
Replicability Study: Corpora For Understanding
Simulink Models & Projects

Sohil Lal Shrestha
Computer Science & Eng. Dept.
University of Texas at Arlington

Arlington, TX 76019, USA
sohil.shrestha@mavs.uta.edu

Shafiul Azam Chowdhury
Computer Science & Eng. Dept.
University of Texas at Arlington

Arlington, TX 76019, USA
shafiulazam.chowdhury@mavs.uta.edu

Christoph Csallner
Computer Science & Eng. Dept.
University of Texas at Arlington

Arlington, TX 76019, USA
csallner@uta.edu

Abstract—Background: Empirical studies on widely used
model-based development tools such as MATLAB/Simulink are
limited despite the tools’ importance in various industries.

Aims: The aim of this paper is to investigate the reproducibility
of previous empirical studies that used Simulink model corpora
and to evaluate the generalizability of their results to a newer and
larger corpus, including a comparison with proprietary models.

Method: The study reviews methodologies and data sources
employed in prior Simulink model studies and replicates the
previous analysis using SLNET. In addition, we propose a
heuristic for determining code-generating Simulink models and
assess the open-source models’ similarity to proprietary models.

Results: Our analysis of SLNET confirms and contradicts
earlier findings and highlights its potential as a valuable resource
for model-based development research. We found that open-
source Simulink models follow good modeling practices and
contain models comparable in size and properties to proprietary
models. We also collected and distribute 208 git repositories with
over 9k commits, facilitating studies on model evolution.

Conclusions: The replication study offers actionable insights
and lessons learned from the reproduction process, including
valuable information on the generalizability of research findings
based on earlier open-source corpora to the newer and larger
SLNET corpus. The study sheds light on noteworthy attributes
of SLNET, which is self-contained and redistributable.

Index Terms—reproducibility, replication, Simulink, open sci-
ence, code generation, Simulink model

I. INTRODUCTION

There are only a few empirical studies of open-source
MATLAB/Simulink artifacts, maybe due to a widespread per-
ception that open-source Simulink artifacts are typically small,
do not represent closed-source development, and are often
hard to acquire [14], [15], [27], [61], [70]. Most empirical
Simulink studies to date have instead relied on academic-
industry collaborations—to get access to large closed-source
Simulink artifacts [6]. Most empirical results on Simulink
development and artifacts are thus based on case-studies of
closed-source artifacts that (even when providing detailed
experimental design descriptions and measurement tools) are
hard to reproduce or replicate [10].

It is well-known how important replication is for scientific
progress. Successful experiments need to be cross-validated
under different conditions before they can be considered a
part of science and interpreted with confidence [12]. Working

towards large open-source Simulink corpora and empirical
results that are easier to reproduce and replicate are thus
important goals, given how widely Simulink is used in industry
in safety-critical domains such as automotive and healthcare.

Towards these goals, recent initial work created via manual
mining a first large corpus (which we call SC [17]) of open-
source Simulink models and investigated modeling practices
on a re-collected version of that corpus (SC20 [7]). The
work found that some of these manually-collected Simulink
models are suitable for empirical research, based on model
metrics analysis and a qualitative assessments by a domain
expert [7]. Follow-up work automated Simulink model col-
lection, yielding the larger SLNET corpus that also allows
redistribution [88]. However we are not aware of earlier work
that either characterizes this larger SLNET corpus or uses it
to replicate earlier empirical studies of Simulink models.

We thus first reproduce studies that are based on the initial
SC large-scale Simulink model corpus, identifying inconsis-
tencies in the original studies. We then replicate results of the
earlier studies using the newer and larger SLNET corpus. By
re-running the original study designs, we found inconsistencies
between the experimental results and the ones reported in the
paper, attributable to oversight and incomplete documentation.
Our replication study using SLNET confirmed several previous
findings, such as the low utilization of model references and
algebraic loops. In contrast to prior work, we only found a
weak correlation between cyclomatic complexity and other
model metrics. To summarize, this paper makes the following
major contributions.

• Through empirical data, we identify inconsistencies in
earlier empirical Simulink studies.

• We characterize the SLNET corpus in relation to earlier
corpora of open-source Simulink models.

• On SLNET we replicate previous studies, which both
confirms and contradicts earlier findings.

• We collect and distribute 208 SLNET git repositories,
containing 9k+ commits including 5k model versions, as
artifacts that can be analyzed by the community [85].

• Our analysis tool [82] as well as reproduction and repli-
cation data [85] are open-sourced and available.

978-1-6654-5223-6/23$31.00 © 2023 IEEE

https://orcid.org/0000-0002-0837-8388
https://orcid.org/0000-0001-9019-6067
https://orcid.org/0000-0003-0896-6902

II. BACKGROUND

Using Simulink’s graphical modeling environment, engi-
neers can design a complex system model as a hierarchical
block diagram [50]. Each block represents a dynamic system
that may take input through its input ports and produce output
via its output ports, either continuously or at specific points
in time. A block can be from a Simulink built-in library [53],
from a separate toolbox library, or a custom S-function block
defined via “native” code (e.g., in C). Blocks pass data to each
other via directed connections (aka lines). Simulink is a com-
mercial de-facto standard tool-chain in several domains such as
aerospace, automotive, healthcare, and industrial automation.

Fig. 1: (a) A tiny Simulink example model, (b) shows the
contents of (a)’s referenced model.

Simulink offers several hierarchy mechanisms, ranging from
a subsystem block grouping that can only be used in one con-
text to a model reference (which essentially calls an indepen-
dent model via its own well-defined interface and can thus be
widely reused) [39]. These constructs allow further recursive
decomposition, enabling deeply nested models. Figure 1(a)
shows a tiny example hierarchical model that contains a model
reference to the Figure 1(b) referenced model. Alternatively,
the user can use library-linked blocks [49], that are references
to blocks defined in a custom library [41], that enables
reusability and centralized maintenance of block functionality
across multiple models.

A compiled model can be simulated, where Simulink suc-
cessively computes the output of each block over a speci-
fied time range using pre-configured numerical fixed-step and
variable-step solvers. In an algebraic loop, a block’s output
can reach its input port in the same simulation step (i.e.,
without passing through a delay block), which complicates
simulation. Besides normal mode, Simulink offers various ac-
celerator modes to speed up simulation [48]. With additional
toolboxes [37], from the model the user can then generate and
deploy low-level code to the target hardware.

A. Simulink Modeling Guidelines and Best Practices

The MathWorks Advisory Board (MAB) is a group of
commercial MathWorks customers that (starting with Daimler,
Ford, and Toyota in 2001) publishes guidelines and best
practices on developing and maintaining Simulink models.
Besides standardization, these guidelines address key software
engineering challenges such as creating models that are well-
defined, readable, easy to integrate, and reusable.

In their current 2020 version [35] these guidelines include
to (1) avoid algebraic loops as they are hard to simulate and
cannot be compiled to target hardware, (2) use S-functions to

implement custom algorithms, (3) use subsystems to modular-
ize the model by functional decomposition, and (4) use model
references to create hierarchies of reusable components.

B. Cyclomatic Complexity & Size Metrics in Simulink

McCabe introduced cyclomatic complexity and argued it
corresponds to our intuitive notion of complexity. McCabe
also reported on a set of 24 Fortran subroutines with “high”
(>10) cyclomatic complexity. The subroutines’ ranking by
cyclomatic complexity closely correlated with their ranking by
reliability [64]. With some 9k citations this article has been
highly influential in academic software engineering.

Some five decades later the question of measuring program
complexity and program understanding remains an active
research area with several recent advances [18], [21], [31].
Researchers keep returning to cyclomatic complexity with
recent tweaks [5], [13] and more fine-grained measures [2].
An example controversy was if cyclomatic complexity is just
a proxy for program size (e.g., lines of code in a Java- or C-like
language) [26], with recent empirical data showing cyclomatic
complexity to remain independently valuable [30].

For Simulink, recent work has shown the value of size
metrics (i.e., block count), e.g, metric outliers yield interesting
findings [76]. Such results are also eventually reflected in
industry practices. For example, while the MAB industry
board’s 2001 Simulink guidelines did not yet mention size
metrics, the current 2020 version contains a recommendation
(≤60 LOC / function) [35]. However neither MAB guideline
version mentions McCabe or cyclomatic complexity yet.

For calculating a metric, Simulink basically first flattens a
given model into a single hierarchy level, essentially “inlining”
both subsystems and referenced models. So if two blocks in a
model refer to the same referenced model, for metric calcula-
tions the referenced model will appear in the flattened model
twice. Simulink has an option to also similarly (recursively)
inline the contents of (any) library blocks and prior work is
split on activating this option when reporting metric results.

While a block diagram does not represent a procedural
language’s control-flow graph, Simulink still has several block
types that provide control-like functionality. For example,
the value a multiport-switch block receives on its first input
port selects which of the remaining input ports the block
will forward to its output port [51] (which corresponds to
a procedural switch or nested if construct). Simulink thus
first defines the cyclomatic complexity of each built-in block
as the number of the block’s conceptual branching decisions
(i.e., mostly zero or one) and then sums up the cyclomatic
complexity of all blocks in a given (flattened) model [42].

C. Scope of Empirical Studies of Simulink Models

The limited availability of repositories with large numbers
of freely accessible Simulink models has restricted empirical
studies that seek to understand Simulink model characteristics
and metrics [4], [23], [67]. For example, Dajsuren et al. [19]
investigated model metrics including cohesion and coupling
using small subset of Simulink models.

Open-source Simulink models are generally considered in-
sufficient to meet the high industry standards required for
meaningful results [10]. To address this issue, Altinger et
al. [3] published metrics from three proprietary Simulink
models for researchers to analyze. However, the dataset is
no longer available. Schroeder et al. studied 65 proprietary
automotive Simulink models and found via interviews that
engineers preferred simple size metrics such as block count
over structural metrics to capture model complexity [75].

D. SC: First Corpus of Open-Source Simulink Models

Via a two-stage process Chowdhury et al. created what
we call SC, the first corpus of freely available Simulink
models [14], [17]. First [14], the research team collected
391 models, i.e., 41 of the MathWorks’s tutorial models the
team considered to not be “toy” examples, the open-source
models from MATLAB Central that were most popular (by
ratings or downloads), GitHub keyword search results, and
28 models from academic papers, colleagues, and Google
searches. Second, the team added the Simulink models of
12 SourceForge repositories and of the 96 most-downloaded
MATLAB Central projects, yielding a study of a total of 1,071
Simulink models [17].

SC classifies its 1,071 models as tutorial (41), simple (442),
advanced (452), and other (136). The distinction between
simple and advanced is determined heuristically: any GitHub
project with forks or stars and any MATLAB Central project
that are not academic assignment are labeled “Advanced”.
Models shipped with MATLAB/Simulink are labeled “Tuto-
rial”, while models from other sources are labeled ’Other’.

Overall, SC collects Simulink models of projects that (at
least partially) are selected and labeled manually. While ini-
tially “only” providing project URLs [14], the full corpus [17]
includes Simulink model files, metadata, and collection tools
and is stored on a Google Drive directory linked from the
project’s GitHub homepage.

Analyzing the corpus with Simulink R2017a, the work
found good modeling practices such as model referencing
were not widely used. The work found MathWorks’s cyclo-
matic complexity to be at most moderately correlated1 with
various other model metrics. The correlation was strongest
(0.55) for the model’s maximum hierarchy depth, followed
by the model’s number of contained subsystems (NCS). This
contrasted with an earlier study by Olszewska et al. [67],
which showed strong (0.73) correlation between MathWorks’s
cyclomatic complexity and the model’s number of contained
subsystem (NCS).

E. SC20: SC Projects Recollected in 2020

In August 2020—some three years after SC was pub-
lished [17], Boll et al. (a research team acting independently
of Chowdhury et al.) collected what we call SC20 [7], i.e.,

1The earlier work discussed in this paragraph and our own analysis all
use Kendall’s τ at a 0.05 significance level and follow a recent labeling of
subsequent |τ | ranges at that level, i.e.: “weak” below 0.4, then “moderate”
to below 0.7, “strong” to below 0.9, etc. [34]

the latest Simulink model versions of SC’s Simulink projects,
yielding 1,734 Simulink models. Simulink models, metadata,
and the team’s collection tools are preserved on Figshare [8].

The work evaluated SC20’s suitability for empirical model-
based research, analyzing each SC20 project’s domain, origin,
and model metrics. The work also proposed a heuristic for
identifying models configured for code generation. The pa-
per’s analysis found that the majority of SC20 models were
inadequate for most empirical research, but identified a few
mature models. The work also noted that some SC20 GitHub
projects’ characteristics (e.g., a high number of commits and
collaborators) suggest potential for evolution research.

F. SLNET: Largest Known Simulink Corpus

In February 2020 Shrestha et al. collected the SLNET
corpus [88], which addresses key issues of SC and SC20 (i.e.,
manual project selection and unclear project licenses), yield-
ing the first redistributable corpus of open-source Simulink
models. Specifically, SLNET collects Simulink projects from
the GitHub API and from MATLAB Central’s RSS feed and
does not include projects without Simulink model files, known
model generators and their synthetic models, projects that do
not have an appropriate license, potentially duplicate projects
(via bijection of the projects’ models’ metrics), and projects
whose models all have zero blocks, yielding 9,117 Simulink
models. Simulink models, metadata, and the team’s collection
tools are preserved on Zenodo [80], [81], [87].

Combining models from the two largest collections of open-
source Simulink models (GitHub and MATLAB Central),
SLNET is 8 times larger than the largest previous corpus of
Simulink models (SC). In March 2023 we confirmed that other
hosting sites (still) contain significantly fewer public Simulink
repositories (i.e., we could only find 52 Simulink projects on
SourceForge and one on GitLab).

III. RESEARCH DESIGN

Our goal is to gain a deeper understanding of the re-
producibility and replicability in model-based development
research, particularly regarding Simulink models, as empha-
sized in a recent literature review [10]. The literature review
identified a single study that conducted a large-scale empirical
investigation, emphasizing open science, i.e., SC [17]. Sub-
sequently, members of the literature review team undertook
their own investigation, by collecting the latest version of the
models of the same corpus, i.e., SC20 [7].

The recently released SLNET corpus [88] has rectified
limitations of the two existing corpora, allowing us to replicate
the results of earlier empirical studies. Thus, we perform
a sample study utilizing the existing corpora and employ a
statistical learning strategy to generalize the findings of prior
studies on a smaller dataset to a larger dataset [90], [91]. As
such, our replication efforts serve a confirmatory purpose.

To structure our study effectively, we have formulated two
primary research questions that center around reproducibility
and replication.

I What challenges and implications arise when attempting
to reproduce model-based development research, specifi-
cally for Simulink models?

II To what extent can we generalize prior studies’ findings
to a dataset that is open-source or larger?

RQ1 In terms of basic Simulink model metrics, how does
SLNET compare with earlier open-source corpora
and what we know about industrial models?

RQ2 Is SLNET suitable for empirical studies of Simulink
projects and their change histories?

RQ3 How do empirical results obtained on smaller open-
source corpora and closed-source industry models
carry over to the larger SLNET corpus?

Fig. 2: Parameters a through i for reproducing and replicating
results on Simulink models. Relative to earlier studies (and
unless noted otherwise), for reproduction we only varied i and
for replication we only varied a,b,i.

Figure 2 applies ACM’s guidelines on reproducibility (“dif-
ferent team, same experimental setup”) and replicability (“dif-
ferent team, different experimental setup”) to empirical studies
of Simulink models and summarizes the relevant variables.
The following sections point out where we had to deviate from
this model (e.g., when an exact earlier corpus is no longer
available for exact reproduction).

IV. CORPORA TO REPRODUCE & REPLICATE RESULTS

TABLE I: Overview of three existing (top) plus our four
new or re-collected corpora (bottom) of open-source Simulink
models; cut-off = date of latest model version in corpus;
× = cannot distribute due to unclear licenses.

Corpus Version of Simulink Models Cut-off Data

SC Original corpus 2017 [77]
SLNET Larger corpus Feb ’20 [87]
SC20 SC re-collected at later version Aug ’20 [8]

SCR SC re-collected at SC’s version 2017 ×
SC20R SC20 completed at SC20’s version Aug ’20 ×
SC20REvol SC20R GitHub projects’ Git histories Apr ’23 ×
SLNETEvol SLNET GitHub projects’ Git histories Apr ’23 [85]

Table I summarizes the corpora of this study. Boll et al. [7]
highlighted that the SC study results had several inconsisten-
cies and Shrestha et al. [88] claimed earlier corpora suffer from
unintended human errors and bias. Since both claims lacked
sufficient empirical evidence, we attempted to reproduce these
studies.

A. SCR Corpus to Reproduce SC Results

To reproduce the SC study results, we downloaded all
models and metadata from SC’s Google Drive [77], yielding
1,347 models. This did not include all of the original study’s
1,071 models, as the SC distribution excludes 169 models for
their unclear licenses. We use SC’s source metadata (for 862 of
1,071 models SC lists project URL and version, models stud-
ied within the project, and MATLAB version requirements)
and retrieve 142 of 169 of these unclearly-licensed models
from GitHub (at the same version as in SC).

For 40 of 1,071 models the download included multiple
model versions but the metadata did not specify which version
was used in the SC study. Since SC only provides aggregated
model metrics (instead of per-model measurements), we could
not disambiguate same-name models via comparing the met-
rics. After receiving confirmation from the SC team, we add
all 113 potential model name matches from the SC download,
yielding 1,117 models in SCR (but still missing 27 of 1,071
now inaccessible GitHub models).

Due to the above model name ambiguity (or human error in
SC creation), 5 of 1,071 models are now categorized as both
Simple and Advanced. Since the SC study reported results
per model category, we focused our reproduction on the one
category not affected by the above missing/duplicate model
issues, i.e., the 41 models labeled “tutorial”. Since these 41
models ship with Simulink and we have access to earlier
Simulink releases, it was straight-forward to reproduce the SC
study results on the same version of the same models on the
same Simulink version as the SC study.

The SC paper states that some reported metric results come
from a third-party tool [72]. But we found the tutorial models’
reported metrics instead exactly match the results of only run-
ning the SC metrics tool (which calls the Simulink API [54]).
Specifically, we ran the SLNET-Metrics tool [80] as it can run
SC’s metric tool in the Simulink toolbox configuration [78]
the SC study used, yielding the reported 10,926 blocks (as
opposed to 10,391 the other tool returns [72]). After this
calibration on the tutorial models we ran the SC tool in the
same configuration on the rest of SCR.

Finally, we clarified with the SC team SC’s “S-function
reuse rate”, which SC defined to approximate how often a
model contains an S-function it contains elsewhere. The metric
basically counts how many S-function blocks in a model have
the same name. For example, if a model contains four S-
function blocks, three named “a” and one named “b”, the reuse
rate would be (3-1 + 1-1)/(3+1) = 0.5. SC reported a median
reuse rate below 0.5%. Our result on SCR being much higher
triggered an interaction, in which the SC team confirmed that
the SC paper mistakenly added the percentage symbol.

B. SC20R & SC20REvol Corpora to Reproduce SC20 Results

We obtained the SC20 replication package (v2) from
Figshare [8], which contains 1,736 models grouped into
194 projects with non-model files removed. The SC20 team
categorized projects into four groups based on affiliation:
112 academic, 34 industry-mathworks, 25 industry, and 23

no-information. We included one project with an unknown
category in the ‘no-information’ category, yielding SC20R.

To extract model metrics, SC and SC20 mostly use the
Simulink API, but there are differences. For instance, SC20
counts blocks via sldiagnostics [57] while SC uses Simulink
Check [54] (the counts can differ). Additionally, SC uses
the Simulink API for cyclomatic complexity, while SC20
implements McCabe’s definition (independent paths). From
the SC20 paper [7] and our correspondence with the SC20
team we could not reconstruct how SC20 computed project-
level cyclomatic complexity.

The remaining model metrics we reproduced using the
provided tool and documentation. To run the tool we had to
install Simulink R2020a and the Check toolbox. We observed
discrepancies in the results of 11/1736 models, which we
attribute to a lack of documentation regarding the exact
Simulink configuration (i.e., toolbox, library, etc).

The SC20 team analyzed 35 GitHub projects, but didn’t
include the necessary git repositories or commit extraction
tool in the replication package. We independently developed
the tool, and after contacting the authors, they updated their
package, but the repositories remained missing. In April 2023
via metadata we obtained 32/35 repositories (“SC20REvol”).
3/35 repositories were no longer online.

Finding 1: The SC and SC20 replication packages are
insufficient to reproduce the original studies’ results.
Implication: Authors should host the replication package
in permanent archival repositories for long-term access
and preservation with documentation, such as Simulink
configuration and instruction [65].

C. SLNET Results & SLNETEvol Corpus

While the SLNET paper does not present any specific study
or analysis, it does offer a valuable resource in the form of a
corpus of Simulink models along with associated metadata on
their metrics. In our attempt to reproduce SLNET’s metrics,
we first downloaded their corpus from Zenodo [87], which
consists of 225 GitHub and 2,612 MATLAB Central projects,
as well as a SQLite database of metadata. Following their doc-
umentation on Simulink configuration [83], we ran SLNET-
Metrics, SLNET’s metric collection tool, first on R2018b and
then R2019b, as the latter ignores ‘resource’ folder, which
some older SLNET projects use. By following this process,
we were able to reproduce their reported metrics.

Like SC20, SLNET only offers project snapshots, but to
assess its suitability for evolution studies, we require its
git repositories. In April 2023 we obtained 208/225 SLNET
GitHub repositories, as 17 projects were offline. We refer to
this collection as SLNETEvol, which we have made available
for other researchers to analyze.

D. Issues in Simulink Tool-chain Found

While trying to reproduce SLNET’s results, we encountered
the following two Simulink issues. MathWorks classified the
first one as a bug and the second one as a documentation

issue. First, when using multiple machines to speed up met-
ric collection, Simulink R2018b crashed while compiling a
SLNET model on Windows but compiled the model without
issue on Ubuntu. We reported this issue (#04254318), which
MathWorks confirmed as a bug and fixed in Simulink R2021b.

Finally, we reported (#04386513) that the cyclomatic com-
plexity definition of the multiport switch [51] did not seem to
match Simulink’s metrics results. MathWorks addressed this
issue by updating its public metric description [42].

V. REPLICATING EMPIRICAL RESULTS USING SLNET

To date, empirical data on Simulink models and projects
have been obtained on select closed-source projects and
smaller open-source corpora (i.e., SC and SC20). We would
thus like to know how these earlier results generalize to
the larger SLNET corpus of 2,837 open-source projects and
their 9,117 Simulink models. As earlier work has not char-
acterized SLNET, we will first put it into context for any
subsequent findings or comparisons.

As in similar comparative studies, when interpreting exper-
imental results we need to know how much results are skewed
by differences in experimental setups. While conceptually
straight-forward, calculating Simulink metrics is influenced by
many parameters (Figure 2) and we realized that earlier studies
did not document all relevant parameter values.

To increase confidence in our results we replicate earlier
experiments where possible. Unless noted differently we apply
the same metric extraction setup to all corpora—i.e., the
same of our researchers use a single consistent set of metric
definitions, metric tool version (SLNET-Metrics), Simulink
version (R2020b on Ubuntu 18.04), and toolboxes [84].

We used Simulink R2020b as it enhanced metric calcula-
tion [45]. For example, in Simulink R2019b a video surveil-
lance system’s [24] cyclomatic complexity is 38,403, which on
manual inspection seems highly inflated. For the same system
Simulink R2020b returns 322. Such a drastic change makes
it hard to directly compare our results with results reported
elsewhere, e.g., the SLNET work used Simulink R2019b [88].

Finding 2: Small changes in experimental setup can
drastically skew Simulink model metrics. In one example,
upgrading to a newer version of Simulink changed a
model’s cyclomatic complexity from 38,403 to 322.
Implication: There are subtle but severe pitfalls when
comparing Simulink metric results across papers. To in-
crease confidence in such comparisons we thus repeat
earlier experiments where possible.

A. Removing User-defined Libraries And Test Harnesses

User-defined libraries and test harnesses serve different
goals than regular Simulink models. As they are also struc-
turally different, we first identify and separate them from the
regular models. While user-defined libraries are interesting
themselves, for analyzing regular models we treat user-defined
libraries like all other libraries. We thus either inline blocks
from all or none of the libraries. Following prior work [17],

we use the Simulink API [38] and identify 235 user-defined
libraries in SCR, 411 in SC20R, and 1,137 in SLNET.

Simulink’s Test API [56] can identify models as test har-
nesses and we thus remove 9 test harnesses from SLNET
and two each from SCR and SC20R. This is likely an under-
count, as many open-source projects may not have the license
necessary for this API and thus use workarounds. We thus
heuristically label (but not remove) models as potential test
harnesses by checking if model and folder names contain
“test” or “harness”, thereby labeling 143 models in SCR,
233 in SC20R, and 903 in SLNET.

B. RQ1: Basic Simulink Model Metrics of Corpora

At a high level, while it contains significantly more models,
SLNET is not a superset of the previous open-source corpora.
Even when containing the same model, corpora may differ in
the included model version, due to different corpus collection
times. When treating all versions of a model as the same model
and including user-defined library models, SLNET contains
30% of the SC models (328/1071), 36% for SCR (402/1117),
28% for SC20 (492/1734), and 28% for SC20R (492/1736).

The remainder of this work removes from each corpus
each model that is a test harness or a user-defined library.
This differs from earlier work that treated user-defined library
models as regular models and thus included them in overall
metric counts [7]. (The only exceptions are the three Table II

t0 columns, which inline user-defined libraries.) Table II
compares SCR, SC20R, and SLNET on basic Simulink model
metrics, such as number of models, models that are hierarchi-
cal, blocks, connections, and solver and simulation modes.

1) Model Size: A widely-used proxy for model size is the
model’s number of blocks [25], [63], [74]. For example, a
recent paper conducted experiments on what it introduced
as large industrial automotive models, containing 3.7k–73k
blocks (and having hierarchy depth 8–16) [68]. Boll et al.
report conversations with Simulink experts indicating typical
industrial models often have 1k–10k blocks [10]. Industry-
scale models at automotive supplier Delphi were earlier re-
ported to have on average some 750 blocks [32].

Table II shows that (except for “Others”), including im-
ported library blocks (Bt0) at least doubles the overall block
count. Focusing on 1k+ block models, SC’s custom tool
(which includes imported library blocks) found 93 such mod-
els in SC on Simulink R2017a. On Simulink 2020b, SC’s tool
found 132 such models in SCR, 139 in SC20R, and 799 in
SLNET. When excluding any imported library blocks, SCR
contains 14 such models, SC20R 15, and SLNET 148.

2) Hierarchical & Compiling Models: Model hierarchy is
important for studying model complexity, model slicing and
evaluating Simulink model generation tools [15], [16], [71],
[89]. SCR has 777 hierarchical models, of which we could
compile 44%. Of SC20R’s 852 hierarchical models we could
only compile 20%. Of SLNET’s 4.7k hierarchical models we
could compile 47%. SC20R’s low compile rate can be attributed
to that corpus not distributing non-model files, which may have
served as dependencies for the Simulink model.

3) Project and Model Metric Distributions: Table III shows
model metric distributions across SCR, SC20R, and SLNET.
The majority of SLNET models are relatively small, with mean
exceeding median values. The overall distribution of metrics
in SLNET is akin to that of earlier corpora, i.e., offering a
broad spectrum with most standard deviations exceeding the
means. SLNET however offers a broader range of Simulink
models with similar min but notably larger max metric values.
Following are additional distribution details of project size,
most frequently used block types, and file types.

a) Project size: Similar to earlier corpora, the distribu-
tion of models in SLNET is skewed towards a few large
projects. The 50 largest projects (i.e., the largest 1.8% of
projects) contain 35% of all models, while 76% of the projects
contain just one model. Some SLNET projects feature 18
empty models alongside non-empty models. By comparison,
in SC20R, 5/194 projects contain 35% of the models, and 53%
of the projects contain just one model. With the exception of
a single SLNET project that comprises a library model, all
projects include some blocks and signal lines.

Su
bS

ys
te

m
Ou

tp
or

t
In

po
rt

Co
ns

ta
nt

Sc
op

e
Su

m
M

ux
Ga

in
S_

Fu
nc

tio
n

Te
rm

in
at

or
De

m
ux

Di
sp

la
y

Pr
od

uc
t

Si
m

M
ul

ti
Go

to
Fr

om
DT

-C
on

v
Sa

tu
ra

te
Bu

sS
el

ec
to

r
PM

IO
Po

rt
Cl

oc
k

Lo
gi

c
Sw

itc
h

To
W

In
te

gr
at

or

0%
10%
20%
30%
40%
50%
60%
70%
80%

M
od

el
 R

at
io

DT-Conv : DataTypeConversion
ToW : ToWorkspace
SimMulti : SimscapeMultibodyBlock

(a) Most-common block types in SCR (o) and their SLNET (x) rate.

Su
bS

ys
te

m
Sc

op
e

Ou
tp

or
t

In
po

rt
Co

ns
ta

nt
Su

m
Ga

in
M

ux
Pr

od
uc

t
De

m
ux

S_
Fu

nc
tio

n
Fr

om Go
to

In
te

gr
at

or
Te

rm
in

at
or

Di
sp

la
y

To
W

PM
IO

Po
rt

DT
-C

on
v

Sw
itc

h
PM

Co
m

p
Lo

gi
c

St
ep

Sa
tu

ra
te

Re
fe

re
nc

e0%
10%
20%
30%
40%
50%
60%
70%
80%

M
od

el
 R

at
io

DT-Conv : DataTypeConversion
PMComp : PMComponent
ToW : ToWorkspace

(b) Most-common block types in SLNET (x) and their SCR (o) rate.

Fig. 3: Most-common block types in SCR (a) and SLNET (b).

b) Most Frequently Used Block Types: Figures 3a and 3b
show that the distributions of the most-commonly used block
types are similar in SCR and SLNET. For example, in each
corpus over 60% of models contain a SubSystem block,
making SubSystem appear in the most models in both corpora.
SLNET uses SubSystem less-widely, likely as 28% of SLNET
models have less than 8 blocks, which typically does not
require a SubSystem block.

SCR models use 156 distinct block types vs. 203 in SLNET
(150 are in both). SLNET thus offers a potentially valuable

TABLE II: Model metrics after removing library & test harness models in SCR (top), SC20R (middle), and SLNET (bottom);
M = models; Mc = models compiling in our setup; Mh = hierarchical models; C = non-hidden connections; t0 = via SC’s
metric tool; var = variable; nor = normal; ext = external; PIL = processor in the loop; ac = accelerator; rap = rapid accelerator;
Industry-M = Industry Mathworks; M-Central = MATLAB Central; excludes 14 SLNET models that crash Simulink R2020b;
includes 20 SLNET models for which Simulink R2020b does not show solver and simulation metrics.

Models Hierarchical Blocks Connections Solver Step Simulation Mode
M Mc Mh Mht0 B Bt0 C Ct0 fixed var nor ext PIL ac rap

Tutorial 41 41 37 40 3,703 13,917 3,700 14,020 13 28 41 0 0 0 0
GitHub 165 92 53 151 7,350 20,734 7,967 21,500 60 105 162 2 0 1 0
M-Central 674 294 488 595 76,473 483,645 80,683 473,466 257 417 655 14 1 4 0
SourceForge 230 33 196 201 18,444 126,123 17,800 125,021 183 47 175 55 0 0 0
Other 7 4 3 7 611 680 636 701 1 6 7 0 0 0 0∑

SCR 1,117 464 777 994 106,581 645,099 110,786 634,708 514 603 1,040 71 1 5 0

Academic 690 232 456 634 75,813 185,574 86,223 185,733 229 461 597 68 0 16 9
Industry-M 404 61 259 351 30,826 220,011 27,631 212,299 176 228 399 4 1 0 0
Industry 174 15 93 161 24,753 180,929 25,116 194,655 135 39 169 3 0 1 1
No info 55 24 44 46 4,889 26,690 5,524 26,803 29 26 54 1 0 0 0∑

SC20R 1,323 332 852 1,192 136,281 613,204 144,494 619,490 569 754 1,219 76 1 17 10

GitHub 1,637 541 875 1,297 190,213 424,175 188,069 400,753 860 759 1,498 103 2 14 2
M-Central 6,239 3,370 3,874 5,485 828,210 3,197,090 914,857 3,074,782 1,753 4,484 5,971 186 2 76 2∑

SLNET 7,876 3,911 4,749 6,782 1,018,423 3,621,265 1,102,926 3,475,535 2,613 5,243 7,469 289 4 90 4

TABLE III: Model (after removing library & test harness models) metric distributions per project (p) and per model (m) in
SCR (R), SC20R (20R), and SLNET (N); Cyclom. C. = cyclomatic complexity (for a project the max of its models); Model
Ref. = model references; Alg. L. = algebraic loops; LL Blocks = library linked blocks; Sub. Blocks = blocks in a subsystem
at depth that has most such blocks.

Min Max Average Median Standard Deviation
R 20R N R 20R N R 20R N R 20R N R 20R N

Models p 1 1 1 124 124 237 5.6 6.9 2.8 1.0 1.0 1.0 14.7 16.4 9.7

Blocks p 1 1 0 13,555 13,831 172,196 457.4 706.1 362.8 116.0 140.0 52.0 1,419.9 1,959.8 3,577.1
m 1 0 0 13,555 13,555 18,255 95.4 103.0 129.3 25.0 25.0 27.0 448.4 430.6 690.1

Block types p 1 1 1 55 58 104 18.3 19.2 13.2 16.0 17.0 11.0 11.1 11.9 9.3
m 1 1 1 47 47 101 10.6 10.4 10.4 8.0 8.0 8.0 8.3 7.8 7.9

Connections p 0 0 0 14,169 16,491 231,672 475.5 748.7 392.9 124.0 153.0 57.0 1,422.1 2,103.5 4,611.7
m 0 0 0 14,169 14,169 25,078 99.2 109.2 140.0 26.0 27.0 28.0 466.2 453.7 887.1

Subsystems p 0 0 0 1,809 1,873 19,622 46.9 68.4 34.0 7.0 7.0 2.0 179.3 210.8 414.1
m 0 0 0 1,294 1,294 2,117 9.8 10.0 12.1 3.0 2.0 2.0 44.1 41.8 75.3

Cyclom. C. p 0 0 0 322 322 2,404 27.7 30.7 22.2 7.0 7.0 5.0 49.4 54.1 81.1
m 0 0 0 322 322 2,404 14.0 13.6 13.7 4.0 4.5 2.0 32.4 31.6 59.0

Model Ref. p 0 0 0 4 10 54 0.1 0.1 0.1 0.0 0.0 0.0 0.4 0.8 1.5
m 0 0 0 4 2 12 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.4

Alg. L. p 0 0 0 7 9 37 0.2 0.2 0.1 0.0 0.0 0.0 0.7 1.0 1.1
m 0 0 0 2 1 6 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.2 0.3

LL Blocks p 0 0 0 657 423 2,311 9.1 11.8 5.6 0.0 0.0 0.0 53.8 48.7 81.1
m 0 0 0 31 31 441 1.9 1.7 2.0 0.0 0.0 0.0 4.5 4.3 15.0

Sub. Blocks - 2 2 3 21 21 100 9.6 9.5 9.1 11.0 11.0 7.0 3.9 3.9 11.5

resource for research studies [14], [73]. Both SC and SC20
studies included library-imported blocks and reported a lower
occurrence of output blocks (e.g., Scope [52], Display [43],
and ToWorkspace [59]) than SLNET. The possible explanation
for this discrepancy is that, like in procedural programming
languages (where programmers include logging statements at
various execution points), libraries may not have such state-
ments for efficiency purposes. This practice is also observed

in Simulink modeling.
Furthermore, From [46] and Goto [47] blocks, which are

typically used to improve the visual layout of the model, are
equally widely used in SC and SLNET. However, excessive
non-local usage of From and Goto blocks adversely affects
readability and design, warranting further investigation.

c) File types: Each Simulink model is stored in one of
two file formats, the MDL legacy file format or SLX. Intro-
duced in Simulink R2012a, SLX conforms to the Open Pack-

aging Conventions (OPC) interoperability standard. Across
corpora, few projects contain both MDL and SLX files (SCR
3%, SC20R 7%, and SLNET 2%). Overall the major file type
has shifted from MDL in SCR to SLX in SLNET (39% of SCR
models are in SLX, 45% for SC20R, and 55% for SLNET). The
prevalence of SLX files in open-source models is significant
for developing SLX to MDL back-transformation tools [1].

In summary, SLNET shares many similarities with prior
corpora and offers a broader view of open-source Simulink
projects. The majority of SLNET models are small, which
may be relevant for analyzing simple models [69], [79], [86],
[89], while also including a substantial number of non-trivial
models using diverse features.

Finding 3: As in many other kinds of open-source
projects [28], [33], SLNET project and model metrics
follow long-tailed distributions.
Implication: Research studies may use SLNET subsets
based on their objectives. The diverse SLNET corpus can
help address generalizability challenges in model-based
development research.

VI. REPLICATING FINDINGS ON MODELING PRACTICES

A. Converging Result: Model Referencing

Analogous to classes in object-oriented programming,
model references [36] enable modular model design, unit
testing, and code reuse. But similar to the SC work [17],
we found that only 10 SCR (0.9%), 18 SC20R (1.4%), and
139 SLNET models (1.8%) use model referencing. Even when
accounting for the skewed SLNET model size distribution,
Table III shows that model reference use remains sparse.

B. Converging Result: Algebraic Loops

An algebraic loop arises from a circular dependency be-
tween a block’s output and input at the same simulation time
step. An algebraic loop may reduce simulation performance
or prevent the solver from resolving the loop. As the SC
work [17], we found such loops relatively rarely, with only
20 SCR and 186 SLNET models containing such loops.

C. Converging Result: Small Class Phenomenon

Zhang et al. observed the “small class” phenomenon in Java
programs (most classes have few lines of code while a few
classes are large) and found a high correlation between class
size and number of defects [92], [93]. In Simulink, subsystems
are used to encapsulate a function, resulting in a hierarchical
model. Similar to the small class phenomenon noted in the SC
work [17], we observe that the median number of blocks in a
subsystem at any hierarchy does not exceed 11 in both SCR
and SLNET. This may inform future hypotheses on Simulink
subsystem size and defects.

Finding 4: The median number of blocks in a subsystem
at any hierarchy level does not exceed 11.
Implication: More research is needed to assess how
subsystem size impacts Simulink model quality.

D. Converging Result: S-function Reuse Rate

TABLE IV: S-function per-model reuse rate for models
with 1+ S-functions; MS-fct = models with 1+ S-functions;
LQ = lower quartile; UQ = upper quartile; med = median.

MS-fct min LQ med UQ max avg

SCR 351 0.0 0.0 0.0 0.38 0.92 0.20
SC20R 378 0.0 0.0 0.0 0.50 0.98 0.23
SLNET 1,504 0.0 0.0 0.0 0.50 0.99 0.21

Besides reuse of legacy C code, S-functions allow within-
model code reuse (i.e., defined once but added to and used
in several model components). In the same spirit as the SC
work [17], Table IV shows that S-functions are not widely
used, with just 31% of SCR models and 20% of SLNET using
S-functions. For models that use S-functions, 41% of SCR
models and 40% of SLNET models reuse at least one S-
function (but these models’ median S-function reuse rate is
zero across corpora).

E. Diverging Result: Cyclomatic Complexity vs Other Metrics

We conduct a correlation analysis between cyclomatic com-
plexity and the other Table V model metrics using Kendall’s τ .
We only use models for which we could calculate cyclomatic
complexity (e.g., excluding models we could not compile).
As in the SC study, for SCR we used non-Simple models. For
SC20R, we used industry and industry-MathWorks models. As
SLNET models are not categorized, we used those containing
200+ blocks. All metrics exhibit a statistically significant
correlation at a 0.05 significance level.

TABLE V: Correlation between cyclomatic complexity and
model metrics; M,B,C from Table II: models, blocks, and non-
hidden connections; UB = unique block types; MHD = max.
hierarchy depth; CRB = child-model representing blocks i.e.,
model reference and subsystem; NCS = contained subsystems.

M B C UB MHD CRB NCS

SCR 160 0.29 0.32 0.31 0.38 0.28 0.29
SC20R 58 0.16 0.16 0.20 0.31 0.41 0.41
SLNET≥200 279 0.27 0.27 0.23 0.10 0.28 0.27
SLNET200-300 111 -0.02 0.12 0.16 0.05 0.07 0.07

SCR models have a weak positive correlation (0.28 to
0.38) between cyclomatic complexity and model metrics. For
SC20R models the correlation is positive and weak to (barely)
moderate (0.16 to 0.41). For SLNET models with 200+ blocks
the correlation is positive but remains weak (0.10 to 0.28).

Finding 5: Contrary to previous work [67], cyclomatic
complexity does not seem strongly correlated with other
model metrics.
Implication: Similar to Java- and C-like languages, in
Simulink cyclomatic complexity seems to remain an inde-
pendently valuable metric.

TABLE VI: SLNETEvol and SC20REvol per-model (m) and per-project (p) change metrics; Total commits, commits per day
during project duration, merge commits (≻), and commits of 1+ mdl/slx files (MS); commit authors and commitMS authors;
med = median; std = standard deviation.

SC20REvol SLNETEvol
min max avg med std min max avg med std

Commits p 1 590 62.7 10.5 124.6 1 963 43.9 7.5 120.1
Commit / day p 0 4 0.9 0.3 1.2 0 24 1.9 0.6 3.1
CommitsMS [%] p 0 100 38.8 26.8 31.2 1 100 31.4 25.0 23.5
Commits≻ [%] p 0 17 2.7 0.0 4.7 0 40 3.2 0.0 6.7
UpdatesMS m 0 43 3.3 1.0 5.7 0 53 1.8 1.0 2.8

Authors p 1 16 2.8 2.0 3.5 1 21 2.0 1.0 2.6
m 1 3 1.1 1.0 0.4 1 8 1.3 1.0 0.7

AuthorsMS [%] p 0 100 68.6 75.0 34.5 10 100 82.2 100.0 26.1

F. Converging Result: Suitability For Change Studies

To assess their applicability for Simulink model and project
change studies, we analyzed SC20REvol’s 32 and SLNETEvol’s
208 git repositories (for SLNETEvol we only studied the com-
mits until SLNET’s February 2020 snapshot). Three projects
(with 811 commits) were in both corpora.

Table VI gives an overview of the project and model change
metrics. For example, 53% of SC20REvol projects (17/32) and
39% of SLNET projects (82/208) are maintained by at least
two collaborators, of which 8/17 and 32/82 have commits
spanning over a year. Just 22% of SC20REvol and 15% of
SLNETEvol projects have more than 50 commits. Across
SC20REvol and SLNETEvol projects, 20% of commits involved
updates or the creation of one or more models.

In both corpora, an average of 22% of models were under
active development throughout the projects with 3+ commits,
indicating the models were primary artifacts of these projects.
However, 40% of SC20REvol and almost half of SLNETEvol
projects did not update their models after committing them to
the repository. In both corpora, roughly 55% of models were
not updated at all. The lack of model updates may be due
to GitHub Simulink projects mainly serving as archives—like
most other GitHub projects [28].

Figure 4 breaks each project’s duration into 10 buckets of
equal length (normalized to each project’s duration). Here
project duration is the duration from a project’s first to last
commit as recorded by the timestamps assigned by the authors’
machines. While this approach has its pitfalls, the more-active
projects are usually less affected and we performed the basic
recommended sanity checks to ensure there are no impossible
outliers (e.g., commits with Unix time zero) [22].

To avoid potential skewing caused by “code dump” projects,
Figure 4 excludes projects with less than 3 commits, yielding
26 SC20REvol projects and 186 SLNETEvol projects. Even with
this filtering, the figure may still be biased towards projects
with fewer commits as the majority of both SC20REvol and
SLNETEvol projects have less than 11 commits.

Finding 6: A quarter of SLNETEvol projects are developed
collaboratively and have 1+ multi-revision models.
Implication: SLNETEvol projects have the potential to yield
valuable insight into open-source Simulink development.

(a) Timeline of 26/32 SC20REvol 3+ commit projects.

(b) Timeline of 186/208 SLNETEvol 3+ commit projects.

Fig. 4: Across normalized project duration (x-axis): Total
project commits, commits of 1+ mdl/slx files, individual
mdl/slx file updates, and mdl/slx files under development (i.e.,
in between a file’s first and last commit).

G. Diverging Result: Open-source Code Generation Models

Simulink models that can generate code are of interest in
model-based research and tool-development [11], [29], [62],
[63], [66]. Initially we applied SC20’s heuristics to search for
Embedded Coder [44] or TargetLink [20] traces. But we found
inconsistencies between SC20’s results (finding no code gen-
eration models) and their replication package’s heuristics [9].
During our interactions the SC20 team acknowledged a bug
and fixed it in their replication package version 2 [8].

Specifically, SC20’s heuristics determine if a model can
generate code based on the presence of atomic subsystems [60]
or special TargetLink blocks. This found 33 SLNET models
configured for Embedded Coder but no TargetLink traces. We
found this heuristic restrictive and not specific to Embedded
Coder. Our counter-example model had non-atomic subsys-
tems and successfully generated code via Embedded Coder.

For background, while every Simulink model can generate
code using Simulink Coder [55], this requires a fixed-step

TABLE VII: Models configured for code generation; M = all
models; EC20 = SC20 Embedded Coder heuristics; EC = our
Embedded Coder heuristics; GRT = Simulink Coder (Real-
Time Workshop); Other = other code generation toolboxes.

M EC20 EC GRT Other Total

Tutorial 41 1 1 12 0 13
GitHub 165 0 4 52 4 60
MATC 674 0 47 101 109 257
Sourceforge 230 0 0 96 87 183
Others 7 0 0 1 0 1∑

SCR 1,117 1 52 262 200 514

Academic 690 0 3 94 136 233
Industry-M 404 0 33 77 67 177
Industry 174 0 5 129 1 135
No Info 55 0 1 28 0 29∑

SC20R 1,323 0 42 328 204 574

GitHub 1,637 14 129 502 234 865
MATC 6,239 19 423 1,050 297 1,770∑

SLNET 7,876 33 552 1,552 531 2,635

solver, which conflicts with the default variable-step solver
model configuration. Simulink models further rely on a target
language compiler (TLC) file [58] to map Simulink blocks and
parameters to the target language’s constructs.

Simulink offers a set of standard-named TLC files that
support various solver types [40]. For example,‘rsim.tlc’ sup-
ports fixed-step and variable-step solvers. To determine if the
Simulink model is configured to generate code, we follow a
heuristic approach. First, we check if the model’s TLC file
name matches with one provided by Simulink and the model
is configured with appropriate solver type. Second, in cases
where the solver type required is ambiguous, we make a
conservative assumption that the model must be configured
with the fixed-step solver.

Table VII shows the number of models configured for code
generation. SLNET has 2,635 models with code generation
capabilities, at least 4× more than previous corpora.

Finding 7: SLNET has 4× models configured for code
generation (a common configuration in industrial models)
than the largest earlier open-source model collection.
Implication: Additional investigation is required to de-
termine if the code generation models in SLNET can meet
requirements of research studies.

VII. THREATS TO VALIDITY

Internal validity concerns the experimental design, data
collection and analysis. In our replication efforts, we closely
adhered to the original study’s setup and tools. We calibrated
the provided tools and contacted the authors for clarification
and consistency in data analysis. It is important to note that
the choice of Simulink version can impact model metrics and
introduce slight differences in insights.

Specifically, for a subset of 554 SLNET models (the models
of the 10 SLNET projects with the most models) we compared
model metrics obtained using both R2020b and R2022b.

Results for all metrics were the same for all models, except
for 3/554 models where the cyclomatic complexity differed by
2–6 between R2020b and R2022b.

External validity examines the generalizability of repro-
duced and replicated study results. In our case, the gen-
eralizability of our findings is limited to Simulink models
within the SLNET corpus. SLNET may not represent all
available Simulink projects, as its construction involved a
keyword search on GitHub and filtering for redistributable
projects. However, considering that the majority of results
from the original studies, which involved some level of cherry
picking in their corpus, hold true in SLNET–a larger dataset
encompassing diverse models with a small overlap–we are
optimistic in the generalizability of the presented results to
other open-source Simulink models.

Construct validity ensures that the measures and metrics
used in the replicated study accurately capture the intended
concepts. Our confirmatory replication study inherits limita-
tions from the original studies, such as not analyzing Stateflow
blocks or MATLAB code, which can contribute to the project’s
complexity. Also, SC’s heuristic used to identify test harnesses
may have limitations, as manual inspection revealed 10% of
such models are test harnesses. Upon noticing issues with
SC20’s code generation heuristic, we proposed new methods
after consulting with the original authors.

Reliability refers to the replicability of a study for obtain-
ing same or similar results. To mitigate reliability risks, we
distribute our analysis tool and complete replication package
as open-source via permanent storage locations [82], [85]. We
encourage replication of our findings.

VIII. CONCLUSIONS AND FUTURE WORK

The study investigated the reproducibility of previous em-
pirical studies of Simulink models and evaluated the gener-
alizability of their results to the larger SLNET corpus. The
SLNET study confirmed and contradicted earlier findings,
highlighting its potential as a valuable corpus for model-based
development research and also provided actionable insights
for future research. We found that open-source Simulink
models generally follow good modeling practices and that few
open-source models are comparable in size and properties to
proprietary models. To that end, we proposed a heuristic to
determine code generating Simulink models. We also provided
208 Git repositories to facilitate model evolution studies.

While this paper only analyzes Simulink model metrics
focusing on reproducibility and replication, future work in-
cludes examining if the model metrics can be used to make
predictions of process metrics such as defect prediction.

ACKNOWLEDGEMENTS

Christoph Csallner has a potential research conflict of
interest due to a financial interest with Microsoft and The
Trade Desk. A management plan has been created to preserve
objectivity in research in accordance with UTA policy. This
material is based upon work supported by the National Science
Foundation (NSF) under Grant No. 1911017 and a gift from
MathWorks.

REFERENCES

[1] B. Adhikari, E. J. Rapos, and M. Stephan, “Simulink model transforma-
tion for backwards version compatibility,” in MODELS-C. IEEE, Oct.
2021, pp. 427–436.

[2] S. Ajami, Y. Woodbridge, and D. G. Feitelson, “Syntax, predicates,
idioms - what really affects code complexity?” Empir. Softw. Eng.,
vol. 24, no. 1, pp. 287–328, Feb. 2019.

[3] H. Altinger, S. Siegl, Y. Dajsuren, and F. Wotawa, “A novel industry
grade dataset for fault prediction based on model-driven developed
automotive embedded software,” in MSR. IEEE, May 2015, pp. 494–
497.

[4] B. Balasubramaniam, H. Bagheri, S. Elbaum, and J. Bradley, “Investigat-
ing controller evolution and divergence through mining and mutation*,”
in ICCPS, 2020, pp. 151–161.

[5] M. M. Barón, M. Wyrich, and S. Wagner, “An empirical validation of
cognitive complexity as a measure of source code understandability,” in
ESEM. ACM, Oct. 2020, pp. 5:1–5:12.

[6] V. Bertram, S. Maoz, J. O. Ringert, B. Rumpe, and M. von Wenckstern,
“Component and connector views in practice: An experience report,” in
MODELS. IEEE Computer Society, September 2017, pp. 167–177.

[7] A. Boll, F. Brokhausen, T. Amorim, T. Kehrer, and A. Vogelsang,
“Characteristics, potentials, and limitations of open-source Simulink
projects for empirical research,” Software and Systems Modeling, vol. 20,
pp. 2111—-2130, Apr. 2021.

[8] A. Boll, T. Kehrer, A. Vogelsang, T. Amorim, and F. Brokhausen,
“Characteristics, potentials, and limitations of open source Simulink
projects for empirical research: Dataset,” 2021. [Online]. Available:
https://doi.org/10.6084/m9.figshare.13636589.v2

[9] ——, “Characteristics, potentials, and limitations of open source
Simulink projects for empirical research: Dataset,” 2021. [Online].
Available: https://doi.org/10.6084/m9.figshare.13636589.v1

[10] A. Boll, N. Vieregg, and T. Kehrer, “Replicability of experimental
tool evaluations in model-based software and systems engineering with
MATLAB/Simulink,” Innovations in Systems and Software Engineering,
pp. 1–16, Mar. 2022.

[11] H. Bourbouh, P.-L. Garoche, T. Loquen, É. Noulard, and C. Pagetti, “Co-
cosim, a code generation framework for control/command applications
an overview of cocosim for multi-periodic discrete Simulink models,”
in ERTS, 2020.

[12] D. T. Campbell and J. C. Stanley, Experimental and Quasi-Experimental
Designs for Research. Houghton Mifflin Company, 1963, p. 3.

[13] G. A. Campbell, “Cognitive complexity: An overview and evaluation,”
in TechDebt. ACM, May 2018, pp. 57–58.

[14] S. A. Chowdhury, S. Mohian, S. Mehra, S. Gawsane, T. T. Johnson, and
C. Csallner, “Automatically finding bugs in a commercial cyber-physical
system development tool chain with SLforge,” in ICSE. ACM, May
2018, pp. 981–992.

[15] S. A. Chowdhury, S. L. Shrestha, T. T. Johnson, and C. Csallner,
“SLEMI: Equivalence modulo input (EMI) based mutation of CPS
models for finding compiler bugs in Simulink,” in ICSE. ACM, May
2020, pp. 335–346.

[16] ——, “SLEMI: finding simulink compiler bugs through equivalence
modulo input (EMI),” in Proc. 42nd International Conference on
Software Engineering (ICSE), Companion Volume. ACM, May 2020,
pp. 1–4. [Online]. Available: https://doi.org/10.1145/3377812.3382147

[17] S. A. Chowdhury, L. S. Varghese, S. Mohian, T. T. Johnson, and
C. Csallner, “A curated corpus of Simulink models for model-based
empirical studies,” in SEsCPS. ACM, May 2018, pp. 45–48.

[18] S. A. Chowdhury, R. Holmes, A. Zaidman, and R. Kazman, “Revisiting
the debate: Are code metrics useful for measuring maintenance effort?”
Empir. Softw. Eng., vol. 27, no. 6, Nov. 2022.

[19] Y. Dajsuren, M. G. J. van den Brand, A. Serebrenik, and S. A. Roubtsov,
“Simulink models are also software: Modularity assessment,” in QoSA,
Jun. 2013, pp. 99–106.

[20] dSpace, “Targetlink,” 2023, accessed June 2023. [Online]. Available:
https://www.dspace.com/en/inc/home/products/sw/pcgs/targetlink.cfm

[21] D. G. Feitelson, “Considerations and pitfalls for reducing threats to
the validity of controlled experiments on code comprehension,” Empir.
Softw. Eng., vol. 27, no. 6, Nov. 2022.

[22] S. W. Flint, J. Chauhan, and R. Dyer, “Pitfalls and guidelines for using
time-based Git data,” Empir. Softw. Eng., vol. 27, no. 7, pp. 1–55, Dec.
2022.

[23] W. Hu, T. Loeffler, and J. Wegener, “Quality model based on iso/iec
9126 for internal quality of matlab/simulink/stateflow models,” in ICIT.
IEEE, 2012, pp. 325–330.

[24] A. Hwang, “Video surveillance system design with Simulink
and Xilinx FPGAs,” 2022, accessed Nov 2022. [Online].
Available: https://www.mathworks.com/matlabcentral/fileexchange/
20160-video-surveillance-system-design-with-simulink-and-xilinx-fpgas

[25] M. Jaskolka, S. Scott, V. Pantelic, A. Wassyng, and M. Lawford,
“Applying modular decomposition in Simulink,” in ISSRE-W. IEEE,
2020.

[26] G. Jay, J. E. Hale, R. K. Smith, D. P. Hale, N. A. Kraft, and C. Ward,
“Cyclomatic complexity and lines of code: Empirical evidence of a
stable linear relationship,” J. Softw. Eng. Appl., vol. 2, no. 3, pp. 137–
143, 2009.

[27] Z. Jiang, X. Wu, Z. Dong, and M. Mu, “Optimal test case generation
for Simulink models using slicing,” in QRS-C, July 2017, pp. 363–369.

[28] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. Germán, and
D. E. Damian, “An in-depth study of the promises and perils of mining
GitHub,” Empir. Softw. Eng., vol. 21, no. 5, pp. 2035–2071, 2016.

[29] J. Krizan, L. Ertl, M. Bradac, M. Jasansky, and A. Andreev, “Automatic
code generation from MATLAB/Simulink for critical applications,” in
CCECE. IEEE, May 2014, pp. 1–6.

[30] D. Landman, A. Serebrenik, E. Bouwers, and J. J. Vinju, “Empirical
analysis of the relationship between CC and SLOC in a large corpus of
Java methods and C functions,” J. Softw. Eng. Appl., vol. 28, no. 7, pp.
589–618, Jul. 2016.

[31] O. Levy and D. G. Feitelson, “Understanding large-scale software
systems - structure and flows,” Empir. Softw. Eng., vol. 26, no. 3, May
2021.

[32] B. Liu, Lucia, S. Nejati, and L. C. Briand, “Improving fault localization
for Simulink models using search-based testing and prediction models,”
in SANER, Feb. 2017, pp. 359–370.

[33] W. Ma, L. Chen, Y. Zhou, and B. Xu, “What are the dominant projects
in the github python ecosystem?” in TSA. IEEE, September 2016, pp.
87–95.

[34] M. A. A. Mamun, C. Berger, and J. Hansson, “Effects of
measurements on correlations of software code metrics,” Empir. Softw.
Eng., vol. 24, no. 4, pp. 2764–2818, 2019. [Online]. Available:
https://doi.org/10.1007/s10664-019-09714-9

[35] MathWorks Advisory Board (MAB), “Control algorithm modeling
guidelines using MATLAB, Simulink, and Stateflow,” MathWorks
Inc, Tech. Rep. Version 5.0, 2020. [Online]. Available: https:
//www.mathworks.com/solutions/mab-guidelines.html

[36] MathWorks Inc, “Model References,” 2022, accessed Nov
2022. [Online]. Available: https://www.mathworks.com/help/simulink/
model-reference.html

[37] ——, “Products and services,” 2022, accessed Nov 2022. [Online].
Available: https://www.mathworks.com/products.html

[38] ——, “bdislibrary,” 2023, accessed April 2023. [Online]. Available:
https://www.mathworks.com/help/simulink/slref/bdislibrary.html

[39] ——, “Choose among types of model components,” 2023, accessed
April 2023. [Online]. Available: https://www.mathworks.com/help/
simulink/ug/types-of-model-components.html

[40] ——, “Configure a system target file,” 2023, accessed June
2023. [Online]. Available: https://www.mathworks.com/help/rtw/ug/
select-a-target.html

[41] ——, “Custom libraries,” 2023, June 2023. [Online]. Available:
https://www.mathworks.com/help/simulink/libraries.html

[42] ——, “Cyclomatic complexity metric,” 2023, accessed April
2023. [Online]. Available: https://www.mathworks.com/help/slcheck/
ug/mathworks.metrics.cyclomaticcomplexity.html

[43] ——, “Display,” 2023, accessed June 2023. [Online]. Available:
https://www.mathworks.com/help/simulink/slref/display.html

[44] ——, “Embedded Coder,” 2023, accessed June 2023. [Online].
Available: https://www.mathworks.com/products/embedded-coder.html

[45] ——, “Enhanced calculation of cyclomatic complexity,” 2023, accessed
February 2023. [Online]. Available: https://www.mathworks.com/help/
slcheck/release-notes.html

[46] ——, “From,” 2023, accessed June 2023. [Online]. Available:
https://www.mathworks.com/help/simulink/slref/from.html

[47] ——, “Goto,” 2023, accessed June 2023. [Online]. Available:
https://www.mathworks.com/help/simulink/slref/goto.html

https://doi.org/10.6084/m9.figshare.13636589.v2
https://doi.org/10.6084/m9.figshare.13636589.v1
https://doi.org/10.1145/3377812.3382147
https://www.dspace.com/en/inc/home/products/sw/pcgs/targetlink.cfm
https://www.mathworks.com/matlabcentral/fileexchange/20160-video- surveillance-system-design-with-simulink-and-xilinx-fpgas
https://www.mathworks.com/matlabcentral/fileexchange/20160-video- surveillance-system-design-with-simulink-and-xilinx-fpgas
https://doi.org/10.1007/s10664-019-09714-9
https://www.mathworks.com/solutions/mab-guidelines.html
https://www.mathworks.com/solutions/mab-guidelines.html
https://www.mathworks.com/help/simulink/model-reference.html
https://www.mathworks.com/help/simulink/model-reference.html
https://www.mathworks.com/products.html
https://www.mathworks.com/help/simulink/slref/bdislibrary.html
https://www.mathworks.com/help/simulink/ug/types-of-model-components.html
https://www.mathworks.com/help/simulink/ug/types-of-model-components.html
https://www.mathworks.com/help/rtw/ug/select-a-target.html
https://www.mathworks.com/help/rtw/ug/select-a-target.html
https://www.mathworks.com/help/simulink/libraries.html
https://www.mathworks.com/help/slcheck/ug/mathworks.metrics.cyclomaticcomplexity.html
https://www.mathworks.com/help/slcheck/ug/mathworks.metrics.cyclomaticcomplexity.html
https://www.mathworks.com/help/simulink/slref/display.html
https://www.mathworks.com/products/embedded-coder.html
https://www.mathworks.com/help/slcheck/release-notes.html
https://www.mathworks.com/help/slcheck/release-notes.html
https://www.mathworks.com/help/simulink/slref/from.html
https://www.mathworks.com/help/simulink/slref/goto.html

[48] ——, “How accelerator model works documentation,” 2023, accessed
June 2023. [Online]. Available: https://www.mathworks.com/help/
simulink/ug/how-the-acceleration-modes-work.html

[49] ——, “Linked blocks,” 2023, June 2023. [On-
line]. Available: https://www.mathworks.com/help/simulink/ug/
creating-and-working-with-linked-blocks.html

[50] ——, “MATLAB & Simulink,” 2023, accessed June 2023. [Online].
Available: https://www.mathworks.com/products/simulink.html/

[51] ——, “Multiport switch,” 2023, accessed April 2023. [Online]. Avail-
able: https://www.mathworks.com/help/simulink/slref/multiportswitch.
html

[52] ——, “Scope,” 2023, accessed June 2023. [Online]. Available:
https://www.mathworks.com/help/simulink/slref/scope.html

[53] ——, “Simulink block libraries documentation,” 2023, accessed June
2023. [Online]. Available: https://www.mathworks.com/help/simulink/
block-libraries.html

[54] ——, “Simulink Check,” 2023, accessed June 2023. [Online]. Available:
https://www.mathworks.com/help/slcheck/

[55] ——, “Simulink Coder,” 2023, accessed February 2023. [Online].
Available: https://www.mathworks.com/products/simulink-coder.html

[56] ——, “Simulink Test,” 2023, accessed April 2023. [Online]. Available:
https://www.mathworks.com/help/sltest/

[57] ——, “sldiagnostic,” 2023, accessed June 2023. [Online]. Available:
https://www.mathworks.com/help/simulink/slref/sldiagnostics.html

[58] ——, “Target language compiler basics,” 2023, accessed June
2023. [Online]. Available: https://www.mathworks.com/help/rtw/tlc/
what-is-the-target-language-compiler.html

[59] ——, “To Workspace,” 2023, accessed June 2023. [Online]. Available:
https://www.mathworks.com/help/simulink/slref/toworkspace.html

[60] ——, “Treat as atomic unit,” 2023, accessed April 2023.
[Online]. Available: https://www.mathworks.com/help/simulink/slref/
subsystem.html#brp1xt9-56

[61] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann, “Effec-
tive test suites for mixed discrete-continuous stateflow controllers,” in
ESEC/FSE. ACM, Aug. 2015, pp. 84–95.

[62] ——, “Automated test suite generation for time-continuous Smulink
models,” in ICSE, May 2016, pp. 595–606.

[63] ——, “Test generation and test prioritization for Simulink models with
dynamic behavior,” IEEE Trans. Software Eng., vol. 45, no. 9, pp. 919–
944, 2019.

[64] T. J. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng., vol. 2,
no. 4, pp. 308–320, Dec. 1976.

[65] D. Méndez, D. Graziotin, S. Wagner, and H. Seibold, “Open science in
software engineering,” in Contemporary Empirical Methods in Software
Engineering. Springer, 2020, pp. 477–501.

[66] M. M. R. Mozumdar, F. Gregoretti, L. Lavagno, L. Vanzago, and
S. Olivieri, “A framework for modeling, simulation and automatic code
generation of sensor network application,” in IEEE SECON, 2008, pp.
515–522.

[67] M. Olszewska, Y. Dajsuren, H. Altinger, A. Serebrenik, M. A. Waldén,
and M. G. J. van den Brand, “Tailoring complexity metrics for Simulink
models,” in ECSA-W, Nov. 2016, p. 5.

[68] V. Pantelic, S. M. Postma, M. Lawford, M. Jaskolka, B. Mackenzie,
A. Korobkine, M. Bender, J. Ong, G. Marks, and A. Wassyng, “Software
engineering practices and simulink: Bridging the gap,” STTT, vol. 20,
no. 1, pp. 95–117, 2018.

[69] V. Pantelic, S. M. Postma, M. Lawford, A. Korobkine, B. Mackenzie,
J. Ong, and M. Bender, “A toolset for Simulink: Improving software
engineering practices in development with Simulink,” in MODELS.
SciTePress, February 2015, pp. 50–61.

[70] A. C. Rao, A. Raouf, G. Dhadyalla, and V. Pasupuleti, “Mutation testing
based evaluation of formal verification tools,” in DSA. IEEE, Oct. 2017,
pp. 1–7.

[71] R. Reicherdt and S. Glesner, “Slicing MATLAB Simulink models,” in
ICSE, June 2012, pp. 551–561.

[72] G. Rouleau, “How many blocks are in that model?” 2023, accessed
June 2023. [Online]. Available: https://blogs.mathworks.com/simulink/
2009/08/11/how-many-blocks-are-in-that-model

[73] B. Sánchez, A. Zolotas, H. H. Rodriguez, D. S. Kolovos, and R. F. Paige,
“On-the-fly translation and execution of OCL-like queries on Simulink
models,” in MODELS. IEEE, 2019, pp. 205–215.

[74] A. Schlie, D. Wille, S. Schulze, L. Cleophas, and I. Schaefer, “De-
tecting variability in MATLAB/Simulink models: An industry-inspired
technique and its evaluation,” in SPLC, September 2017, pp. 215–224.

[75] J. Schroeder, C. Berger, T. Herpel, and M. Staron, “Comparing the
applicability of complexity measurements for Simulink models during
integration testing – an industrial case study,” in SAM. IEEE, May
2015, pp. 35–40.

[76] J. Schroeder, C. Berger, M. Staron, T. Herpel, and A. Knauss, “Unveiling
anomalies and their impact on software quality in model-based automo-
tive software revisions with software metrics and domain experts,” in
ISSTA. ACM, Jul. 2016, pp. 154–164.

[77] Shafiul Azam Chowdhury, “Home,” 2022, accessed Nov 2022. [Online].
Available: https://github.com/corpussimulink/corpus/wiki

[78] ——, “ICSE 2018 Artifacts,” 2022, accessed Nov 2022. [Online]. Avail-
able: https://github.com/verivital/slsf randgen/wiki/ICSE-2018-Artifacts

[79] S. L. Shrestha, “Automatic generation of Simulink models to find bugs
in a cyber-physical system tool chain using deep learning,” pp. 110–112,
June 2020.

[80] ——, “50417/SLNET Metrics: SLNET Metrics MSR Release,” Mar.
2022. [Online]. Available: https://doi.org/10.5281/zenodo.6336048

[81] ——, “SLNET-Miner,” 2022, November 2022. [Online]. Available:
https://github.com/50417/SLNet Miner

[82] ——, “50417/SLReplicationTool: Replicability Study: Corpora For
Understanding Simulink Models & Projects,” Jul. 2023. [Online].
Available: https://doi.org/10.5281/zenodo.8111687

[83] ——, “MATLAB/Simulink Installation,” 2023, accessed June 2023.
[Online]. Available: https://github.com/50417/SLNET Metrics/wiki/
MATLAB-Simulink-Installation

[84] ——, “Simulink Model Version,” 2023, July 2023. [On-
line]. Available: https://github.com/50417/SLReplicationTool/blob/main/
MatlabInstallation.md

[85] S. L. Shrestha, S. A. Chowdhury, and C. Csallner, “Replicability
study: Corpora for understanding simulink models & projects
(analysis data) and slnet-evol dataset,” Jul. 2023. [Online]. Avail-
able: https://figshare.com/articles/dataset/Replicability Study Corpora
For Understanding Simulink Models Projects/22064969

[86] ——, “DeepFuzzSL: Generating models with deep learning to find bugs
in the Simulink toolchain,” in DeepTest. ACM, May 2020, paper
http://ranger.uta.edu/ csallner/papers/Shrestha20DeepFuzzSL.pdf.

[87] ——, “SLNET: A redistributable corpus of 3rd-party Simulink models:
Dataset,” Jun. 2020. [Online]. Available: https://doi.org/10.5281/zenodo.
4898432

[88] ——, “SLNET: A Redistributable Corpus of 3rd-party Simulink mod-
els,” in MSR. IEEE, May 2022, pp. 1–5.

[89] S. L. Shrestha and C. Csallner, “SLGPT: Using transfer learning to
directly generate Simulink model files and find bugs in the Simulink
toolchain,” in EASE. ACM, 2021, pp. 260–265.

[90] K. Stol and B. Fitzgerald, “The ABC of software engineering research,”
ACM Transactions on Software Engineering and Methodology, vol. 27,
no. 3, pp. 11:1–11:51, Sep. 2018.

[91] R. J. Wieringa and M. Daneva, “Six strategies for generalizing software
engineering theories,” Science of Computer Programming, vol. 101,
pp. 136–152, 2015. [Online]. Available: https://doi.org/10.1016/j.scico.
2014.11.013

[92] H. Zhang and H. B. K. Tan, “An empirical study of class sizes for large
java systems,” in APSEC. IEEE Computer Society, December 2007,
pp. 230–237.

[93] H. Zhang, H. B. K. Tan, and M. Marchesi, “The distribution of program
sizes and its implications: An eclipse case study,” in 1st International
Symposium on Emerging Trends in Software Metrics, 2009, pp. 1–10.

https://www.mathworks.com/help/simulink/ug/how-the-acceleration-modes-work.html
https://www.mathworks.com/help/simulink/ug/how-the-acceleration-modes-work.html
https://www.mathworks.com/help/simulink/ug/creating-and-working-with-linked-blocks.html
https://www.mathworks.com/help/simulink/ug/creating-and-working-with-linked-blocks.html
https://www.mathworks.com/products/simulink.html/
https://www.mathworks.com/help/simulink/slref/multiportswitch.html
https://www.mathworks.com/help/simulink/slref/multiportswitch.html
https://www.mathworks.com/help/simulink/slref/scope.html
https://www.mathworks.com/help/simulink/block-libraries.html
https://www.mathworks.com/help/simulink/block-libraries.html
https://www.mathworks.com/help/slcheck/
https://www.mathworks.com/products/simulink-coder.html
https://www.mathworks.com/help/sltest/
https://www.mathworks.com/help/simulink/slref/sldiagnostics.html
https://www.mathworks.com/help/rtw/tlc/what-is-the-target-language-compiler.html
https://www.mathworks.com/help/rtw/tlc/what-is-the-target-language-compiler.html
https://www.mathworks.com/help/simulink/slref/toworkspace.html
https://www.mathworks.com/help/simulink/slref/subsystem.html#brp1xt9-56
https://www.mathworks.com/help/simulink/slref/subsystem.html#brp1xt9-56
https://blogs.mathworks.com/simulink/2009/08/11/how-many-blocks-are-in-that-model
https://blogs.mathworks.com/simulink/2009/08/11/how-many-blocks-are-in-that-model
https://github.com/corpussimulink/corpus/wiki
https://github.com/verivital/slsf_randgen/wiki/ICSE-2018-Artifacts
https://doi.org/10.5281/zenodo.6336048
https://github.com/50417/SLNet_Miner
https://doi.org/10.5281/zenodo.8111687
https://github.com/50417/SLNET_Metrics/wiki/MATLAB-Simulink-Installation
https://github.com/50417/SLNET_Metrics/wiki/MATLAB-Simulink-Installation
https://github.com/50417/SLReplicationTool/blob/main/MatlabInstallation.md
https://github.com/50417/SLReplicationTool/blob/main/MatlabInstallation.md
https://figshare.com/articles/dataset/Replicability_Study_Corpora_For_Understanding_Simulink_Models_Projects/22064969
https://figshare.com/articles/dataset/Replicability_Study_Corpora_For_Understanding_Simulink_Models_Projects/22064969
https://doi.org/10.5281/zenodo.4898432
https://doi.org/10.5281/zenodo.4898432
https://doi.org/10.1016/j.scico.2014.11.013
https://doi.org/10.1016/j.scico.2014.11.013

	Introduction
	Background
	Simulink Modeling Guidelines and Best Practices
	Cyclomatic Complexity & Size Metrics in Simulink
	Scope of Empirical Studies of Simulink Models
	SC: First Corpus of Open-Source Simulink Models
	SC20: SC Projects Recollected in 2020
	SLNET: Largest Known Simulink Corpus

	Research Design
	Corpora to Reproduce & Replicate Results
	SCR Corpus to Reproduce SC Results
	SC20R & SC20REvol Corpora to Reproduce SC20 Results
	SLNET Results & SLNETEvol Corpus
	Issues in Simulink Tool-chain Found

	Replicating Empirical Results Using SLNET
	Removing User-defined Libraries And Test Harnesses
	RQ1: Basic Simulink Model Metrics of Corpora
	Model Size
	Hierarchical & Compiling Models
	Project and Model Metric Distributions

	Replicating Findings on Modeling Practices
	Converging Result: Model Referencing
	Converging Result: Algebraic Loops
	Converging Result: Small Class Phenomenon
	Converging Result: S-function Reuse Rate
	Diverging Result: Cyclomatic Complexity vs Other Metrics
	Converging Result: Suitability For Change Studies
	Diverging Result: Open-source Code Generation Models

	Threats to Validity
	Conclusions and Future Work
	References

