
Dynamic Analysis of Evasive Modular Malware

Shabnam Aboughadareh
Computer Science & Eng Dept
University of Texas at Arlington

Arlington, TX 76019, USA
shabanm.aboughadareh

@mavs.uta.edu

Christoph Csallner
Computer Science & Eng Dept
University of Texas at Arlington

Arlington, TX 76019, USA
csallner@uta.edu

Mehdi Azarmi
Computer Science Dept

Purdue University
West Lafayette
IN 47907, USA

mazarmi@purdue.edu

1. INTRODUCTION AND MOTIVATION
Dynamic malware analysis tools usually rely on the in-

tegrity of kernel objects (data structures) for extracting the
user-mode malware’s behavior. On the other hand, malware
developers can exploit this assumption and equip their mali-
cious codes with kernel-level modules (rootkits) to compro-
mise critical kernel objecs and thereby derail the analysis.
The rootkit module of such a malware may prevent its user-
mode component from being analyzed by state of the art
malware analysis tools such as TEMU or Ether [1]. For in-
stance, a rootkit can swap the PID value of a process object,
belonged to its user-mode module, with a value for a benign
process object and mislead a malware analysis tool that uses
PID as an identifier for distinguishing the malware process.

Current approaches respond to such challenges by either
giving up analysis or preventing the malware from manip-
ulating the kernel mode data structures [2]. However this
response is insufficient, as malware in turn can detect if its
kernel manipulation attempts succeeded. If a manipulation
attempt is not successful, malware may assume that it is be-
ing monitored by an analysis system and then proceed with
a benign behavior to hide its malicious behavior.

We address the problem of evasive modular malware anal-
ysis with a novel shadow memory scheme that maintains a
copy (shadow) of key kernel objects at runtime. All appli-
cations except malware would use the standard main mem-
ory. The copy (shadow memory) is designed to be used by
malware. The advantage of this scheme is that a malware
analysis system can permit malware to manipulate critical
kernel data structures as these manipulations occur only in
the shadow memory and therefore do not affect OS services
or the malware analysis. This in turn tricks the malware into
assuming it is not monitored and can perform its malicious
behavior, which allows the malware analysis to observe the
malicious behavior.

2. PROPOSED APPROACH
The key subsystem of our design is a virtual machine mon-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

itor (VMM) that maintains a copy of important kernel data
structures and redirects each read or write operation per-
formed by any piece of code to the appropriate memory ver-
sion. Our current prototype keeps a set of fundamental data
structures in shadow memory. The analyst can change that
set to balance the level of protection with runtime overhead.

tampered O

Main Mem. Shadow Mem.

u

B

tampered O

MW

Main Mem.

MW = malware (*user application or untrusted kernel code);

B = benign code (user application or trusted kernel code);

O = kernel object ; r = read; w = authorized write; w' = unauthorized write;

u = update the shadow memory with authorized changes in O;

* Code in user can indirectly access and change O in kernel by invoking system call.

r w w w’ r

MW

w’ r

B

r w

O

w

Figure 1: Result of tampering by malware in standard

analysis (left) vs. in our scheme (right).

Figure 1 gives an overview of how the VMM redirects
read and write operations of a set of OS objects/data struc-
tures O included in the scheme. (All reads and writes of
other kernel objects are served from main memory.) At the
core, the VMM detects from which process or kernel code
an operation originates and which parts of a data structure
it affects. The VMM directs all reads and writes of benign
user-mode applications and trusted kernel code to the main
memory. If a write originates from an untrusted kernel code
and affects a critical part of O, the VMM directs that write
to shadow memory. Other write operations (by malware,
a benign application or kernel) to O objects are directed to
main memory, but then written back to the shadow memory.
The VMM serves all O reads by the malware from shadow
memory.

Initial Results: Our prototype implementation on top
of QEMU suggests that our design is able to analyze several
malware samples that use DKSM attacks [1] and cannot be
analyzed with TEMU or Ether, while our approach has a
similar overhead.

3. REFERENCES
[1] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan,

J. Rhee, and D. Xu. DKSM: Subverting virtual machine
introspection for fun and profit. In Proc. 29th IEEE Symposium
on Reliable Distributed Systems (SRDS). IEEE, Oct. 2010.

[2] R. Riley, X. Jiang, and D. Xu. Guest-transparent prevention of
kernel rootkits with VMM-based memory shadowing. In Proc.
11th International Symposium on Recent Advances in
Intrusion Detection (RAID). Springer, 2008.

