
ScoutSL: An Open-source Simulink Search Engine
Sohil Lal Shrestha

Computer Science & Eng. Dept.
University of Texas at Arlington

Arlington, TX 76019, USA
sohil.shrestha@mavs.uta.edu

Alexander Boll
Software Engineering Group

University of Bern
3012 Bern, Switzerland

alexander.boll@inf.unibe.ch

Timo Kehrer
Software Engineering Group

University of Bern
3012 Bern, Switzerland

timo.kehrer@inf.unibe.ch

Christoph Csallner
Computer Science & Eng. Dept.
University of Texas at Arlington

Arlington, TX 76019, USA
csallner@uta.edu

Abstract—Simulink is one of the most widely used modelling
languages in safety-critical industries. Most models created in
industrial settings are valuable intellectual property to their
companies and are thus often not publicly available. But to
study Simulink software engineering processes or to develop
new Simulink tools, access to models with relevant properties
is vital for researchers. We conducted a community survey to
find out what kind of models and model metrics are of interest
to researchers. With these results, we implemented ScoutSL
(http://scoutsl.net), a tool that gives researchers easy online access
to over 100k open-source Simulink models from which they can
select a subset according to their needs. A short video demon-
stration is available online at https://youtu.be/HwsHL8LrVCM

Index Terms—Simulink, search engine, open-source

I. INTRODUCTION

Searching for Simulink models presents challenges due to
the absence of a convenient method for finding such models
beyond text-based searches. Traditional textual programming
language search attributes such as lines of code do not apply
to Simulink models, which are developed via graphical block
diagrams. So the requisite search attributes for Simulink
models are not adequately addressed.

Despite the proliferation of open-source repositories that
have accelerated empirical study of code [10], [24], there is
a dearth of such studies on MATLAB/Simulink. This can be
attributed to the lack of easily accessible model corpora and
user-friendly tools that cater to novice users. Researchers have
encountered difficulties in discovering third-party Simulink
models suitable for utilization in their studies, particularly for
stress testing their developed tools or validating the generaliz-
ability of novel techniques they are attempting to address. The
absence of an easily accessible and user-friendly tool remains
the primary hindrance [6], [19], [14], [22], [25], [21], [15].

Popular code hosting platforms such as GitHub and GitLab
lack the capability to filter attributes specific to Simulink mod-
els, and the identification of Simulink projects is challenging
as these platforms do not label projects with Simulink as a
programming language. Moreover, utilizing the APIs of these
platforms for research purposes is time-consuming due to API
rate limits. For instance, GitHub’s API restricts authenticated
users to 30 search requests per minute, yielding 1k results
per request and 5k other requests per hour. Considering that
GitHub currently hosts over 330 million repositories, obtaining

results, excluding downloading and further analysis, would
require at least 330k requests (around 180 hours) [7], [23].

Few existing model-based search tools, like MAR [9],
require a deep understanding of the metamodel, while others,
such as ModelMine [12], offer a user-friendly search engine
but rely on the GitHub API, which inherently imposes lim-
itations on the number of search results it can retrieve. Fur-
thermore, GitHub is not the sole source of Simulink projects.
Simulink vendor MathWorks also provides a platform, which
serves as a repository for community-developed projects.

Recent efforts on developing large collections of Simulink
models have focused on carefully curating corpora of Simulink
models manually [4] and later automatically [20] and main-
taining metadata of commonly used attributes. Such corpora
are either maintained in non-permanent locations though or
packaged as a single non-divisible set, making them difficult
to sample [3], [20]. Downloading a large corpus to sample a
small subset of models is also often inconvenient.

To gain insight into attributes of Simulink models that
are of interest to the research community, we conducted
a survey involving researchers. The survey confirmed their
struggles in getting suitable (e.g., size, publishable) models
for their research as seen in Figure 2. Consequently, we
developed a web-based search tool that allows users to easily
sample models. Our tool, ScoutSL, expands upon the existing
SLNET [20] and EvoSL [16] infrastructure to extract Simulink
project attributes, collect model metrics and compute derived
metrics. The tool offers advanced fine-grained filtering at-
tributes, enabling users to efficiently sample desired models.
We have indexed over 18k projects containing more than 100k
Simulink models. To the best of our knowledge, ScoutSL
is the first tool specifically designed for searching Simulink
projects and models, offering filtering attributes not available
through other search engines. To summarize, the paper makes
the following major contributions.

• Our survey results show that researchers often struggle to
get relevant models for their research and would likely
benefit from a Simulink search engine.

• We developed a Simulink search engine deployed in a
tool called ScoutSL whose search interface and ranking
scheme are based on survey responses.

• The tool and all artifacts are open-source [17], [18].

0000–0000/00$00.00˜©˜2023 IEEE

https://orcid.org/0000-0002-0837-8388
https://orcid.org/0000-0002-9881-9748
https://orcid.org/0000-0002-2582-5557
https://orcid.org/0000-0003-0896-6902
http://scoutsl.net
https://youtu.be/HwsHL8LrVCM

• The search engine is accessible through its web compo-
nent available online at http://scoutsl.net.

II. BACKGROUND: SIMULINK, SLNET, AND EVOSL

Simulink is a cyber-physical system (CPS) design and
simulation tool that is a de-facto standard in many safety-
critical industries. Engineers design a CPS as a model that
contains interconnected blocks, where each block may accept
data, perform some operation on the data, and transmit its
output to other blocks, as depicted in Figure 1. Simulink
provides an extensive library of blocks and toolboxes to design
and simulate complex multi-domain systems.

Fig. 1: Two tiny example Simulink models.

To enable empirical studies on Simulink models, researchers
have curated large corpora of open-source Simulink models.
The most extensive corpus available to date is SLNET [20],
which contains Simulink models from two popular hosting
sites. SLNET has 3k Simulink projects with their 8k Simulink
models (excluding library and test harnesses), collectively
featuring over 1M blocks. Boll et al. [1] confirmed large open
source corpora to be suitable for empirical research. SLNET
is complemented by mining and metric tools. However, as
SLNET primarily consists of Simulink model snapshots, it
does not support evolution studies.

To address this issue, EvoSL [16] extended SLNET-Miner
and curated Simulink repositories from GitHub. EvoSL con-
sists of 924 projects with over 140k default-branch commits.
SLNET and EvoSL are self-contained and redistributable.

III. SURVEY OF SIMULINK USERS

We aimed to assess the potential need for a Simulink model
search engine by asking Simulink researchers. We then used
the survey results to develop ScoutSL.

From a literature review of Boll et al. [2] we extracted
215 academic papers’ co-authors that report on Simulink tools
and their empirical evaluation. In July and August 2022 we
invited them to our Google Forms based anonymized online
survey. 16 researchers participated in our survey, from which
we discarded one participant (who responded “not applicable”
to every question), leaving 15 participants. While all questions
and responses are available online [18], we provide a brief
summary of the questions and responses in the sequel.

In our first question of the survey, we asked the researchers,
“what is the purpose of Simulink models in your research?”
Of 15 participants, six reported that their main use-case
for Simulink models was tool evaluation. Other use-cases
like scalability evaluation, performance evaluation, model co-
simulation, industrial process modelling, prototyping, test au-
tomation, testing, verification, code generation optimization,

Often 8

Sometimes 5

Never 2

Fig. 2: Responses to “Do you have difficulties finding adequate
Simulink models or projects for your research?”

Self-made 5

Open-source 4

Industry (non-publishable) 4

Simulink distribution 2

Synthetically generated 1

Fig. 3: Responses to “Where do you usually obtain your
Simulink artifacts from?”

compilation, model deployment, and replication were men-
tioned by one participant each. All the following questions
and their detailed results are shown in Figures 2 to 7.

Over 85% of participants (13/15) faced difficulties finding
appropriate models for their research projects (cf. Figure 2).
When it came to acquiring models, one third of the partici-
pants created their own Simulink artifacts, followed by using
closed-source and open-source models, see Figure 3. Figure 4
illustrates that the majority of participants said they require 20
or fewer models for their research—the unconventional ranges
follow the responses. Figure 5 breaks down the model metrics
of interest reported by the participants.

In response to our questions regarding the adoption of open-
source Simulink models, participants showed overwhelming
support for both potential usage of the dataset (cf. Figure 6)
and the need for a search engine (cf. Figure 7).

n ≤ 5 7

5 < n ≤ 9 0

10 ≤ n ≤ 20 5

10 ≤ n ≤ 100 1

n ≈ 100 1

500 ≤ n 1

Fig. 4: “How many models would you need for your typical
research project?”

Size metrics 12

Model properties 11

Model context 11

License type 7

Complexity metrics 5

Simulink version 4

Git-based 2

Time since last update 1

Libraries/Add-ons used 1

Fig. 5: Responses to “What are Simulink model metrics that
are relevant for your research?”

http://scoutsl.net

Yes 11

Don’t know 2

No 2

Fig. 6: Responses to “We collected 9,117 open-source models
from GitHub. Intuitively, do you think this collection can
provide you with suitable Simulink models for your research?”

Yes 12

Don’t know 1

No 1

Fig. 7: Responses to “Would you use ScoutSL for your
research, in the future?”

IV. TOOL ARCHITECTURE

Figure 8 illustrates ScoutSL’s architecture, which consists
of two main components: An (offline) mining component and
an (online) web application component. The miner retrieves
Simulink projects from the repository hosting sites and stores
project, model, and commit metrics in a SQLite database.

An intermediate component queries the SQLite database,
computes derived attributes such as a model’s code generation
capability, and calculates a “relevance” project score. A sub-
set1 of the primary and derived attributes are then stored in a
cloud-hosted NoSQL database, as NoSQL databases typically
have flexible data models and scale horizontally. The online
web interface of ScoutSL facilitates user searches for Simulink
projects, allowing filtering based on various attributes.

V. MINING COMPONENT

To mine from GitHub and MATLAB Central we use the
existing SLNET [20] and EvoSL [16] infrastructure. Unlike
SLNET or EvoSL, our focus is primarily on curating a com-
prehensive database of publicly available Simulink projects,
and thus we do not prioritize the analysis of license files as the
goal is to allow users to sample from all available open-source
Simulink models. Our search yielded 18k projects comprising
109k Simulink models having 15M+ blocks (≥ 15× SLNET).

A. GitHub

Our extension of SLNET-Miner efficiently manages
GitHub’s API rate limits. Initially, we query for
projects created within a specific time frame, such
as “q=simulink&created:2008-01-01..2009-01-01”. To
exhaustively search for projects using the GitHub API, we
employ a divide-and-conquer strategy when the query returns
1k results. We split the time interval in half until the number
of results returned is less than 1k.

From the query results we then iteratively download each
project and check if it contains a Simulink model by check-
ing for files with MDL or SLX extensions. We extract 80
attributes [18] from the projects’ metadata, commits, issues,
and pull requests. We only include each GitHub project’s

1Due to unclear project licenses not all SQLite data are exposed.

Fig. 8: Architecture of the ScoutSL tool.

commits from its default-branch. Over a one-month period we
thereby downloaded some 14k Simulink projects. To mitigate
redundancy we currently do not collect metrics from forked
projects (but plan to add this in the future).

B. MATLAB Central

As SLNET we parse MATLAB Central’s RSS feed (which
does not impose any parsing restrictions), but the feed does
not offer a structured method for downloading projects. We
extended SLNET-Miner to enhance its heuristic for construct-
ing download links for MATLAB Central projects. Despite
these improvements, 7.9k of 46k MATLAB Central projects
remained inaccessible for automated download.

While the GitHub API exposes a project’s license name,
MATLAB Central projects are bundled with license files that
require further analysis. To automate this process, we utilized
an open-source library employed by GitHub [8]. Mining
MATLAB Central took about two and a half days and yielded
4.2k projects with 18 attributes [18].

C. Model Metrics

To facilitate searching based on Simulink model metrics,
we extended the existing SLNET-Metrics tool to add more
metrics, including the presence of a TargetLink blocks, toolbox
dependencies, and system target files. Responding to survey
responses (which highlighted researchers’ interest in filtering
models based on block categories), we further enhanced the
tool to support the categorization of block types into non-
overlapping categories, as employed in our recent work [16].
We analyzed models on MATLAB R2022b and collected 39
model metrics [18] overall.

VI. USER INTERFACE

ScoutSL has simple and advanced search. The latter offers
three distinct user interfaces: Simulink model search, repos-
itory search, and commit search (catering to various dataset
research requirements, including model evolution studies and
subject models for tool evaluations).

A. Simple Search

In the simple search users enter a text-based query, which
ScoutSL matches with the project descriptions in the database.
An example search of “turbine” produces 50+ project results.
ScoutSL then sorts the results in descending order based on
a ranking score. To compute the ranking score, we adapted a

Fig. 9: Example simple Simulink project search for “car”.

strategy inspired by previous work [11] that aimed to classify
engineered and toy projects. We selected the common Table 1
attributes shared by GitHub and MATLAB Central projects
and scored them based on survey responses. To prioritize Git-
based attributes highlighted by the survey, we assigned lower
weight scores to model revision and model contributors, while
MATLAB Central projects received zero for these attributes.

Table 1: Project scoring scheme; CC = cyclomatic complexity.

Attribute Survey Weight Scoring Scheme

Blocks Size (12) 15 Continuous
Block types Property (11) 15 Continuous
Code generation Property (11) 15 Discrete (0,1)
Test harness Property (11) 15 Discrete (0,1)
Documentation Property (11) 15 Discrete (0,1)
License License type (7) 10 Discrete (0,1)
CC Complexity (5) 5 Continuous
Model revision Git (2) 2 Continuous
Model contributors Git (2) 2 Continuous
Toolbox Add-ons (1) 1 Discrete (0,1)

We scored each attribute either via a binary (0 or 1) or a
continuous scheme. For the latter we considered the distri-
bution of data attributes, filtered out outliers, and normalized
the scores to between 0 and 1. The final project score was
calculated by summing the weighted Table 1 scores. While the
scoring scheme is based on our survey responses, we do not
make claims regarding the projects’ engineering quality [11].
Evaluating and improving the scoring scheme is future work.

B. Advanced Search: Simulink Model

Fig. 10: Example search for Simulink models that contain over
1k blocks, including some discrete blocks.

To cater to the goal of facilitating Simulink model sampling,
Figure 10 illustrates ScoutSL’s model search UI. The page

highlights the specific model metrics that users expressed
interest in, as determined through our survey. Users can
input numeric values or select attribute options from drop-
down menus to refine their search criteria. For example, they
can search for Simulink models with over 1k blocks having
discrete blocks. This search query generates a list of over 650
projects as search results.

C. Advanced Search: Simulink GitHub Repository

Fig. 11: Example search for Simulink GitHub repositories that
have over 10 pull requests.

In order to support studies on model evolution and changes,
ScoutSL incorporates GitHub-based selection criteria focused
on version control and project management, as seen in Fig-
ure 11. Specifically, users can employ search criteria such
as the number of project issues, pull requests, commits, and
contributors. With our emphasis on Simulink models, users
can also search for model-specific commits and contributions,
which are subsets of project commits and contributors.

Additionally, ScoutSL enables users to filter projects based
on a specific number of model revisions or model files with
a certain number of authors. These model-specific search
criteria are a unique ScoutSL feature not available on other
online web-based tool. While other tools may offer project-
level commit information and allow to search for commits
per project [12], ScoutSL offers to search over the entire
project database. As an example, researchers investigating
model development can efficiently identify relevant projects
by using a search query that filters for those with a significant
number of model revisions. By using a search query for
projects with more than 10 model revisions, ScoutSL yields
over 500 relevant projects.

D. Advanced Search: Simulink Project

Fig. 12: Example search for pre-2010 Simulink projects.

A commonly employed strategy in mining software repos-
itories for exploratory studies is to sample projects based on
popularity metrics. ScoutSL provides the capability to filter

projects based on such metrics, as depicted in Figure 12.
Additionally, users are able to query projects created within
specific date ranges. Another feature we offer is the ability
to filter projects based on license type, as it was identified as
a requested feature in the survey responses. Since a Simulink
project is often accompanied by complementary scripts written
in other programming languages, users can also perform
searches involving such criteria. For instance, researchers
interested in studying projects Simulink projects with JAVA
and C code can use ScoutSL to get 250+ relevant projects.
While the most up-to-date project attributes may be available
through the primary hosting sites, our database exclusively
comprises Simulink projects, which are not easily sampled
using existing tools or the primary hosting sites from which
we mine our projects.

VII. RELATED WORK

While several tools have been developed to facilitate sam-
pling of open-source projects from platforms like GitHub,
they primarily focus on textual programming languages [13],
[5]. To obtain model artifacts, a web-based search tool, Mod-
elMine [12], queries GitHub API to narrow down results
with file extension. However, the tool mistakenly identifies
“.simulink” as a Simulink model file extension and is inher-
ently limited by GitHub API’s 1k results per request limit.

A recent study examining forums of modeling tools in-
cluding MATLAB/Simulink highlighted the potential benefits
of model repositories, particularly for novice users who may
encounter difficulties when attempting to model something
specific [25]. The study emphasizes the importance of es-
tablishing and maintaining a diverse repository of example
models. To that end, MAR [9] is a web-based search engine
that maintains metamodels for various types of models, in-
cluding UML models. For Simulink, the tool analyzes the pre-
curated corpus to extract their metamodel using a third-party
tool. As such, using MAR requires knowledge of modelling
languages like EMF to get relevant models, and the search
space is limited to 200 Simulink models.

VIII. CONCLUSIONS AND FUTURE WORK

ScoutSL (http://scoutsl.net) is the first search engine geared
towards Simulink users’ needs. ScoutSL allows searching over
18k Simulink projects containing over 100k Simulink models.

Future works include extension of mining tool to enlarge
and augment the dataset with new primary as well as derived
project/model attributes such as project domain, Simulink
model version. We intend to improve the search engine per-
formance and conduct a thorough evaluation.

ACKNOWLEDGEMENTS

Christoph Csallner has a potential research conflict of
interest due to a financial interest with Microsoft and The
Trade Desk. A management plan has been created to preserve
objectivity in research in accordance with UTA policy. This
material is based upon work supported by the National Science
Foundation (NSF) under Grant No. 1911017 and a gift from
MathWorks.

REFERENCES

[1] A. Boll, F. Brokhausen, T. Amorim, T. Kehrer, and A. Vogelsang,
“Characteristics, potentials, and limitations of open-source simulink
projects for empirical research,” Softw. Syst. Model., vol. 20, no. 6, pp.
2111–2130, 2021.

[2] A. Boll, N. Vieregg, and T. Kehrer, “Replicability of experimental
tool evaluations in model-based software and systems engineering with
MATLAB/Simulink,” Innov. Syst. Softw. Eng., pp. 1–16, 2022.

[3] S. A. Chowdhury, S. L. Shrestha, T. T. Johnson, and C. Csallner,
“SLEMI: Equivalence modulo input (EMI) based mutation of CPS
models for finding compiler bugs in Simulink,” in ICSE. ACM, Jun.
2020, pp. 335–346.

[4] S. A. Chowdhury, L. S. Varghese, S. Mohian, T. T. Johnson, and
C. Csallner, “A curated corpus of Simulink models for model-based
empirical studies,” in SEsCPS. ACM, May 2018, pp. 45–48.

[5] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in GitHub
for MSR studies,” in MSR. IEEE, May 2021, pp. 560–564.

[6] Y. Dajsuren, M. G. J. van den Brand, A. Serebrenik, and S. A. Roubtsov,
“Simulink models are also software: Modularity assessment,” in QoSA,
Jun. 2013, pp. 99–106.

[7] GitHub Inc, “About,” 2023, accessed in Mar 2023. [Online]. Available:
https://github.com/about

[8] Licensee, “licensee,” 2023, accessed in July 2023. [Online]. Available:
https://github.com/licensee/licensee

[9] J. A. H. López and J. S. Cuadrado, “An efficient and scalable search
engine for models,” Softw. Syst. Model., vol. 21, pp. 1715–1737, 2022.

[10] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Commun. ACM, vol. 33, no. 12, pp. 32–44,
1990.

[11] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating GitHub
for engineered software projects,” Empir. Softw. Eng., vol. 22, no. 6, pp.
3219–3253, 2017.

[12] S. M. Reza, O. Badreddin, and R. Khandoker, “ModelMine: A tool to
facilitate mining models from open source repositories,” in MODELS.
ACM, Oct. 2020, pp. 9:1–9:5.

[13] S. Romano, M. Caulo, M. Buompastore, L. Guerra, A. Mounsif,
M. Telesca, M. T. Baldassarre, and G. Scanniello, “G-repo: A tool to
support MSR studies on GitHub,” in SANER. IEEE, Mar. 2021, pp.
551–555.

[14] S. L. Shrestha, “Automatic generation of Simulink models to find bugs
in a cyber-physical system tool chain using deep learning,” in ICSE-C.
ACM, 2020, pp. 110–112.

[15] ——, “Harnessing large language models for simulink toolchain testing
and developing diverse open-source corpora of simulink models for
metric and evolution analysis,” in ISSTA. ACM, 2023, pp. 1541–1545.

[16] S. L. Shrestha, A. Boll, S. A. Chowdhury, T. Kehrer, and C. Csallner,
“EvoSL: a large open-source corpus of changes in Simulink models &
projects,” in MODELS. IEEE, 2023, to appear.

[17] S. L. Shrestha, A. Boll, T. Kehrer, and C. Csallner, “50417/ScoutSL:
ScoutSL Simulink Search Engine,” Aug. 2023. [Online]. Available:
https://doi.org/10.5281/zenodo.8266234

[18] ——, “ScoutSL Artifacts,” Aug. 2023. [Online]. Available: https:
//figshare.com/articles/dataset/ScoutSL Artifacts/23717763

[19] S. L. Shrestha, S. A. Chowdhury, and C. Csallner, “DeepFuzzSL:
Generating models with deep learning to find bugs in the Simulink
toolchain,” in DeepTest. ACM, May 2020.

[20] ——, “SLNET: A redistributable corpus of 3rd-party Simulink models,”
in MSR, 2022, pp. 01–05.

[21] ——, “Replicability study: Corpora for understanding simulink models
& projects,” in ESEM. IEEE, 2023, to appear.

[22] S. L. Shrestha and C. Csallner, “SLGPT: Using transfer learning to
directly generate Simulink model files and find bugs in the Simulink
toolchain,” in EASE. ACM, 2021, pp. 260–265.

[23] T. Dohmke, “100 million developers and counting,” 2023,
accessed in Mar 2023. [Online]. Available: https://github.blog/
2023-01-25-100-million-developers-and-counting/

[24] E. D. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble, “The Qualitas corpus: A curated collection
of Java code for empirical studies,” in APSEC. IEEE, Nov. 2010, pp.
336–345.

[25] C. Vendome, E. J. Rapos, and N. DiGennaro, “How do I model my
system?: A qualitative study on the challenges that modelers experience,”
in ICPC. ACM, May 2022, pp. 648–659.

http://scoutsl.net
https://github.com/about
https://github.com/licensee/licensee
https://doi.org/10.5281/zenodo.8266234
https://figshare.com/articles/dataset/ScoutSL_Artifacts/23717763
https://figshare.com/articles/dataset/ScoutSL_Artifacts/23717763
https://github.blog/2023-01-25-100-million-developers-and-counting/
https://github.blog/2023-01-25-100-million-developers-and-counting/

	Introduction
	Background: Simulink, SLNET, and EvoSL
	Survey of Simulink Users
	Tool Architecture
	Mining Component
	GitHub
	MATLAB Central
	Model Metrics

	User Interface
	Simple Search
	Advanced Search: Simulink Model
	Advanced Search: Simulink GitHub Repository
	Advanced Search: Simulink Project

	Related Work
	Conclusions and Future Work
	References

