performed the first large-scale study
of 391 Simulink models, whose primary focus was to test
the Simulink tool chain [7]. The authors later extended their
corpus to 1071 publicly available models [8]. Boll et al. repro-
duced the corpus developed by Chowdhury et al., providing
deeper insights on the models and modeling characteristics [5].
Shrestha et al. pioneered fully automated mining of some 400
non-hierarchical models to train a deep learning model for
Simulink tool chain testing and later curated the first self-
contained corpus of Simulink models, addressing limitation
of earlier corpora [46], [42]. Unlike EvoSL, none of these
corpora offer projects with full revision history.

Existing work in the field of model evolution is focused
on clone detection, variant management, and studying the
synchronous co-evolution of models and tests. To detect
clones, Stephen et al. developed the SIMONE algorithm,
which has been used to track the evolution of model clones and
refactor cloned fragments into a library [50], [23]. Haber et
al. proposed delta operations, including add, remove, modify
and replace elements, to obtain desired variant models [14].
Schlie et al. focused on improving variability mining ap-
proaches by adding blocks and hierarchical levels [41]. Ra-
pos et al. employed Simulink’s built-in comparison tool to
extract change information and investigate the synchronous
co-evolution of models and tests in closed-source industrial
models [38]. Jaskolks et al.’s case study stands out for its
comprehensive classification of changes to model elements,
which we replicated in this study using EvoSL.

Mining source code from software repositories has yielded
rich information researchers have leveraged for code-based
research [24], [51], [4]. GitHub especially has emerged as
a primary source of open-source repositories for empirical
research. Consequently, researchers have developed several
tools to facilitate mining from GitHub [39], [12], [48], [19].
In this study, we used PyDriller and PyGitHub to curate
EvoSL [48], [19]. In recent years, there has been increasing
interest in mining model-based artifacts. The MAR search
engine [27], [28] has been developed to facilitate model-driven
engineering efforts, i.e., the tool searches existing corpora for
Simulink models. On the other hand, tools such as ModelMine
allow for artifact searches directly from GitHub by searching
based on file extensions. However, the tool incorrectly labels
the Simulink model file extension as “.simulink”.

VII. CONCLUSIONS

In this study, we emphasize the importance of readily acces-
sible corpora for performing replication, reproduction, exten-
sion, and verification studies. Several safety-critical industries
use MATLAB/Simulink as a standard tool for system modeling
and analysis, necessitating large-scale model evolution studies.
However, there has been no readily accessible corpus for such
studies. To address this gap, we introduced EvoSL as the first
large corpus of Simulink projects, including model and project
changes, which is available under a permissive open-source
license and included its collection and analysis tools. On a
EvoSL subset we successfully replicated a case study of model
changes in a closed-source industrial project.

ACKNOWLEDGEMENTS

Christoph Csallner has a potential research conflict of
interest due to a financial interest with Microsoft and The
Trade Desk. A management plan has been created to preserve
objectivity in research in accordance with UTA policy. This
material is based upon work supported by the National Science
Foundation (NSF) under Grant No. 1911017 and a gift from
MathWorks.

REFERENCES

[1] B. Adhikari, E. J. Rapos, and M. Stephan, “Simulink model trans-
formation for backwards version compatibility,” in Proc. ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems Companion (MODELS-C), 2021, pp. 427–436.

[2] ——, “SimIMA: A virtual Simulink intelligent modeling assistant,”
Software and Systems Modeling, pp. 1619–1374, 2023. [Online].
Available: https://doi.org/10.1007/s10270-023-01093-6

[3] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez,
L. Moreno, G. Bavota, and M. Lanza, “Software documentation issues
unveiled,” in Proc. 41st IEEE/ACM International Conference on Soft-
ware Engineering (ICSE). IEEE, 2019, pp. 1199–1210.

[4] M. Allamanis and C. Sutton, “Mining source code repositories at
massive scale using language modeling,” in Proc. 10th Working
Conference on Mining Software Repositories (MSR). IEEE, May
2013, pp. 207–216. [Online]. Available: https://doi.org/10.1109/MSR.
2013.6624029

[5] A. Boll, F. Brokhausen, T. Amorim, T. Kehrer, and A. Vogelsang,
“Characteristics, potentials, and limitations of open-source Simulink
projects for empirical research,” Software and Systems Modeling, vol. 20,
pp. 1–20, 2021.

[6] A. Boll, N. Vieregg, and T. Kehrer, “Replicability of experimental
tool evaluations in model-based software and systems engineering with
matlab/simulink,” Innovations in Systems and Software Engineering, pp.
1–16, 2022.

[7] S. A. Chowdhury, S. Mohian, S. Mehra, S. Gawsane, T. T. Johnson, and
C. Csallner, “Automatically finding bugs in a commercial cyber-physical
system development tool chain with SLforge,” in Proc. 40th ACM/IEEE
International Conference on Software Engineering (ICSE). ACM, May
2018, pp. 981–992.

[8] S. A. Chowdhury, L. S. Varghese, S. Mohian, T. T. Johnson, and
C. Csallner, “A curated corpus of Simulink models for model-based
empirical studies,” in Proc. 4th International Workshop on Software
Engineering for Smart Cyber-Physical Systems (SEsCPS). ACM, May
2018, pp. 45–48.

[9] Digital Science, “Figshare,” 2023, april 2023. [Online]. Available:
https://figshare.com/

[10] S. W. Flint, J. Chauhan, and R. Dyer, “Pitfalls and guidelines for using
time-based Git data,” Empirical Software Engineering, vol. 27, no. 7,
pp. 1–55, Dec. 2022.

[11] GitHub Inc, “Rate limits,” 2023, accessed March 2023. [Online]. Avail-
able: https://docs.github.com/en/rest/overview/resources-in-the-rest-api?
apiVersion=2022-11-28#rate-limiting

[12] G. Gousios and D. Spinellis, “GHTorrent: Github’s data from a firehose,”
in Proc. 9th IEEE Working Conference of Mining Software Repositories
(MSR). IEEE, Jun. 2012, pp. 12–21.

[13] S. Guo, H. Jiang, Z. Xu, X. Li, Z. Ren, Z. Zhou, and R. Chen, “Detecting
Simulink compiler bugs via controllable zombie blocks mutation,” in
Proc. 30th ACM Symposium on the Foundations of Software Engineering
(FSE). ACM, Nov. 2022, pp. 1061–1072.

[14] A. Haber, C. Kolassa, P. Manhart, P. M. S. Nazari, B. Rumpe,
and I. Schaefer, “First-class variability modeling in matlab/simulink,”
in Proc. 7th International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS). ACM, Jan. 2013, pp. 4:1–4:8.
[Online]. Available: https://doi.org/10.1145/2430502.2430508

[15] Harvard Dataverse Project , “Harvard dataverse,” 2023, april 2023.
[Online]. Available: https://dataverse.harvard.edu/

[16] R. Heumüller, S. Nielebock, J. Krüger, and F. Ortmeier, “Publish
or perish, but do not forget your software artifacts,” Empir. Softw.
Eng., vol. 25, no. 6, pp. 4585–4616, 2020. [Online]. Available:
https://doi.org/10.1007/s10664-020-09851-6

[17] IBM, “IBM Rational Change,” 2023, april 2023. [Online]. Available:
https://www.ibm.com/products/rational-change

[18] ——, “IBM Rational Synergy,” 2023, april 2023. [Online]. Available:
https://www.ibm.com/products/rational-synergy

[19] V. Jacques, “PyGitHub,” 2007. [Online]. Available: https://pygithub.
readthedocs.io/en/latest/introduction.html

[20] M. Jaskolka and Gor-Marks, “McSCert/Model-Comparison-Utility:
Model Comparison Utility (Version 1.4),” Apr. 2022. [Online].
Available: https://doi.org/10.5281/zenodo.6410073

[21] M. Jaskolka, V. Pantelic, A. Wassyng, M. Lawford, and R. Paige,
“Repository mining for changes in Simulink models,” in Proc. 24th

ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems (MODELS). IEEE, 2021, pp. 46–57.

[22] M. Jaskolka, V. Pantelic, A. Wassyng, R. Paige, and M. Lawford,
“Repository mining for changes in Simulink and Stateflow models,”
Software and Systems Modeling, Jun. 2023.

[23] R. Jongeling, A. Cicchetti, F. Ciccozzi, and J. Carlson, “Co-evolution of
Simulink models in a model-based product line,” in Proc. ACM/IEEE
23rd International Conference on Model Driven Engineering Languages
and Systems (MoDELS), E. Syriani, H. A. Sahraoui, J. de Lara, and
S. Abrahão, Eds. ACM, Oct. 2020, pp. 263–273. [Online]. Available:
https://doi.org/10.1145/3365438.3410989

[24] H. H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy
of approaches for mining software repositories in the context of
software evolution,” J. Softw. Maintenance Res. Pract., vol. 19, no. 2,
pp. 77–131, 2007. [Online]. Available: https://doi.org/10.1002/smr.344

[25] M. Kajko-Mattsson, “A survey of documentation practice within
corrective maintenance,” Empir. Softw. Eng., vol. 10, no. 1, pp. 31–55,
2005. [Online]. Available: https://doi.org/10.1023/B:LIDA.0000048322.
42751.ca

[26] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. Germán, and
D. E. Damian, “An in-depth study of the promises and perils of mining
GitHub,” Empir. Softw. Eng., vol. 21, no. 5, pp. 2035–2071, 2016.

[27] J. A. H. López and J. S. Cuadrado, “MAR: a structure-based
search engine for models,” in Proc. ACM/IEEE 23rd International
Conference on Model Driven Engineering Languages and Systems
(MoDELS), E. Syriani, H. A. Sahraoui, J. de Lara, and S. Abrahão,
Eds. ACM, Oct. 2020, pp. 57–67. [Online]. Available: https:
//doi.org/10.1145/3365438.3410947

[28] ——, “An efficient and scalable search engine for models,” Softw.
Syst. Model., vol. 21, no. 5, pp. 1715–1737, 2022. [Online]. Available:
https://doi.org/10.1007/s10270-021-00960-4

[29] MathWorks Inc, “MATLAB & Simulink,” 2021. [Online]. Available:
https://www.mathworks.com/products/simulink.html/

[30] ——, “Create block masks,” 2022, accessed Nov 2022. [Online].
Available: https://www.mathworks.com/help/simulink/block-masks.html

[31] ——, “Set model configuration parameters for a model,” 2022,
accessed Nov 2022. [Online]. Available: https://www.mathworks.com/
help/simulink/ug/configuration-parameters-dialog-box-overview.html

[32] ——, “Compare and merge Simulink models con-
taining Stateflow,” 2023, accessed Mar 2022. [On-
line]. Available: https://www.mathworks.com/help/simulink/slref/
compare-and-merge-simulink-models-containing-stateflow.html

[33] ——, “DocBlock,” 2023, april 2023. [Online]. Available: https:
//www.mathworks.com/help/simulink/slref/docblock.html

[34] ——, “Model Info,” 2023, april 2023. [Online]. Available: https:
//www.mathworks.com/help/simulink/slref/modelinfo.html

[35] ——, “Model comparison,” Accessed December 2022,
2022. [Online]. Available: https://www.mathworks.com/help/simulink/
model-comparison.html

[36] natedana, “How to copy a github repo without forking,” 2023,
march 2023. [Online]. Available: https://gist.github.com/natedana/
cc71d496b611e70673cab5e8f5a78485

[37] V. Pantelic, A. Schaap, A. Wassyng, V. Bandur, and M. Lawford,
“Something is rotten in the state of documenting Simulink models,” in
Proc. 7th International Conference on Model-Driven Engineering and
Software Development (MODELSWARD). SciTePress, Feb. 2019, pp.
503–510.

[38] E. J. Rapos and J. R. Cordy, “Examining the co-evolution
relationship between simulink models and their test cases,” in Proc.
8th International Workshop on Modeling in Software Engineering
(MiSE). ACM, May 2016, pp. 34–40. [Online]. Available: https:
//doi.org/10.1145/2896982.2896983

[39] S. Romano, M. Caulo, M. Buompastore, L. Guerra, A. Mounsif,
M. Telesca, M. T. Baldassarre, and G. Scanniello, “G-Repo: A tool to
support MSR studies on GitHub,” in Proc. 28th IEEE International Con-
ference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, Mar. 2021, pp. 551–555.

[40] B. Sánchez, A. Zolotas, H. H. Rodriguez, D. S. Kolovos, and R. F. Paige,
“On-the-fly translation and execution of OCL-like queries on Simulink
models,” in MODELS 2019. IEEE, 2019, pp. 205–215.

[41] A. Schlie, D. Wille, S. Schulze, L. Cleophas, and I. Schaefer, “De-
tecting variability in MATLAB/Simulink models: An industry-inspired
technique and its evaluation,” in Proc. 21st International Systems and
Software Product Line Conference (SPLC), 2017, pp. 215–224.

https://doi.org/10.1007/s10270-023-01093-6
https://doi.org/10.1109/MSR.2013.6624029
https://doi.org/10.1109/MSR.2013.6624029
https://figshare.com/
https://docs.github.com/en/rest/overview/resources-in-the-rest-api?apiVersion=2022-11-28#rate-limiting
https://docs.github.com/en/rest/overview/resources-in-the-rest-api?apiVersion=2022-11-28#rate-limiting
https://doi.org/10.1145/2430502.2430508
https://dataverse.harvard.edu/
https://doi.org/10.1007/s10664-020-09851-6
https://www.ibm.com/products/rational-change
https://www.ibm.com/products/rational-synergy
https://pygithub.readthedocs.io/en/latest/introduction.html
https://pygithub.readthedocs.io/en/latest/introduction.html
https://doi.org/10.5281/zenodo.6410073
https://doi.org/10.1145/3365438.3410989
https://doi.org/10.1002/smr.344
https://doi.org/10.1023/B:LIDA.0000048322.42751.ca
https://doi.org/10.1023/B:LIDA.0000048322.42751.ca
https://doi.org/10.1145/3365438.3410947
https://doi.org/10.1145/3365438.3410947
https://doi.org/10.1007/s10270-021-00960-4
https://www.mathworks.com/products/simulink.html/
https://www.mathworks.com/help/simulink/block-masks.html
https://www.mathworks.com/help/simulink/ug/configuration-parameters-dialog-box-overview.html
https://www.mathworks.com/help/simulink/ug/configuration-parameters-dialog-box-overview.html
https://www.mathworks.com/help/simulink/slref/compare-and-merge-simulink-models-containing-stateflow.html
https://www.mathworks.com/help/simulink/slref/compare-and-merge-simulink-models-containing-stateflow.html
https://www.mathworks.com/help/simulink/slref/docblock.html
https://www.mathworks.com/help/simulink/slref/docblock.html
https://www.mathworks.com/help/simulink/slref/modelinfo.html
https://www.mathworks.com/help/simulink/slref/modelinfo.html
https://www.mathworks.com/help/simulink/model-comparison.html
https://www.mathworks.com/help/simulink/model-comparison.html
https://gist.github.com/natedana/cc71d496b611e70673cab5e8f5a78485
https://gist.github.com/natedana/cc71d496b611e70673cab5e8f5a78485
https://doi.org/10.1145/2896982.2896983
https://doi.org/10.1145/2896982.2896983

[42] S. Shrestha, S. A. Chowdhury, and C. Csallner, “SLNET: A re-
distributable corpus of 3rd-party Simulink models,” in Proc. 19th
IEEE/ACM International Conference on Mining Software Repositories
(MSR). IEEE, May 2022, pp. 237–241.

[43] S. L. Shrestha, “EvoSL: A Large Open-Source Corpus of Changes
in Simulink Models & Projects,” Apr. 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.7806456

[44] S. L. Shrestha, A. Boll, S. A. Chowdhury, T. Kehrer, and C. Csallner,
“50417/EvoSL-Tool: EvoSL: A Large Open-Source Corpus of Changes
in Simulink Models & Projects,” Jul. 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.8111019

[45] S. L. Shrestha, A. Boll, T. K. Shafiul Azam Chowdhury, and C. Csallner,
“EvoSL: A large open-source corpus of changes in Simulink models
& projects (analysis data),” Jul 2023. [Online]. Available: https:
//figshare.com/articles/dataset/EvoSL A Large Open-Source Corpus
of Changes in Simulink Models Projects Analysis Data /22298812

[46] S. L. Shrestha and C. Csallner, “SLGPT: Using transfer learning to
directly generate Simulink model files and find bugs in the Simulink
toolchain,” in Proc. 25th International Conference on Evaluation and
Assessment in Software Engineering (EASE), Vision and Emerging
Results Track. ACM, 2021, pp. 260–265. [Online]. Available:
https://doi.org/10.1145/3463274.3463806

[47] Software Heritage, “Faq–software heritage,” 2023, accessed April 2023.
[Online]. Available: https://www.softwareheritage.org/faq/#42 Can I

clone a repository using SWH
[48] D. Spadini, M. F. Aniche, and A. Bacchelli, “Pydriller: Python

framework for mining software repositories,” in Proc. ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE.
ACM, Nov. 2018, pp. 908–911. [Online]. Available: https://doi.org/10.
1145/3236024.3264598

[49] M. Stephan, M. H. Alalfi, and J. R. Cordy, “Towards a taxonomy for
Simulink model mutations,” in Proc. 7th IEEE International Conference
on Software Testing, Verification and Validation (ICST) Workshops.
IEEE, Mar. 2014, pp. 206–215.

[50] M. Stephan, M. H. Alalfi, J. R. Cordy, and A. Stevenson, “Evolution
of model clones in Simulink,” in Proc. Workshop on Models and
Evolution co-located with ACM/IEEE 16th International Conference on
Model Driven Engineering Languages and Systems (MoDELS 2013),
2013, pp. 40–49. [Online]. Available: http://ceur-ws.org/Vol-1090/5.pdf

[51] E. D. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble, “The Qualitas corpus: A curated collection
of Java code for empirical studies,” in Proc. 17th Asia Pacific Software
Engineering Conference (APSEC), Nov. 2010, pp. 336–345.

[52] M. Z. Trujillo, L. Hébert-Dufresne, and J. P. Bagrow, “The penumbra
of open source: Projects outside of centralized platforms are longer
maintained, more academic and more collaborative,” EPJ Data Science,
vol. 11, no. 1, pp. 1–19, 2022.

https://doi.org/10.5281/zenodo.7806456
https://doi.org/10.5281/zenodo.8111019
https://figshare.com/articles/dataset/EvoSL_A_Large_Open-Source_Corpus_of_Changes_in_Simulink_Models_Projects_Analysis_Data_/22298812
https://figshare.com/articles/dataset/EvoSL_A_Large_Open-Source_Corpus_of_Changes_in_Simulink_Models_Projects_Analysis_Data_/22298812
https://figshare.com/articles/dataset/EvoSL_A_Large_Open-Source_Corpus_of_Changes_in_Simulink_Models_Projects_Analysis_Data_/22298812
https://doi.org/10.1145/3463274.3463806
https://www.softwareheritage.org/faq/#42_Can_I_clone_a_repository_using_SWH
https://www.softwareheritage.org/faq/#42_Can_I_clone_a_repository_using_SWH
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/3236024.3264598
http://ceur-ws.org/Vol-1090/5.pdf

	Introduction
	Background
	Studies of Changes in Simulink Models & Projects
	State of Open-source Simulink Corpora
	Available Open-source Simulink Project Histories

	Corpus of Simulink Model & Project Changes
	EvoSL Long-term Storage and Metadata
	Overview of EvoSL's Simulink Model and Project Changes

	Replicating an Industrial Study With EvoSL
	Experimental Setup Following C-study
	Simulink Model Changes From EvoSL Sample: EvoSL36
	RQ1: What Basic Elements Change the Most?
	RQ2: Most Frequently-changed Block Types
	RQ3. Which Are Identified Categories of Change?

	Threats to Validity
	Related Work
	Conclusions
	References

