
Check ’n’ Crash: Combining Static Checking and Testing

Christoph Csallner, Yannis Smaragdakis
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

{csallner,yannis}@cc.gatech.edu

ABSTRACT
We present an automatic error-detection approach that com-
bines static checking and concrete test-case generation. Our
approach consists of taking the abstract error conditions in-
ferred using theorem proving techniques by a static checker
(ESC/Java), deriving specific error conditions using a con-
straint solver, and producing concrete test cases (with the
JCrasher tool) that are executed to determine whether an
error truly exists. The combined technique has advantages
over both static checking and automatic testing individu-
ally. Compared to ESC/Java, we eliminate spurious warn-
ings and improve the ease-of-comprehension of error reports
through the production of Java counterexamples. Compared
to JCrasher, we eliminate the blind search of the input space,
thus reducing the testing time and increasing the test qual-
ity.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods, reliability ; D.2.5 [Software En-
gineering]: Testing and Debugging—testing tools; H.5.2
[Information Interfaces and Presentation]: User In-
terfaces—ergonomics, user-centered design; I.2.2 [Artificial
Intelligence]: Automatic Programming—program verifica-
tion

General Terms
Human Factors, Reliability, Verification

Keywords
Automatic testing, dynamic analysis, extended static check-
ing, static analysis, test case generation, usability

1. INTRODUCTION
The need to combine exhaustive and precise error check-

ing approaches—i.e., static analysis and testing—has often

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0002 ...$5.00.

been stated in the software engineering community. Test-
ing remains the predominant way of discovering errors in
real software. Nevertheless, approaches that utilize program
analysis and formal reasoning [14, 19, 9, 10, 25, 27, 2, 4, 13]
are gaining ground and may soon see widespread adoption.

In this paper, we present the combination of a seman-
tic checking approach and testing. Specifically, we employ
the ESC/Java [9] static checking system that analyzes a
program, reasons abstractly about unknown variables, and
tries to detect erroneous program operations. By default,
ESC/Java checks for violations of implicit preconditions of
primitive Java operations, such as accessing an array out-
of-bounds, dereferencing null pointers, dividing by zero, etc.
ESC/Java produces error reports that detail the abstract
conditions necessary for the error to take place. Such condi-
tions are constraints on program values—e.g., integer con-
straints, such as x > 2 && y > 3*x or object reference con-
straints, such as p.next==q && q.prev==null. We use these
abstract conditions to derive concrete input values satisfy-
ing them (e.g., x==3 && y==10 && p.next.prev == null)
through a combination of constraint solving tools. Finally,
we employ our JCrasher tool [5] to produce actual Java test
cases to exhibit the error. We call the combined tool CnC
(Check ’n’ Crash).

The CnC approach combines static checking and auto-
matic test generation to get the best of both. Relative to
ESC/Java, the value of CnC is dual. First, the test cases
are more accessible to human programmers than abstract
error conditions: even in small examples ESC/Java can pro-
duce conditions many pages in length, which CnC reduces
to a 10-line concise test case. Second, by only reporting
failed tests, we ensure that the error is indeed a real one
(with respect to the Java language semantics). ESC/Java
is unsound: 1 it can produce spurious error reports due to

1Semantic note: The meaning of the terms “sound” and
“complete” depends on the intended use of the system. In
mathematical logic, a “sound” system is one that can only
prove true statements, while a “complete” system can prove
all true statements. Thus, if we view a static checker as
a system for proving programs correct, then it is “sound”
iff reporting no potential errors means no errors exist, and
“complete” iff all correct programs result in no error. In
contrast, however, if we see the static checker as a system to
prove the existence of errors, then it is “sound” iff reporting
an error means it is a true error (i.e., all correct programs
result in no error, or what we called before “complete”) and
“complete” iff all incorrect programs produce an error re-
port (i.e., reporting no errors means no errors exist, or what
we called before “sound”). In this paper, we treat static
checkers as systems for finding errors. Thus, for instance,

inaccurate modeling of the Java semantics. Although there
can be other ways to turn ESC/Java into a sound tool, our
approach makes engineering sense: once an error condition
is suspected, it is much easier to make informed guesses on
input values and test them than to prove the existence of
such values through abstract reasoning.

Relative to JCrasher, the value of CnC is in using the
reasoning power of ESC/Java to decide which portions of
the input space should be tested because they are likely to
produce errors. As a result, with only a small number of test
cases (e.g., a handful instead of many thousands) we find all
of the bugs that JCrasher would find and occasionally bugs
that JCrasher cannot find within realistic time and space
bounds.

2. CNC: COMBINING STATIC CHECKING
AND AUTOMATIC TESTING

2.1 Background: ESC and JCrasher
The Extended Static Checker for Java (ESC/Java) [9]

is a compile-time program checker that detects precondi-
tion violations. ESC/Java recognizes preconditions stated
in the Java Modeling Language (JML) [17]. (We use the
ESC/Java2 system [4]—an evolved version of the original
ESC/Java, which supports JML specifications and recent
versions of the Java language.) Typically, JML specifica-
tions will either not exist at all, or only exist for a small
fraction of the methods in an application and its libraries.
Thus, ESC/Java tries to be useful even with partial infor-
mation. In the absence of JML specifications, ESC/Java
checks for violations of implicit preconditions of primitive
Java operations. Such violations include accessing an array
out-of-bounds, dereferencing null pointers, mis-casting an
object, dividing by zero, etc. These conditions typically re-
sult in a program crash—the corresponding exceptions are
almost never caught as part of normal operation in Java
programs.

JCrasher [5] is an automatic testing tool for Java code.
JCrasher examines the type information of a set of Java
classes and constructs code fragments that will create in-
stances of different types to test the behavior of public meth-
ods under random data. JCrasher attempts to detect bugs
by causing the program under test to “crash”, i.e., to throw
an undeclared runtime exception. The output of JCrasher
is a set of test cases for JUnit (a popular Java unit test-
ing tool) [1]. JCrasher defines heuristics for determining
whether a Java exception should be considered a program
bug or the JCrasher supplied inputs have violated the code’s
preconditions.

In practice, the two tools have several similarities in their
usage mode. Both are used on a method-by-method basis.
When an error is reported by either tool, it is not certain
to be a true bug in the program, even notwithstanding the
unsoundness of the analysis of ESC/Java (i.e., even if there
are real inputs for which the error occurs). In the case of
ESC/Java an error can be an indication of a true bug but
it could also be a result of a too permissive precondition.

we call a system “unsound” if it produces spurious error re-
ports, unlike References [19, 9, 14] that call such a system
“incomplete”. Similarly we use the term “false positive” for
a false error report, not for a lack of report for a true error.
We find our convention more intuitive for the intended use
of the tool.

That is, the inputs causing the error may never occur during
normal application execution due to conditions established
by the rest of the code and not reflected in the method’s
preconditions. For realistic applications, JML preconditions
exist very rarely. JCrasher does not even consider JML pre-
conditions. The tool’s ideal area of application is in code
currently being developed, which is highly unlikely to have
preconditions specified.

2.2 CnC Structure
Our CnC tool combines ESC/Java and JCrasher. CnC

takes as input the names of the Java files under test. It in-
vokes ESC/Java 2.07a, which compiles the Java source code
under test to a set of predicate logic formulae [9, 18]. ESC
compiles each method m under test to its weakest precon-
dition wp(m, true). This formula specifies the states from
which the execution of m terminates normally. We use true

as the postcondition, as we are not interested in which state
the execution terminates as long as it terminates normally.
The states that do not satisfy the precondition are those
from which the execution “goes wrong”.

We are interested in a few specific cases of the execution
going wrong [19, chapter 4].

• Assigning a supertype to an array element.

• Casting to an incompatible type.

• Accessing an array outside its domain.

• Allocating an array of negative size.

• Dereferencing null.

• Dividing by zero.

These cases are statically detected using ESC/Java but they
also correspond to Java runtime exceptions (program crashes)
that will be caught during JCrasher-initiated testing.

A state from which the execution of m goes wrong is also
called a “counterexample”. ESC uses the Simplify theorem
prover [6] to derive counterexamples from the conjunction
of wp(m, true) and additional formulae that encode the class
to which m belongs as well as Java semantics.

We view such a counterexample as a constraint system
over m’s parameters, the object state on which m is executed,
and other state of the environment. CnC extends ESC by
parsing and solving this constraint system. A solution is a
set of variable assignments that satisfy the constraint sys-
tem. Section 2.3 shows examples of constraints and discusses
in detail how we process constraints over integers, arrays,
and reference types in general.

Once the variable assignments that cause the error are
computed, CnC uses JCrasher to compile some of these as-
signments to JUnit test cases. The test cases are then ex-
ecuted under JUnit. If the execution does not cause an
exception, then the variable assignment was a false positive:
no error actually exists. Similarly, some runtime exceptions
do not indicate errors and JCrasher filters them out. For in-
stance, throwing an IllegalArgumentException exception
is the recommended Java practice for reporting illegal in-
puts. If the execution does result in one of the tracked ex-
ceptions, an error report is generated by CnC.

2.3 Constraint Solving
Constraint solving is the CnC glue that keeps together

ESC/Java and JCrasher. We next discuss how we solve the
abstract constraints extracted from ESC/Java counterexam-
ples to generate values that are used in JCrasher test cases.
Note that all constraint solving is by nature a heuristic tech-
nique: we are not always able to solve constraints, even if
they are indeed solvable.

2.3.1 Primitive types: integers
We first discuss our approach for integer numbers.2 CnC

uses the integer constraint solver included in the POOC plat-
form for object-oriented constraint programming [22]. As an
example, consider the following method under test.

public int m1(int a, int b, int c) {

if (0<=a && a<b && a!=c && c>=0) {

return (a+b)/c;

}

else {return 0;}

}

ESC will return the following constraint system, which we
have pruned and simplified for readability.

a<b; 0<=a; c==0; c!=a

The first solution POOC returns for the above constraint
system is (1, 2, 0). CnC outputs a corresponding JUnit test
case that first creates an instance of the class defining m1

and then calls m1 with parameters (1, 2, 0). The test case
catches any exception thrown during execution and, if the
exception indicates an error (as in this case), a report is
produced.

2.3.2 Complex types: objects
Constraints in abstract counterexamples may involve alias-

ing relations among object references. We solve these with
a simple equivalence-class-based aliasing algorithm, similar
to the well-known alias analysis by Steensgard [23].

Our implementation maintains an equivalence relation on
reference types. For each reference type we keep a mapping
from field identifier to variable. This allows us to store con-
straints on fields. A reference constraint a=b specifies that
a and b refer to the same object. We model this by merging
the equivalence classes of a and b, creating a new equivalence
class that contains both. After processing all constraints we
generate a test case by creating one representative instance
per equivalence class. This instance will be assigned to all
members of the class.

For an example, consider the following method.

public class Point{public int x;}

public int m2(Point a, Point b) {

if (a==b) {return 100/b.x;}

else {return 0;}

}

ESC/Java generates a counterexample from which we ex-
tract the following constraint system.

2Floating point constraints are currently not supported in
CnC (random values are used, just as in JCrasher) but would
be handled similarly.

a.x=0, a=b

After the two constraints are processed, a and b are in the
same equivalence class. A single Point object needs to be
created, with both a and b pointing to it and its x field equal
to 0. (In this case, the integer constraint is straightforward
but generally the integer constraint solver will be called to
resolve constraints.)

We use reflection to set object fields in the generated test
case. In our example:

Point p1 = new Point();

Point.class.getDeclaredField("x").

set(p1, new Integer(0));

Point p2 = p1;

Testee t = new Testee();

t.m2(p1, p2);

2.3.3 Complex types: arrays
CnC uses a simple approach to deal with arrays. Array ex-

pressions with a constant index (such as a[1]) are treated as
regular variables. Array expressions with a symbolic index
(such as a[b] or a[m()]) are replaced with a fresh variable
and the resulting constraint system (with regular references
and primitives) is solved. The solutions returned are used
one-by-one to turn array expressions with symbolic indices
into array expressions with constant indices. If the result-
ing constraint system is solvable (i.e., has no contradictory
constraints) then the solution is appropriate for the original
constraint system.

An example illustrates the approach. Consider the method:

public int m3(int[] a, int b) {

if (a[a[b]] = 5) {return 1/0;}

else {return 0;}

}

For the case of division by zero, CnC extracts the follow-
ing constraint system from the ESC/Java counterexample
report:

0 <= b

a[b] < arrayLength(a)

0 <= a[b]

b < arrayLength(a)

a[a[b]] = 5

CnC then rewrites the constraint system as follows, using
the names x:=b, y:=a[b], and z:=a[a[b]].

0 <= x < arrayLength(a)

0 <= y < arrayLength(a)

z = 5

For the rewritten constraint system our first solution can-
didate is x:=0, y:=0, and z:=5. But this causes a conflict
in the array as b=0 and a[b]=a[0]=0 but a[a[b]]=a[0]=5.
Therefore we discard this solution and query the integer con-
straint solver for another solution. The next solution x:=0,
y:=1, z:=5 satisfies the constraint system. So we generate
the corresponding test case, which passes (0, new int[]{1,5})
to m3.

3. BENEFITS RELATIVE TO ESC/JAVA
CnC has two advantages over using ESC/Java alone. First,

CnC ensures that all errors it reports are indeed repro-
ducible: they are possible for some combination of values.
Second, CnC offers ease of inspection of error cases and con-
crete test cases that can be integrated in a regression test
suite.

3.1 Improving soundness
Improving the soundness of a static checker is a highly

desirable goal for software engineers. In their assessment of
the applicability of ESC/Java, Flanagan et al. write [9]:

“[T]he tool has not reached the desired level of
cost effectiveness. In particular, users complain
about an annotation burden that is perceived to
be heavy, and about excessive warnings about
non-bugs, particularly on unannotated or partially-
annotated programs.”

Our combination of ESC/Java with JCrasher aims to rem-
edy exactly this weakness, by using testing techniques to
complement the ESC/Java analysis.

Every reasoning system must make a trade-off between
soundness and completeness. ESC/Java produces spurious
error reports because it captures the Java semantics impre-
cisely. Of course, the loss of accuracy could exhibit itself
as incompleteness (i.e., not catching errors that are there)
rather than as unsoundness, but ensuring soundness at the
abstract reasoning level will make a static checker miss too
many potential errors, as the ESC/Java authors argue.

In contrast, with our approach, soundness is ensured by
testing the program with actual data and seeing if the pre-
dicted problem can be actually observed. From an engineer-
ing point of view, this is an appropriate approach. To verify
that some condition can actually occur, it is easier to make
some informed guesses on input values and test them than
to try to prove the existence of such values abstractly.

To see in which cases our approach would work better,
consider some representative examples of the unsoundness
of ESC/Java.

3.1.1 Intra-Procedurality.
In the absence of pre-conditions and post-conditions de-

scribing the assumptions and effects of called methods,
ESC/Java analyzes each method in isolation without taking
the semantics of other methods into account. For instance,
consider the example:

public int get0() {return 0;}

public int meth() {

int[] a = new int[1];

return a[get0()];

}

ESC/Java will report potential errors for get0() < 0 and
get0() > 0, although neither of these conditions can be
true.

Tools like Houdini [8] can possibly be used to extract
ESC/Java failure predicates and employ their inverse as
a pre-condition for the current method (essentially giving
ESC/Java interprocedural capabilities). Preconditions can
also possibly be inferred with a tool like Daikon [7], which

observes invariant properties during program executions.
Nevertheless, the inferred conditions by Houdini or Daikon
are likely to be too low-level, conservative and of a local na-
ture. Hence, they are unlikely to capture elements such as
the state of variables.

In general, ESC/Java has poor handling of state: it does
not recognize invariants of either the current class (e.g., in-
variant relations between fields) or the environment. For
example, ESC/Java will report a potential error in a line
of code calling the System.out.println method, complain-
ing that the System.out object may be null. Note that
we can fix this specific problem by giving ESC/Java access
to the formal JML specification of java.lang.System (the
ESC/Java distribution includes the JML specification for
this specific class).

3.1.2 Exceptions.
ESC/Java treats every exception thrown by a Java sys-

tem class as an error, even if the user code catches it. Many
such handled exceptions should not be considered bugs, but
rather non-procedural transfers of control flow. For instance,
the program may catch an exception that is thrown to indi-
cate some valid runtime condition (e.g., a file was not found
because the user entered the wrong name).

3.1.3 Floating Point Arithmetic.
ESC/Java does not have good handling of floating point

values. Consider a simple example method:

int meth(int i) {

int res = 0;

if (1.0 == 2.0) res = 1/i;

return res;

}

ESC/Java will produce a spurious error report suggesting
that with i == 0 this method will throw a divide-by-zero
exception. If integer constants (i.e., 1, 2 instead of 1.0,
2.0) had been used, no error would have been reported.

3.1.4 Big Integers.
ESC/Java has similar imprecisions with respect to big in-

teger numbers. Big integers are represented as symbols and
the theorem prover cannot infer that, for instance, the fol-
lowing holds: 1000001 + 1000001 != 2000000.

3.1.5 Multiplication.
ESC/Java has no built-in semantics for integer multipli-

cation. For input variables i and j, ESC/Java will report
spurious errors (division-by-zero) both for the line:

if ((i == 1) && (j == 2)) res = 1/(i*j);

and also for:

if ((i != 0) && (j != 0)) res = 1/(i*j);

Note that the latter case is interesting because the possi-
bility of error cannot be eliminated by testing only a small
number of values for i and j. This is one example where
generating a large number of test cases automatically with
JCrasher can increase the confidence that the error report
is indeed spurious.

3.1.6 Reflection.
ESC/Java does not attempt to model any Java reflection

properties, even for constant values. For instance, the fol-
lowing statement will produce a spurious error report for
division-by-zero with input i being 0:

if (int.class != Integer.TYPE) res=1/i;

3.1.7 Aliasing and Data Flow Incompleteness.
ESC/Java models reference assignments incompletely—

e.g., type information is lost for elements stored in arrays.
For classes A and B, with B a subclass of A, the following
code will produce a spurious error report (for a class-cast-
exception error):

A[] arr = new A[]{new B(), new A()};

B b = (B) arr[0];

3.2 Improving the Clarity of Reports
CnC is more friendly to the user than ESC/Java. Not

only are fewer spurious errors reported, but also the reports
are much easier to inspect. Ease of inspection is paramount
in verification. Musuvathi and Engler [20] summarize their
experiences (in a slightly different domain) as:

“A surprise for us from our static analysis work
was just how important ease-of-inspection is. Er-
rors that are too hard to inspect might as well
not be flagged since the user will ignore them
(and, for good measure, may ignore other errors
on general principle).”

When an error is reported by a program analysis system, it
is generally desirable to see not just where the error occurred
but also an example showing the error conditions. ESC/Java
can optionally emit the counterexamples produced by the
Simplify theorem prover. Yet these counterexamples con-
tain just abstract constraints instead of specific values. Fur-
thermore, there are typically hundreds of constraints even
for a small method. For instance, for a 15-line method (from
one of the programs examined later in Section 4) ESC/Java
emits a report that begins:

P1s1.java:345: Warning: Array index

possibly too large (IndexTooBig)

isTheSame(list[iList+1],pattern[iPatte ...

^

Execution trace information:

Reached top of loop after 0 iterations in

"P1s1.java", line 339, col 4.

Executed then branch in "P1s1.java", line

340, col 59.

Reached top of loop after 0 iterations in

"P1s1.java", line 341, col 6.

Counterexample context:

(patternNum@340.9-339.4#0-340.9:360.52 <=

intLast)

(intFirst <= tmp2:342.26)

(tmp2:342.26 <= intLast)

(arrayLength(pattern:334.53) <= intLast)

...

(113 lines follow.) The first few lines are part of the stan-
dard ESC/Java report, while the rest describe the coun-
terexample. If the error conditions are clear from the loca-
tion and path followed to reach the error site, then the report

is quite helpful. If, however, the counterexample needs to
be consulted, the report is very hard for human inspection.

In contrast, CnC reduces all constraints to a small test
case. In the above case, the generated test method is just
10 lines long. Furthermore, users are likely to be more fa-
miliar with Java syntax than with the conditions produced
by Simplify. Finally, having a concrete test case gives the
user the option to integrate it in a regression test suite for
later use.

4. BENEFITS RELATIVE TO JCRASHER
CnC is a strict improvement over using JCrasher alone for

automatic testing. By employing the power of ESC/Java,
CnC guides the test case generation so that only inputs likely
to produce errors are tested. Thus, a small number of test
cases suffice to find all problems that JCrasher would likely
find. To confirm this claim, we reproduced the experiments
from the JCrasher paper [5] using CnC. The programs under
test include the Raytracer application from the SPEC JVM
98 benchmark suite, homework submissions for an under-
graduate programming class, and the uniqueBoundedStack

class used previously in the testing literature [24, 26]. (Xie
and Notkin refer to this class as UB-Stack, a name that
we adopt for brevity.) These testees are mostly small and
occasionally have informal specifications. For instance, in
the case of homework assignments, we review the homework
handout to determine what kinds of inputs should be han-
dled by each method and how. Thus, we can talk with some
amount of certainty of bugs instead of just error reports and
potential bugs.

Table 1 summarizes the results of running JCrasher 0.2.7
and CnC 0.4.10 on the set of testees. The bugs are reported
as a range containing some uncertainty, as occasionally it is
clear that a program fragment represents a bad practice,
yet there is a possibility that some implicit precondition
makes the error scenario infeasible. CnC has more flexi-
bility than JCrasher in its settings, therefore for these tests
we chose the CnC settings so that they emulate the default
JCrasher behavior. Specifically, CnC parameterizes ESC so
that it searches for the potential problems listed in section
2.2, other than dereferencing null. ESC unrolls each loop
1.5 times. We use no JML specifications of the Java class
libraries. Using these JML specifications included in the
ESC distribution does not change the reports CnC produces
or the bugs it finds for this experiment. We use the run-
time heuristics reported in the JCrasher paper [5] for both
JCrasher and CnC. These heuristics determine which excep-
tions should be ignored because they probably do not con-
stitute program errors. For identical exceptions produced
with the same method call stack, only one error report is
output.

As can be seen in the table, CnC detects all the errors
found by JCrasher with only a fraction of the test cases (ex-
cept for UB-Stack, where JCrasher found few opportunities
to create random data conforming to the class’s interface)
and slightly fewer reports. This confirms that the search of
CnC is much more directed and deeper, yet does not miss
any errors uncovered by random testing. (Note: The num-
bers reported for JCrasher are identical to those in refer-
ence [5] with two exceptions. First, the bug count for s1139
and s3426 is increased by one, since on further review two
more reports were shown to be bugs. Second, for the Binary
Search Tree homework submission, we run both programs on

Table 1: Results of using JCrasher and CnC on real programs (testees).
Public methods gives the number of public methods and constructors declared by public classes. Constructors of abstract
classes are excluded. Test cases gives the total number of test cases generated for a testee when JCrasher searches up to a
method-chaining depth of three and CnC creates up to ten test cases per ESC generated counterexample. Crashes denotes
the number of errors or exceptions of interest thrown when executing these test cases. Reports denotes the number of distinct
groups of failures reported to the user—all crashes in a group have an identical call-stack trace. Bugs denotes the number of
problem reports that reveal a violation of the testee’s specification.

Testee Tests
Class Author Public Test Cases Crashes Reports Bugs
name methods JCrasher CnC JCrasher CnC JCrasher CnC JCrasher CnC
Canvas SPEC 6 14382 30 12667 21 3 2 0–1 0–1
P1 s1 16 104 40 8 40 3 3 1–2 2–3
P1 s1139 15 95 40 27 40 4 4 1–2 2–3
P1 s2120 16 239 50 44 50 3 2 0 1
P1 s3426 18 116 45 26 45 4 4 2 3
P1 s8007 15 95 10 22 10 2 1 1 1
BSTNode s2251 24 3872 13 1547 8 4 2 1 1
UB-Stack Stotts 11 16 110 0 0 0 0 0 0

the BSTNode class, which contains the error, instead of on
the BSTree front-end class.)

For a representative example of a reported bug, the fol-
lowing getSquaresArray method of user s8007’s testee P1
causes a NegativeArraySizeException. (We have format-
ted the testees for readability, “//..” indicates code we have
omitted.)

public static int[] getSquaresArray(int length) {

int[] emptyArray = new int [length]; //..

}

This is a bug, since the homework specification explicitly
states “If the value passed into the method is negative, you
should return an empty array.” The constraints reported by
ESC/Java for this error essentially state that length should
be negative. Our constraint solving then produces the value
-1000000 and uses JCrasher to output a test case to demon-
strate the error.

In addition to JCrasher’s results, CnC found one more
bug in all P1 testees except s8007’s. When passing arrays
of different lengths (e.g., ([1.0], [])) to the swapArrays

method, these testees crash by accessing an array out of
bounds. The students’ code typically contains the pattern:

public static void swapArrays

(double[] fstArray, double[] sndArray)

{ //..

for(int m=0; m<fstArray.length; m++) {

//..

fstArray[m]=sndArray[m]; //..

}

}

We classify this as a bug, since the homework specification
allows arrays of different lengths as input. JCrasher did
not discover this error because its creation of random array
values is limited.

Due to lack of space, we cannot discuss in detail the rest
of the specific bugs discovered in these programs. The in-
terested reader should consult reference [5] instead.

5. EXPERIENCE WITH CNC
We next describe our experience in using CnC on com-

plete applications and our observations on the strengths and
weaknesses of the tool.

5.1 JABA and JBoss JMS
To demonstrate the uses of CnC in practice, we applied

it to two realistic applications: the JABA bytecode analysis
framework3 and the JMS module of the JBoss4 open source
J2EE application server. The latter is an implementation
of Sun’s Java Message Service API [11]. Specifically, we ran
CnC on all the jaba.* packages of JABA, which consist of
some 18 thousand non-comment source statements (NCSS),
and on the JMS packages of JBoss 4.0 RC1, which consist
of some five thousand non-comment source statements. We
should note that there is no notion of testing the scalability
of CnC since the time-consuming part of its analysis is the
intra-procedural ESC/Java analysis. Hence, in practice, the
CnC running time scales roughly linearly with the size of
the input program.

We tested both applications without any annotation or
other programmer intervention. None of the tested appli-
cations has JML specifications in its code. This is indeed
appropriate for out test, since JML annotations are rare in
actual projects. Furthermore, if we were to concentrate on
JML-annotated programs, we would be unlikely to find in-
teresting behavior. JML-annotated code is likely to have
already been tested with ESC/Java and have the bugs that
CnC detects already fixed.

Table 2 presents statistics of running CnC on JABA and
JBoss JMS. The analysis and test creation time was mea-
sured on a 1.2 GHz Pentium III-M with 512 MB of RAM.
We use the CnC configuration from the previous experiment
(section 4), but also search for null dereferences.

Since we are not familiar with the internal structure of
either of these programs, we are not typically able to tell
whether an error report constitutes a real bug or some im-
plicit precondition in the code precludes the combination of

3http://www.cc.gatech.edu/aristotle/Tools/jaba.html
4http://www.jboss.org/

Table 2: Experimental results for JABA and JBoss JMS.
Testee CnC

Package Size Creation Test Crashes Reports
[NCSS] [min:s] Cases

jaba 17.9 k 25:58 18.3 k 4.4 k 56
jboss.jms 5.1 k 1:35 3.9 k 0.6 k 95

inputs that exhibit a reported crash. Exhaustive inspection
of all the reports by an expert is hard due to the size of the
applications (especially JABA) and, consequently, the num-
ber of CnC reports. For instance, CnC (and ESC/Java) may
report that a method can fail with a null pointer exception,
yet it is not always clear whether the input can occur in
the normal course of execution of the application. 5 For
this reason, we selected a few promising error reports and
inspected them more closely to determine whether they re-
veal bugs. In the case of JBoss JMS, it is clear on a couple
of occasions (see below) that a report corresponds to a bug.
Similarly, we discussed five potential errors with JABA de-
velopers and two of them entered their list of bugs to be
fixed.

For example, one of the constructors of the ClassImpl

class in the JABA framework leaves its instance in an in-
consistent state—the name field is not initialized. Discover-
ing this error is not due so much to ESC/Java’s reasoning
capabilities but rather to the random testing of JCrasher,
which explores all constructors of a class in order to produce
random objects. ESC/Java directs CnC to check methods of
this class, and calling a method on the incorrectly initialized
object exposes the error. In a similar case, a method of the
concrete class jaba.sym.NamedReferenceTypeImpl should
never be called on objects of the class directly—instead
the method should be overridden by subclasses. The su-
perclass method throws an exception to indicate the error
when called. This is a bad coding practice: the method
should instead have been moved to an interface that the
subclasses will implement. Although the offending method
is protected, it gets called from a public method of the class,
through a call chain involving two more methods. CnC again
discovers this error mostly due to JCrasher creating a variety
of random values of different types per suspected problem.

For an error that is caught due to the ESC/Java analysis,
consider the following illegal cast in method writeObject of
class org.jboss.jms.BytesMessageImpl:

public void writeObject(Object value)

throws JMSException

{

//..

if (value instanceof Byte[]) {

this.writeBytes((byte[]) value);

} //..

}

5It is worth emphasizing this point because it is a common
source of confusion. There are two kinds of false positives in
automatic error checking systems. The first kind is due to
unsoundness: the system may report an error condition that
cannot occur in the formal reasoning framework (e.g., the
Java semantics). The second kind is that of false positives
due to unknown implicit conditions about the inputs. Any
error checking system (sound or not) is susceptible to this
second kind of false positives.

(Note that the type of value in the above is Byte[] and
not byte[].) CnC finds this error because ESC/Java reports
a possible illegal cast exception in the above.

Similarly, the potential of a class cast exception reveals an-
other bad coding practice in method getContainer of class
org.jboss.jms.container.Container. The formal argu-
ment type should be specialized to Proxy.

public static Container getContainer

(Object object) throws Throwable

{

Proxy proxy = (Proxy) object; //..

}

5.2 CnC Usage and Critique
In our experience, CnC is a useful tool for identifying pro-

gram errors. Nevertheless, we need to be explicit about the
way CnC would be used in practice, especially compared to
other general directions in software error detection. CnC’s
strengths and weaknesses are analogous to those of the tools
it is based on: ESC/Java and JCrasher. The best use of CnC
is during development. The programmer can apply the tool
to newly written code, inspect reports of conditions indi-
cating possible crashes, and possibly update the code if the
error condition is indeed possible (or update the code pre-
conditions if the inputs are infeasible and preconditions are
being maintained). Generated tests can also be integrated
in a JUnit regression test suite.

A lot of attention in the error checking community has
lately focused on tools that we descriptively call “bug pat-
tern matchers” [10, 27, 13]. These are program analysis tools
that use domain-specific knowledge about incorrect program
patterns and statically analyze the code to detect possible
occurrences of the patterns. Example error patterns include
uses of objects after they are deallocated, mutex locks with-
out matching unlocks along all control flow paths, etc. We
should emphasize that CnC is not a bug pattern matcher:
it has only a basic preconceived notion of what the pro-
gram text of a bug would look like. Thus, the domain of
application of CnC is different from bug pattern matchers,
concentrating more on numeric properties, array indexing
violations, errors in class casting, etc. Furthermore, CnC
is likely to find new and unusual errors, often idiomatic of
a programming or design style. Thus, it is interesting to
use CnC to find a few potential errors in an application and
then search for occurrences of these errors with a bug pat-
tern matcher. A practical observation is that bug pattern
matchers may not need to be very sophisticated in order to
be useful: the greater value is often in identifying the gen-
eral bug pattern, rather than in searching the program for
the pattern.

We have already mentioned the strengths of CnC. It is
a sound tool: any error reported can indeed happen for
some combination of method inputs. It searches for possible

error-causing inputs much more efficiently than JCrasher.
It gives concrete, easy-to-inspect counterexamples. Never-
theless, CnC also has shortcomings. Although it is sound
with respect to program execution semantics, it still suffers
from false positives when the inputs are precluded by an un-
stated or informal precondition (e.g., JavaDoc comments).
As mentioned earlier, every automatic error checking system
has this weakness. Nevertheless, CnC possibly suffers more
than bug pattern matching tools in this regard because it
has no domain-specific or context knowledge. In contrast,
a bug pattern matcher can often discover errors that are
bugs with high probability: e.g., the use of an object after it
has been freed. Nevertheless, due to the complexity of com-
mon bug patterns (e.g., needing to match data values and to
recognize all control flow paths), bug pattern matchers typ-
ically suffer in terms of soundness. We speculate that users
may be more willing to accept false positives due to unstated
preconditions than due to unsoundness in the modeling of
program execution. Another weakness of CnC is that it is
less complete than ESC/Java because it cannot always de-
rive concrete test cases from the Simplify counterexamples.
We have found that in practice we still prefer the higher
incompleteness of CnC to the many spurious warnings of
ESC/Java.

6. RELATED WORK
The areas of automatic test case generation and program

analysis are inexhaustible. Below, we selectively discuss a
sampling of the recent related work.

6.1 Static techniques
We have already mentioned bug pattern matchers [10, 13,

27]: tools that statically analyze programs to detect specific
bugs by pattern matching the program structure to well-
known error patterns. Such tools do not generate concrete
test cases and often result in spurious warnings, due to the
unsoundness of the modeling of language semantics. Yet
the tools encode interesting knowledge of common errors
and can be quite effective in uncovering a large number of
suspicious code patterns.

Xie and Engler [27] use their xgcc system [10] to search for
redundancies in Linux, OpenBSD, and PostgreSQL. Their
assumption is that redundancy indicates programmer confu-
sion and therefore hard errors. Their experiments support
this claim for intraprocedural redundancy. It remains un-
clear if this extends to interprocedural redundancy—ensuring
that a parameter value or the result of a function call is
within the expected range. The purpose of such redun-
dant checks is robustness—protecting the code from future
changes in other functions. Robustness could indicate an ex-
perienced programmer and therefore fewer hard errors. So a
more robust testee might lead a redundancy-based approach
to more false negatives. CnC, on the other hand, bene-
fits from more interprocedural redundancy as passing un-
expected parameters to a more robust testee leads to fewer
spurious warnings. Kremenek and Engler [15] use statistical
analysis to order the warnings produced by static analyses
to mitigate their unsoundness.

Rutar et al. [21] evaluate five tools for finding bugs in Java
programs, including ESC/Java 2, FindBugs [13], and JLint.
The number of reports differs widely between the tools. For
example, ESC reported over 500 times more possible null
dereferences than FindBugs, 20 times more than JLint, and

six times more array bounds violations than JLint. The
authors’ experience is similar to ours in that ESC/Java used
without annotating testee code produces too many spurious
warnings to be useful alone.

6.2 Dynamic techniques
Dynamic tools [3, 26] generate candidate test cases and

execute them to filter out false positives. Korat [3] generates
all (up to a small bound) non-isomorphic method parameter
values that satisfy a method’s explicit precondition. Korat
executes a candidate and monitors which part of the testee
state it accesses to decide whether it satisfies the precondi-
tion and to guide the generation of the next candidate. The
primary domain of application for Korat is that of complex
linked data structures. Given explicit preconditions, Ko-
rat will certainly generate deeper and more interesting tests
than tools like JCrasher and CnC for constraints involving
object references. An approach like that of Korat is orthog-
onal to CnC and could be integrated as part of the CnC
constraint solving/test generation.

Xie and Notkin [26] address the problem of inspecting a
large number of automatically generated tests. They add a
candidate to their test suite only if it behaves differently—
i.e., it violates the testee’s invariants, which are inferred from
the suite’s execution traces using the Daikon tool [7]. These
approaches lead to an efficient test suite with respect to cov-
ering the entire testee. CnC generates tests automatically
and focuses on those parts of the testee that are likely to
contain bugs. We address the problem of inspecting many
automatically generated tests by grouping together similar
test results. This is easier to do in our domain, since in
CnC checking we have a witness of execution failure: the
throwing of a runtime exception.

6.3 Verification techniques
Verification tools [14, 25, 2, 16] are sound but often limited

in usability or the language features they support. Jackson
and Vaziri [14, 25] enable automatic checking of complex
user-defined specifications. Counterexamples are presented
to the user in the formal specification language, which is less
intuitive than CnC generating a concrete test case. Their
method addresses bug finding for linked data structures, as
opposed to numeric properties, object casting, array index-
ing, etc., as in the case of CnC.

Beyer et al. [2] leverage the higher efficiency of lazy ab-
straction based model checking for test case generation. If
the search terminates, the approach is sound and complete:
either a counterexample will be produced, or the absence of
a counterexample is guaranteed. Like CnC, their tool con-
verts a constraint system into a test case (i.e., concrete input
values) using a constraint solver. Unlike CnC, however, the
test case is not reified as a Java program.

The CRunner model checker [16] uses program execution
to reduce the number of abstraction refinement iterations.
The approach works best if a program execution happens to
confirm early on an abstract counterexample produced from
a coarse abstraction—this saves the subsequent refinement
steps needed by traditional tools. CRunner is similar to
CnC as it executes a testee to confirm its conservative static
reasoning.

It is hard to compare software verification approaches
based on symbolic reasoning (like the Simplify theorem prover
used in CnC) to those based on model checking. The dif-

ficulty is greater with model checking approaches like that
of Beyer et al., which employs symbolic reasoning (also us-
ing Simplify) for counterexample-guided model refinement.
The rule of thumb in verification is that model checking ap-
proaches are better for finite state properties (e.g., reacha-
bility or deadlock), while theorem proving deals better with
abstract properties that capture very large or infinite do-
mains, such as integer arithmetic.

7. CONCLUSIONS
We presented an automatic error detection approach that

combines abstract reasoning and automatic test case gen-
eration. Our CnC tool combines the advantages of both
the ESC/Java static checker and the JCrasher automating
testing tool. The result is a completely automatic error de-
tection system, suitable for catching many low-level errors in
arbitrary Java code. CnC emphasizes practicality by deal-
ing with general-purpose Java programs through abstract
reasoning and constraint solving, while producing concrete
JUnit test cases as output. We have demonstrated the use-
fulness of CnC relative to ESC/Java and JCrasher, as well
as by finding bugs in real world applications.

Acknowledgments
This research was supported by the NSF through grants
CCR-0238289 and CCR-0220248, and by the Georgia Elec-
tronic Design Center.

We thank JABA developers Jim Jones and Alex Orso
for the access to their code and expertise. We thank Tao
Xie and the anonymous reviewers for their comments that
helped improve the paper.

8. REFERENCES
[1] K. Beck and E. Gamma. Test infected: Programmers

love writing tests. Java Report, 3(7):37–50, July 1998.

[2] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala,
and R. Majumdar. Generating tests from
counterexamples. In Proceedings of the 26th
International Conference on Software Engineering,
pages 326–335. IEEE Computer Society Press, May
2004.

[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated testing based on Java predicates. In
Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages
123–133. ACM Press, July 2002.

[4] D. R. Cok and J. R. Kiniry. ESC/Java2: Uniting
ESC/Java and JML: Progress and issues in building
and using ESC/Java2. Technical Report NIII-R0413,
Nijmegen Institute for Computing and Information
Science, May 2004.

[5] C. Csallner and Y. Smaragdakis. JCrasher: An
automatic robustness tester for Java.
Software—Practice & Experience, 34(11):1025–1050,
Sept. 2004.

[6] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A
theorem prover for program checking. Technical
Report HPL-2003-148, Hewlett-Packard Systems
Research Center, July 2003.

[7] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely program

invariants to support program evolution. In
Proceedings of the 21st International Conference on
Software Engineering, pages 213–224. IEEE Computer
Society Press, May 1999.

[8] C. Flanagan and K. R. M. Leino. Houdini, an
annotation assistant for ESC/Java. In J. N. Oliveira
and P. Zave, editors, FME 2001: Formal Methods for
Increasing Software Productivity: International
Symposium of Formal Methods Europe, pages 500–517.
Springer, Mar. 2001.

[9] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for Java. In Proceedings of the ACM
SIGPLAN 2002 Conference on Programming
Language Design and Implementation, pages 234–245.
ACM Press, June 2002.

[10] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system
and language for building system-specific, static
analyses. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and
Implementation, pages 69–82. ACM Press, June 2002.

[11] M. Hapner, R. Burridge, R. Sharma, and J. Fialli.
Java message service: Version 1.1. Sun Microsystems,
Inc., Apr. 2002.

[12] E. Hatcher and S. Loughran. Java development with
Ant. Manning Publications, Aug. 2002.

[13] D. Hovemeyer and W. Pugh. Finding bugs is easy. In
Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems,
languages, and applications, pages 132–136. ACM
Press, Oct. 2004.

[14] D. Jackson and M. Vaziri. Finding bugs with a
constraint solver. In M. J. Harrold, editor, Proceedings
of the 2000 ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 14–25. ACM
Press, Aug. 2000.

[15] T. Kremenek and D. Engler. Z-ranking: Using
statistical analysis to counter the impact of static
analysis approximations. In R. Cousot, editor, Static
Analysis: 10th Annual International Static Analysis
Symposium, pages 295–315. Springer, June 2003.

[16] D. Kroening, A. Groce, and E. M. Clarke.
Counterexample guided abstraction refinement via
program execution. In J. Davies, W. Schulte, and
M. Barnett, editors, Formal Methods and Software
Engineering: 6th International Conference on Formal
Engineering Methods, pages 224–238. Springer, Nov.
2004.

[17] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: A behavioral interface specification
language for Java. Technical Report TR98-06y,
Department of Computer Science, Iowa State
University, June 1998.

[18] K. R. M. Leino. Efficient weakest preconditions.
Technical Report MSR-TR-2004-34, Microsoft
Research, Apr. 2004.

[19] K. R. M. Leino, G. Nelson, and J. B. Saxe. ESC/Java
user’s manual. Technical Report 2000-002, Compaq
Computer Corporation Systems Research Center, Oct.
2000.

[20] M. Musuvathi and D. Engler. Some lessons from using
static analysis and software model checking for bug

finding. In B. Cook, S. Stoller, and W. Visser, editors,
SoftMC 2003: Workshop on Software Model Checking.
Elsevier, July 2003.

[21] N. Rutar, C. B. Almazan, and J. S. Foster. A
comparison of bug finding tools for Java. In
Proceedings of the 15th International Symposium on
Software Reliability Engineering (ISSRE’04), pages
245–256. IEEE Computer Society Press, Nov. 2004.

[22] H. Schlenker and G. Ringwelski. POOC: A platform
for object-oriented constraint programming. In
B. O’Sullivan, editor, Recent Advances in Constraints:
Joint ERCIM/CologNet International Workshop on
Constraint Solving and Constraint Logic
Programming, pages 159–170. Springer, June 2002.

[23] B. Steensgaard. Points-to analysis in almost linear
time. In Proceedings of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 32–41. ACM Press,
Jan. 1996.

[24] D. Stotts, M. Lindsey, and A. Antley. An informal
formal method for systematic JUnit test case
generation. In D. Wells and L. A. Williams, editors,
Proceedings of the Second XP Universe and First Agile
Universe Conference on Extreme Programming and
Agile Methods - XP/Agile Universe 2002, pages
131–143. Springer, Aug. 2002.

[25] M. Vaziri and D. Jackson. Checking properties of
heap-manipulating procedures with a constraint
solver. In H. Garavel and J. Hatcliff, editors, Tools
and Algorithms for the Construction and Analysis of
Systems: 9th International Conference, pages 505–520.
Springer, Apr. 2003.

[26] T. Xie and D. Notkin. Tool-assisted unit test selection
based on operational violations. In Proceedings of the
18th Annual International Conference on Automated
Software Engineering (ASE 2003), pages 40–48. IEEE
Computer Society Press, Oct. 2003.

[27] Y. Xie and D. Engler. Using redundancies to find
errors. IEEE Transactions on Software Engineering,
29(10):915–928, Oct. 2003.

APPENDIX

A. CNC USAGE
CnC is available at:

http://www.cc.gatech.edu/cnc/

A user project using CnC can integrate the following steps
into its build process.

1. Execute CnC on selected testee sources and binaries.

2. Compile the test cases CnC generated.

3. Execute JUnit on the generated test cases.

4. Archive the test results.

We have tried to ease the integration of CnC into a user
project’s build process, yet separate the above general steps
from the specifics of the project’s build process.

Ant [12] (http://ant.apache.org/) is a popular open
source tool to automate the build process of Java projects.
Ant takes an XML formatted text file as input, which is also
called the build file. An Ant build file is similar to a make
file—it declares build targets and their dependencies. Ant
interprets a build file and solves its dependencies to execute
the build targets in a correct order.

The CnC distribution contains a generic Ant build file
use.xml that invokes the CnC computation steps. The user
project’s build file build.xml then only needs to compile
the testee and call CnC’s use.xml, passing project specific
parameters to use.xml. The following code fragments illus-
trate the idea.

<!-- build.xml -->

<project name="MyProject" [..]>

<!-- project properties -->

<!-- environment properties -->

<!-- compile -->

<!-- test, call use.xml -->

</project>

The CnC web site provides complete build.xml examples,
which were used for the evaluation of CnC in this paper.

<!-- use.xml -->

<project name="CnC" [..]>

<!-- test.generate -->

<!-- test.compile -->

<!-- test.run -->

<!-- test.archive -->

</project>

Some user projects may need to adapt use.xml to inte-
grate the execution of CnC generated test cases with other
testing activities or to adapt the archival of test results to
the user project requirements.

