
New Ideas Track: Testing

MapReduce-Style Programs

Christoph Csallner, Leonidas Fegaras, Chengkai Li

Computer Science and Engineering Department
University of Texas at Arlington (UTA)

European Software Engineering Conference / ACM SIGSOFT
Symposium on the Foundations of Software Engineering

ESEC/FSE, Szeged, Hungary, Thursday, Sep. 8, 2011

Since 2004: Many MapReduce

systems, papers & users

• Google MapReduce [OSDI 2004] > 2,000 cit.

• Apache/Yahoo! Hadoop

– http://wiki.apache.org/hadoop/PoweredBy

• Microsoft Dryad [EuroSys 2007] > 500 cit.• Microsoft Dryad [EuroSys 2007] > 500 cit.

– http://research.microsoft.com/en-us/projects/dryad/

• Apache/Yahoo! Pig [SIGMOD 2008] > 400 cit.

– https://cwiki.apache.org/confluence/display/PIG/PoweredBy

• Apache/Facebook Hive [VLDB 2009]

– https://cwiki.apache.org/confluence/display/Hive/PoweredBy

Testing MapReduce-style programs 1

MapReduce programming model

• Programmer implements sequential code

– Two functions: map and reduce

– For example, in sequential Java code

• System distributes, schedules, handles faults• System distributes, schedules, handles faults

– Invokes map on many nodes in parallel

– Collects and re-distributes intermediate results

– Invokes reduce on many nodes in parallel

• Programmer can focus on problem domain

Testing MapReduce-style programs 2

...;dept; salary

...; A; 250,000

...; X; 220,000

...; F; 220,000

...; Z; 210,000

...

...; O; 150,000

Input
Map:

(key;value)*

Reduce:

avg of first 3
Output

Group

By Key

O; 150,000

A; 250,000

A; 150,000

A; 140,000

A; 95,000

...

A; 250,000

X; 220,000

F; 220,000

Z; 210,000

...

B; ...

180,000

Testing MapReduce-style programs 3

...; O; 150,000

...; T; 150,000

...; A; 150,000

...; A; 140,000

...

...; E; 100,000

...; S; 100,000

...; A; 95,000

...; C; 95,000

...

...

O; 150,000

T; 150,000

A; 150,000

A; 140,000

...

E; 100,000

S; 100,000

A; 95,000

C; 95,000

...

C; ...

...

B; ...

...

...

...

...

...

...;dept; salary

...; A; 250,000

...; X; 220,000

...; F; 220,000

...; Z; 210,000

...

...; O; 150,000 O; 150,000

A; 250,000

A; 95,000

A; 150,000

A; 140,000

...

A; 250,000

X; 220,000

F; 220,000

Z; 210,000

...

B; ...

180,000

165,000

Input
Map:

(key;value)*

Reduce:

avg of first 3
Output

Group

By Key

...; O; 150,000

...; T; 150,000

...; A; 150,000

...; A; 140,000

...

...; E; 100,000

...; S; 100,000

...; A; 95,000

...; C; 95,000

...

...
Testing MapReduce-style programs 4

O; 150,000

T; 150,000

A; 150,000

A; 140,000

...

E; 100,000

S; 100,000

A; 95,000

C; 95,000

...

C; ...

...

B; ...

...

...

...

...

...

Example

bug:
/* Report avg of top-3 salaries, if avg>100k */

public void reduce(String dept, Iterator<Integer> salaries) {

int sum = 0; int i = 0;

while (salaries.hasNext() && i<3) {

sum += salaries.next();

i += 1;

}

emit((i>0 && sum/i > 100000)? sum/i : -1);

}

• Code depends on order of salaries, just uses first-3

• Programmer may be confused by order of salaries in

input files, that order is not maintained

• Bug, possibly because MapReduce systems have

built-in ordering, but not always use them

Testing MapReduce-style programs 5

}

User reduce program has to satisfy

correctness conditions

• Reduce must not rely on a particular order:

• For each input list of values L,

for each permutation P:

reduce(key, L) == reduce(key, P(L))reduce(key, L) == reduce(key, P(L))

• Program also has to satisfy other MapReduce-

specific correctness conditions

• Current tools do not check these conditions

Testing MapReduce-style programs 6

Goal: Find such bugs automatically

• Find an input list of values L and a permutation P:

reduce(key, L) ≠ reduce(key, P(L))

• Current tools do not find such bugs

• There are many input lists and permutations• There are many input lists and permutations

– Trying all of them is impossible

Testing MapReduce-style programs 7

Example

bug:
/* Report avg of top-3 salaries, if avg>100k */

public void reduce(String dept, Iterator<Integer> salaries) {

int sum = 0; int i = 0;

while (salaries.hasNext() && i<3) {

sum += salaries.next();

i += 1;

}

emit((i>0 && sum/i > 100000)? sum/i : -1);

}

• Need specific list of salaries & permutation

– List of more than 3 elements

– Average of first 3 elements > 100k

– Permutation has to swap element at position≤3 with

element at position>3

Testing MapReduce-style programs 8

}

Observations

• Example MapReduce programs are typically small
and contain few execution paths

– How do industrial MapReduce programs look like?

• Dynamic symbolic execution may be a good fit

– Heavy-weight but precise analysis– Heavy-weight but precise analysis

– Systematically explores all execution paths

– Well-suited for reasoning about few paths

• reduce(key, L), reduce(key, P(L)) may trigger different
execution paths

– Not enough to analyze one path at a time

Testing MapReduce-style programs 9

Check correctness conditions with

dynamic symbolic execution

1. Derive symbolic path condition, return value

2. Maintain them in an indexed execution tree

– Index leaf nodes by length of input list

– Sibling(path): Triggered by input list of same length– Sibling(path): Triggered by input list of same length

3. Encode potential violation of correctness condition

in constraint system

– Solving constraints with off-the-shelf constraint solver

yields concrete input values L and permutation P

4. Convert solution to test case, run, confirm violation

Testing MapReduce-style programs 10

Encode correctness conditions in

symbolic program constraints

// Permutation P as a function: 0 � p[0], 1 � p[1], ..

// Symbolic list L = L[0], L[1], .. P(L) = L[p[0]], L[p[1]], ..

SymbolicInt[] p SymbolicIndices; // distinct list positions

Assert PathCond; // e.g.: L[0]==5Assert PathCond; // e.g.: L[0]==5

Assert SubstituteIndices(SiblingPath, p); // e.g.: L[p[0]]==5

// Find a concrete list + a concrete permutation such that:

// reduce(key, list) ≠ reduce(key, permutation(list))

Assert Result ≠ SubstituteIndices(SiblingResult, p);

Testing MapReduce-style programs 11

Input length heuristic

• Pick “representative” input lengths

• Initially: |L| := 2

– For shorter lists: L == P(L)

• Binary back-off scheme• Binary back-off scheme

– Each subsequent iteration doubles length of L

Testing MapReduce-style programs 12

Conclusions

• New programming paradigm with new bugs

– To produce deterministic results, a MapReduce system
requires user programs to satisfy certain high-level
correctness conditions

– Neither MapReduce execution systems nor tools – Neither MapReduce execution systems nor tools
check these conditions

• Proposed approach:

– Encode MapReduce correctness conditions in
symbolic program constraints

– Check correctness conditions at runtime

Testing MapReduce-style programs 13

References

• [OSDI 2004] J. Dean and S. Ghemawat. MapReduce: Simplified data processing

on large clusters. In Proc. 6th USENIX Symposium on Operating Systems Design
and Implementation, pages 137—150.

• [EuroSys 2007] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:

Distributed data-parallel programs from sequential building blocks. In Proc.
2nd ACM SIGOPS European Conference on Computer Systems, pages 59—72.

• [SIGMOD 2008] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig • [SIGMOD 2008] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig

latin: A not-so-foreign language for data processing. In Proc. 34th ACM
SIGMOD International Conference on Management of Data, pages 1099—
1110.

• [CACM2008] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. Communications of the ACM, 51(1):107—113.

• [VLDB 2009] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H.
Liu, P. Wycko, and R. Murthy. Hive: A warehousing solution over a map-reduce

framework. Proc. VLDB Endowment, 2(2):1626—1629.

Testing MapReduce-style programs 14

Questions

Testing MapReduce-style programs 15

MapReduce used for variety of jobs

• Process “web-scale” data (PB = peta-byte = 1015)

– Run on many machines in parallel

• Google: Process 20 PB per day [CACM2008]

– 10k programs build search index, process text, graphs, etc.

• New York Times: Convert 4TB of articles to PDF• New York Times: Convert 4TB of articles to PDF
– http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/

• Yahoo!: Sort TB in 209 seconds: http://sortbenchmark.org/

– “First time that either a Java or an open source program
has won this challenge” [http://hadoop.apache.org/]

• Facebook: Hive-based data warehouse

Testing MapReduce-style programs 16

MapReduce ≠ map-reduce

• MapReduce:

– Inspired by functional programming map-reduce

– But different ☺

• For detailed comparison, see:• For detailed comparison, see:

– Ralf Lämmel. Google's MapReduce programming

model — Revisited. Science of Computer

Programming 68(3): 208—237. Oct. 2007.

Testing MapReduce-style programs 17

MapReduce correctness condition 2:

Optional combine function

• Combine: programmer-defined sequential code

– Similar to map and reduce

• May be invoked on Map node, after map

– Locally “pre-reduce” results, by keyLocally “pre-reduce” results, by key

– Reduce transmission overhead to “real reduce”

• System can invoke combine 0—n times

– Must not affect semantics

• Similar approach:

– Encode in symbolic path condition, result value

Testing MapReduce-style programs 18

