
Evaluating Program Analysis and

Testing Tools with the RUGRAT

Random Program Benchmark

Application Generator

15 July, 2012

• Benchmark is a point of reference from which

measurements can be made to evaluate the

performance of hardware or software or both1

• It is important as organizations and companies use

different benchmarks to evaluate and choose

Motivation

different benchmarks to evaluate and choose

mission-critical software for business operation, e.g.,

US-Dept. of Defense acquisition process2

• Companies spend 3.4% - 10.5% of their revenue in

technology; biased or poor benchmark that leads to

wrong decision costs billions of dollars 3

2

[1] G. McDaniel. IBM Dictionary of Computing. McGraw-Hill, Dec.1994

[2] Role of application benchmarks in the DoD HPC acquisition process. U.S. Army Engineer R&D Center, ERDC MSRC Resource, 2005

[3] K. S. Nash. Information technology budgets: Which industry spends the most?, Nov 2007

Motivation

• Benchmarks are used to evaluate pRogram Analysis
and Testing (RAT) tools
– How scalable RAT tools are

– How fast RAT tools get coverage

– How through RAT tools evaluate different language – How through RAT tools evaluate different language
features

• Such benchmarks are difficult to find
– Not many benchmarks match all different constraints

– Custom built benchmarks are often biased and
reproducibility of results are difficult

– Existing third-party benchmarks are often hard to install
because of their external library dependencies

3

Motivation

• Benchmarks must be:

– Neither too simple nor too complex to work with

– Publicly available, reproducibility of results should

not be an issuenot be an issue

– Not laborious to build and should be cost effective

4

Solution: RUGRAT

Random Utility Generator for pRogram Analysis and Testing

• RUGRAT automatically creates random

applications that match your criteria

– Developers configure what properties they want

in benchmark applications

– RUGRAT is scalable to generate very large

benchmark apps (e.g., 10MLOC)

5

• Configuration Options

• Implementation

• Case study

• Experiment

Overview

• Experiment

• Related Work

• List of things available in the tool website

6

Configuration Options

• Many configuration options or parameters to RUGRAT

• Example values for these parameters or config. files
used in the experiments are available at:
www.rugrat.ws

• Many parameters are inter-dependent (e.g., total # • Many parameters are inter-dependent (e.g., total #
classes ≥ # classes to populate an inheritance tree of a
desired depth)

• Many parameters have maximum and minimum values

• Once these limits are defined, RUGRAT randomly
chooses values from each range

7

List of Major Parameters for Current

Prototype That Generates Java Apps
1. total LOC

2. # classes

3. class name prefix

4. # fields/class

5. # meth./ class

6. # param./meth.

13. allow array?

14. upper limit of array size

15. iteration (for loop) upper limit

16. allow indirect recursion?

17. allow recursion?

18. recursion depth 6. # param./meth.

7. # interfaces

8. # methods/interface

9. # interface a class explicitly
implements

10. Inheritance depth

11. # inheritance chain

12. allowed #meth. calls from a
meth

18. recursion depth

19. nested if depth

20. max. int value

21. meth. call type (local or across-
class calls)

22. allowed types: int, float …

23. etc.

8

Standard Values

• Default range is defined based on empirical data

from observed averages in Java projects:

– Zhang et al. [APSEC’07]: #classes = LOC/ 114

– Collberg et al. [SP&E’07]: each package has 12 classes, – Collberg et al. [SP&E’07]: each package has 12 classes,

1 interface per package: # interface = #classes/ 12

– Collberg et al.: 96% programs have: <20 class fields

99% programs have: <60 #meth/class

– Grechanik et al. [ESEM’10]: max. #meth/interface = 3.4

9

• View language definition
rules as production rules

• Start from the AST root node
and keep instantiating
production rules

Implementation

production rules

• Randomly choose from
multiple non-terminals

• Ignore non-terminals when
limit is reached

• Choose only terminals when
target LOC is reached

10

Example snapshot of RUGRAT’s program

generation process

Random Program Generation is Simple

but Not Enough
• Many features in modern OOP languages impose

additional well-formedness rules. For example:

– a method can only be called if it’s visible from the

call site

– for Java, no multiple-inheritance is allowed– for Java, no multiple-inheritance is allowed

– a final field must be initialized, directly or by

constructor

– no non-static field should be referenced in a static

method without initializing an object.

– generated non-abstract class must implement all

inherited abstract methods
11

Desired Properties in Generated

Programs

• No compiler errors can still lead to runtime

errors:

– generated expressions should not have runtime

exceptions, e.g., divide-by-zero

– recursion should be controlled to avoid heap

exhaustion

– indirect recursion can lead to heap exhaustion,

too, e.g., methA --> methB --> methA

Solution: Internal tables, maps are used to maintain

well-formedness rules

12

Limitations of the current RUGRAT

Prototype Implementation
• Available prototype implemented in Java 6,

creates only Java programs

• Only primitive types are used as fields in a class

• No Java library method calls are made

• Java generics are not supported• Java generics are not supported

• No ‘do-while’ or ‘switch’ statement is generated

• Only single threaded programs generated

�Future work (RUGRAT4Load) will implement

other features, e.g., network I/O, disk I/O and

multi-threading also handle limitations mentioned

above
13

Case Study on a Loader

• Problem

– A loader fetches code into the main memory from

a secondary storage; this loader by a Fortune 100

company was written in C++ back in ‘70scompany was written in C++ back in ‘70s

– Bug in fetching > 3MLOC C++ code, took too long

to fetch

– Client code exposing the bug could not be shared

for privacy issues

14

• Attempts to find/fix the bug

– 5 engineers spent 3 weeks to find the bug (600 man hour ≈ $35K)

– Repeated attempts in different subject applications failed to

reproduce the bug

– Bug was in Hash function that takes 128 character prefix of the

Case Study on a Loader…

– Bug was in Hash function that takes 128 character prefix of the

access path of identifiers as input

– Overtime same 128 char. prefix of tens of thousands of identifiers

put into the same bucket reduced the Hash table to a linked list

• RUGRAT-C++

– A separate RUGRAT prototype (RUGRAT-C++) that generates C++

programs reproduced the bug in < 4 hours !

15

Experiments

• RQ1: How similar are RUGRAT-generated applications

to third-party applications?

• RQ2: How do RAT-tools behave

16

RAT = pRogram Analysis and Testing

• RQ2: How do RAT-tools behave

while analyzing RUGRAT-generated applications?

• RQ3: Can RUGRAT-generated applications

find defects in RAT-tools?

Experiment Setup

• We ran all experiments on a HotSpot 1.6.0_24

JVM on Windows XP on a 2.33GHz 64-bit Xeon

processor with 32GB RAM

• 77 RUGRAT-generated Java programs• 77 RUGRAT-generated Java programs

• 33 open-source projects from SourceForge

• 4 RAT-tools: FindBugs, PMD, JLint and

Randoop

17

RQ1: Similarity in Subject Applications

• Calculated 78 different software metrics for

each application (both generated and

downloaded)

• Used ANOVA to determine if significant • Used ANOVA to determine if significant

difference occurs w.r.t metrics

Answer: Statistically impossible to tell whether

an app is generated or written by humans

18

Few Examples of Metrics

• We used Eclipse plug-in, Metrics 1.3.6 to
calculate different software metrics. E.g.,

– NSM – Number of Static Methods

– TLOC – Total Lines of Code– TLOC – Total Lines of Code

– NOC – Number of Classes

– NOF – Number of Attributes

– DIT – Depth of Inheritance Tree

– NOM – Number of Methods

– VG – McCabe Cyclomatic Complexity and more

19

RQ2: Comparing RAT Tools

• Used 4 RAT tools: 3 static, 1 dynamic

– FindBugs, PMD, JLint and Randoop

• 2 configurations for each tool: min. and max.

– Min-config: each tool’s default features/bug patterns

are enabledare enabled

– Max-config: each tool’s all the features are enabled

• (77 generated app) * (4 RAT tools) * (2 config/tool) = 616

exprs.

20

• FindBugs

– Min-config: ‘effort’ = minimum; ‘reportLevel’ =

high

– Max-config: ‘effort’ = maximum; ‘reportLevel’ = low

• PMD

Min. and Max. Configuration of RAT-

tools

• PMD

– Min-config: only enabled ruleset is: basic

– Max-config: enabled rulesets are: braces, clone,

codesize, controversial, coupling, design, imports,

naming, strictexception, strings, typersolution and

unusedcode

21

• JLint

– Min-config: disabled thread synchronization bug

pattern

– Max-config: enabled all bug patterns

Min. and Max. Configuration of RAT-

tools

– Max-config: enabled all bug patterns

• Randoop (no flags or config. options available)

– Min-config: time limit = 100 second (default)

– Max-config: time limit = 2400 second (= 40 min.)

22

RQ2: Comparing RAT Tools

 1

 10

 100

 1000

 10000 100000 1e+006 1e+007

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

T
im

e
 [

s
e

c
]

#
 W

a
rn

in
g

s

 1

 10

 100

 1000

 10000 100000 1e+006 1e+007

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

T
im

e
 [
s
e
c
]

#
 W

a
rn

in
g
s

MaxTime

MinTime

MaxWarnings

MinWarnings

FindBugs PMD

23

 1

 10

 100

 1000

 10000 100000 1e+006 1e+007

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

T
im

e
 [
s
e
c
]

#
 W

a
rn

in
g
s

LOC

LOC

 1

 10

 100

 1000

 10000 100000 1e+006 1e+007

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

T
im

e
 [
s
e
c
]

#
 W

a
rn

in
g
s

LOC

LOC FindBugs PMD

RandoopJLint

• Overall Results

– Exec time: JLint < PMD < FindBugs

– # Warnings: JLint < FindBugs < PMD

• Observations

– PMD: exec. time approx. equal in both max. and min.

RQ2: Comparing RAT Tools

– PMD: exec. time approx. equal in both max. and min.
config

– Static tools: (#warnings or Exec. time) α (LOC)

– Randoop: Exec. time α 1/(LOC)

– Randoop does not terminate after 100 sec. for larger
programs

24

α ≈ proportional

RQ3: RUGRAT Found RAT Bugs/Issues

 100

 1000

 1000

 10000

 100000

 1e+006

 1e+007

T
im

e
 [
s
e
c
]

#
 W

a
rn

in
g
s

 100

 1000

 1000

 10000

 100000

 1e+006

 1e+007

T
im

e
 [

s
e

c
]

#
 W

a
rn

in
g

s

(a) FindBugs’ result of generated programs with default values for the parameters.

(b) FindBugs’ result with wider range for the parameter values

25

(a) FindBugs (b) Find Bugs skipping some classes

 1

 10

 10000 100000 1e+006 1e+007

 1

 10

 100

 1000T
im

e
 [
s
e
c
]

#
 W

a
rn

in
g
s

LOC

MaxTime

MinTime

MaxWarnings

MinWarnings
 1

 10

 10000 100000 1e+006 1e+007

 1

 10

 100

 1000T
im

e
 [

s
e

c
]

#
 W

a
rn

in
g

s

LOC

RQ3: RUGRAT Found RAT Bugs/Issues

• FindBugs may skip classes and miss bugs
– if #methods in a class > 1000

– if size of classfile > 1MB

– FindBugs author, Bill Pugh confirmed that no configurable
options in FindBugs to prevent this

– He also recommended source code modification as a fix– He also recommended source code modification as a fix

• Not only generated programs, real programs (manually
written/generated then manually modified) may suffer,
too
– Apache Derby, DoctorJ, Drools, and OpenJDK have more

than 1000 methods in any class

– Split classes with less methods makes FindBugs report
warnings

26

RQ3: RUGRAT Found RAT Bugs/Issues

 100

 1000

 10000

 100000

 1e+006

 1e+007
T

im
e

 [
s
e

c
]

#
 W

a
rn

in
g

s

Randoop’s result on generated programs with default value range used for the parameters.

27

 1

 10

 10000 100000 1e+006 1e+007

 1

 10

 100

 1000T
im

e
 [

s
e

c
]

#
 W

a
rn

in
g

s

LOC

RQ3: RUGRAT Found RAT Bugs/Issues

• We independently discovered a reported

Randoop bug known as Issue 14:

– Randoop terminates without creating any test

cases if no test is generated after 10 seconds of cases if no test is generated after 10 seconds of

the last generated one

• Randoop does not terminate after 100 sec. for

larger programs

• Exec. time α 1/(LOC)

28

α ≈ proportional

Related Work

• Grammar based test input generator: pioneered by

Hanford and Purdom in ‘70s

• Slutz [VLDB’98] used random SQL stmt. generator

• Yang et. al. [PLDI’11] in their Csmith creates random

C programs (no OOP) to test compilers

• Yoshikawa et al. [QSIC’03] used Java random

program generator to create small programs (≤ 10

classes) to test JIT compiler

• ASTGen by Daniel et. al. [FSE’07] systematically

creates Java programs but cannot create complex

structures
29

Things Available at the Tool Website:

www.rugrat.ws
• Current prototype tool that works for Java

• Tool source code and executable jar file

• Sample RUGRAT-generated benchmark programs used
in the experiments (since full size > 90GB)

• All configuration files with different parameter values • All configuration files with different parameter values
that were used in the experiments

• Ant scripts to generate and run the experiments

• List of 33 programs from the SourceForge repository
that were downloaded for the experiments (RQ1)

• Links to the RAT tools and supporting libraries used in
the experiments

30

Questions?

The collaborators:

31

Thank you.

References
• [APSEC’07]: H. Zhang and H. B. K. Tan. An empirical study of class sizes for large Java systems.

In Proc. 14th Asia-Pacific Software Engineering Conference (APSEC), pages 230–237. IEEE,

Dec. 2007

• [SP&E’07]: C. Collberg, G. Myles, and M. Stepp. An empirical study of Java bytecode

programs. Software—Practice & Experience, 37(6):581–641, May 2007

• [ESEM’10]: M. Grechanik et al. An empirical investigation into a large-scale Java open source

code repository. In Proc. 4th International Symposium on Empirical Software Engineering and

Measurement (ESEM). ACM, Sept. 2010

• [VLDB’98]: D. R. Slutz. Massive stochastic testing of SQL. In Proc. 24rd International

Conference on Very Large Data Bases (VLDB), pages 618–622. Morgan Kaufmann, Aug. 1998

• [PLDI’11]: X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs in C

compilers. In Proc. 32nd ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), pages 283–294. ACM, June 2011

• [QSIC’03]: T. Yoshikawa, K. Shimura, and T. Ozawa. Random program generator for Java JIT

compiler test system. In Proc. 3rd International Conference on Quality Software (QSIC), pages

20–24. IEEE, Nov. 2003

• [FSE’07]: B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated testing of refactoring

engines. In Proc. 15th ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE), pages 185–194. ACM, Sept. 2007

32

RQ1: List of Apps Downloaded From

SourceForge
Name Total LOC

1 xom 23,170

2 z390 60,945

3 qamanager 4,661

4 openaccess 276,374

Name Total LOC

13 equip2 23,866

14 fmj 121,108

15 laser 16,952

16 lockss 67,538

Name Total LOC

25 teamelements 74,673

26 varial 45,982

27 vc2 1,077

28 vmri 13,409

33

5 wsmo4j 67,588

6 yacy 84,080

7 mpire 4,289

8 xkms 9,277

9 flexstor 243,132

10 legalfinger 10,756

11 openjava 63,325

12 lejos 23,479

17 mobile 8,631

18 nessconnect 25,023

19 neuroscholar 243,254

20 opentaps 404,887

21 openuat 75,630

22 qiqdatamining 70,824

23 rcfaces 146,464

24 t2 69,053

29 webwordcount 42,020

30 xbnjava 19,664

31 xbus 23,507

32 xui 58,360

33 zk1 92,474

