
Evaluating Program Analysis and Testing Tools with the
RUGRAT Random Benchmark Application Generator

Ishtiaque Hussain,
Christoph Csallner

University of Texas at Arlington
Arlington, TX 76019, USA
ishtiaque.hussain@

mavs.uta.edu,
csallner@uta.edu

Mark Grechanik
Accenture Technology Labs

and University of Illinois
Chicago, IL 60601, USA

drmark@uic.edu

Chen Fu, Qing Xie
Accenture Technology Labs

Chicago, IL 60601, USA
{chen.fu, qing.xie}
@accenture.com

Sangmin Park
Georgia Institute of

Technology
Atlanta, Georgia 30332, USA

sangminp@cc.gatech.edu

Kunal Taneja
Accenture Technology Labs

and North Carolina State
University

Raleigh, NC 27606, USA
ktaneja@ncsu.edu

B. M. Mainul Hossain
University of Illinois at Chicago

Chicago, IL 60607, USA
bhossa2@uic.edu

ABSTRACT
Benchmarks are heavily used in different areas of computer science
to evaluate algorithms and tools. In program analysis and testing,
open-source and commercial programs are routinely used as bench-
marks to evaluate different aspects of algorithms and tools. Unfor-
tunately, many of these programs are written by programmers who
introduce different biases, not to mention that it is very difficult to
find programs that can serve as benchmarks with high reproducibil-
ity of results.

We propose a novel approach for generating random benchmarks
for evaluating program analysis and testing tools. Our approach
uses stochastic parse trees, where language grammar production
rules are assigned probabilities that specify the frequencies with
which instantiations of these rules will appear in the generated pro-
grams. We implemented our tool for Java and applied it to generate
benchmarks with which we evaluated different program analysis
and testing tools. Our tool was also implemented by a major soft-
ware company for C++ and used by a team of developers to gener-
ate benchmarks that enabled them to reproduce a bug in less than
four hours.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—testing
tools; D.1.2 [Programming Techniques]: Automatic Program-
ming; K.6.2 [Management of Computing and Information Sys-
tems]: Installation Management—benchmarks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WODA ’12, July 15, 2012, Minneapolis, MN, USA
Copyright 2012 ACM 978-1-4503-1455-8/12/07 ...$10.00.

General Terms
Management, Measurement, Performance, Reliability

Keywords
Benchmark applications, program analysis, benchmark application
generator, stochastic grammar, stochastic parse tree

1. INTRODUCTION
A benchmark is a point of reference from which measurements

can be made in order to evaluate the performance of hardware or
software or both [19]. Benchmarks are important, since organi-
zations and companies use different benchmarks to evaluate and
choose mission-critical software for business operation [14]. Busi-
nesses are often confronted with a limited budget and stringent per-
formance requirements while developing and deploying enterprise
applications, and benchmarking is often the only way to choose
proper infrastructures from a variety of different technologies for
these applications. For example, application benchmarks play a
crucial role in the U.S. Department of Defense acquisition pro-
cess [27]. Given that corporations spend between 3.4% and 10.5%
of their revenues on technologies, biased or poorly suitable bench-
marks lead to wrong software and hardware architecture decisions
that result in billions of dollars of losses every year [20].

Benchmarks are very important for evaluating pRogram Analy-
sis and Testing (RAT) algorithms and tools [2, 3, 9, 23]. Different
benchmarks exist to evaluate different RAT aspects, such as how
scalable RAT tools are, how fast they can reach high test coverage,
how thorough they handle different language extensions, how well
they translate and refactor code, how effective RAT tools are in exe-
cuting applications symbolically or concolically, and how efficient
these tools are in optimizing, linking, and loading code in compiler-
related technologies, as well as profiling. For example, out of the
29 papers that described controlled experiments in software testing
published in TOSEM/TSE/ICSE/ISSTA from 1994 to 2003, 17 pa-
pers utilize the Siemens benchmark which includes a set of seven C
programs with only several hundreds lines of code [8]. Currently, a
strong preference is towards selecting benchmarks that have much
richer code complexity (e.g., nested if-then-else statements),

class structures, and class hierarchies [2, 3]. Unfortunately, com-
plex benchmark applications are very costly to develop [14, page
3], and it is equally difficult to find real-world applications that can
serve as unbiased benchmarks for evaluating RAT approaches.

Consider a situation where different test input generation tech-
niques are evaluated to determine which one achieves higher test
coverage in a shorter period of time. Typically, test input gener-
ators use different algorithms to generate input data for each ap-
plication run, and the cumulative statement coverage is reported
for all runs as well as the elapsed time for these runs. On one ex-
treme, “real-world” applications of low complexity are poor candi-
date benchmarks, since most test input data generation approaches
will perform very well by achieving close to 100% statement test
coverage in very few runs. On the other extreme, it may take sig-
nificant effort to adjust these approaches to work with a real-world
distributed application whose components are written in different
languages and run on different platforms. Ideally, a large num-
ber of different benchmark applications are required with different
levels of code complexity to appropriately evaluate test input data
generation tools.

Writing benchmark application from scratch is laborious and
requires a lot of manual effort, not to mention that a significant
bias and human error can be introduced [13]. In addition, select-
ing commercial applications as benchmarks negatively affects re-
producibility of results, which is a cornerstone of the scientific
method [24], since commercial benchmarks cannot be easily shared
among organizations and companies for legal reasons and trade-
secret protection. For example, Accenture Human Resource Policy
item 69 states that source code constitutes confidential information,
and other companies have similar policies. Finally, more than one
benchmark is often required to determine the sensitivity of the RAT
approaches based on the variability of results for applications that
have different properties.

Ideally, users should be able to easily generate benchmark ap-
plications with desired properties. This idea has already been used
successfully in testing relational database engines, where complex
Structured Query Language (SQL) statements are generated using
a random SQL statement generator [26]. Suppose that a claim is
made that a relational database engine performs better at certain as-
pects of SQL optimization than some other engine. The best way to
evaluate this claim is to create complex SQL statements as bench-
marks for this evaluation in a way that these statements have de-
sired properties that are specific to these aspects of SQL optimiza-
tion, for example, complicated nested SQL statements that contain
multiple joins. Since the meaning of SQL statements does not mat-
ter for performance evaluation, this generator creates semantically
meaningless but syntactically correct SQL statements thereby en-
abling users to automatically create low-cost benchmarks with sig-
nificantly reduced bias.

In this paper, we propose a Random Utility Generator for pRo-
gram Analysis and Testing (RUGRAT), which is a novel language-
independent approach and a tool for generating application bench-
marks within specified constraints and within the range of prede-
fined properties. RUGRAT is implemented for Java and it is used
to evaluate different open-source RAT tools. This paper makes the
following contributions:

• We created a novel approach for random generation of ap-
plication benchmarks that is based on stochastic parse trees,
where language grammar production rules are assigned prob-
abilities that specify the frequencies with which instantia-
tions of these rules will appear in the generated programs.
We show that random programs are similar to real-world
complex programs using different software metrics.

• RUGRAT is implemented and used at a large corporation
where a bug was found in a loader in less than four hours,
in contrast to a team of five engineers who spent close to
three weeks to find this bug before using RUGRAT.

• Finally, we implemented RUGRAT and used it to gener-
ate dozens of Java applications, ranging from 300 LOC to
5 MLOC, to evaluate popular program analysis and testing
tools. This version of RUGRAT is available for public use1.

2. OUR APPROACH
In this section, we present a model for the random application

generator, and discuss the goal of our work along with the ap-
proaches to address the issues to achieve the goal.

2.1 Stochastic Grammar Model
Consider that every program is an instance of the grammar of

the language in which this program is written. Typically, grammars
are used in compiler construction to write parsers that check the
syntactic validity of a program and transform its source code into
a parse tree [1]. An opposite use of the grammar is to generate
branches of a parse tree for different production rules, where each
rule is assigned the probability with which it is instantiated in a
program. These grammars and parse trees are called stochastic,
and they are widely used in natural language processing, speech
recognition, information retrieval [4], and also in generating SQL
statements for testing database engines [26]. We use a stochastic
grammar model to generate random object-oriented programs.

We obtain random programs by construction that is based on the
stochastic grammar model, and the construction process can be de-
scribed as follows. Starting with the top production rules of the
grammar, each nonterminal is recursively replaced with its corre-
sponding production rule. When more than one production rule is
available to replace a nonterminal, a rule is randomly chosen based
on equal probability. Terminals are replaced with randomly gener-
ated identifiers and values that preserve syntax rules of the given
language. Termination conditions for this process of generating
programs include the limit on the size of the program or selected
complexity metrics. With the stochastic grammar model it is en-
sured that the generated program is syntactically correct and com-
piles. The construction process can be fine tuned by varying the
ranges of different configuration parameter values and limiting the
grammar to a subset of the production rules that are important for
evaluating specific RAT tools (e.g., recursion, use of arrays, or use
of different data types can be turned off if a RAT approach does not
address these).

2.2 Our Goal and Approach
We address one main goal—to allow experimenters to automat-

ically generate benchmark applications that have desired proper-
ties that these experimenters need to evaluate RAT approaches and
tools. It is not a purpose of RUGRAT to replace real-world applica-
tions for evaluation of different RAT approaches and tools; instead
we see RUGRAT as a tool that enables experimenters to quickly
generate a large number of application benchmark that have desired
properties to supplement evaluations of RAT tools using real-world
application benchmarks and to achieve statistical significance of
these evaluations. In a way, we see RUGRAT as a rapid prototyp-
ing tool for producing a set of benchmark applications for initial
evaluation of RAT approaches and tools.

To address our goal, we should address several issues. First, gen-
erated program must have a wide variety of language constructs

1http://www.rugrat.ws

…

Body

If-else stmt. For loop new E()

Program

Class

Field … Method …

Parameter …

Object

D A

B E

C F

Figure 1: RUGRAT can generate deep subtype hierarchies. It
then picks classes (such as E) from such a hierarchy randomly
to create instances and call methods on these instances.

that are important for evaluating RAT approaches and tools. For
example, recursion, dynamic dispatch, and array manipulations us-
ing expressions that compute array indices test the boundaries of
RAT algorithms. Multithreading is also a prominent feature of real-
world applications. Existing program generators that are based on
the stochastic grammar model do not take into consideration these
specific language constructs to add them to generated programs.

In addition, there is an issue that generated programs should rep-
resent real-world programs using software metrics. We address this
issue by varying the probabilities that are assigned to different pro-
duction rules of the language grammar. We compare the metrics
of generated programs with metrics of different open-source Java
programs as well as commercial ones as part of our experimental
evaluation of RUGRAT (see Section 5).

3. IMPLEMENTATION
We describe the implementation of our RUGRAT approach in

Java. Figure 1 shows an example snapshot of RUGRAT’s program
generation process. Starting from the root of the abstract syntax
tree, RUGRAT keeps instantiating syntax rules. When there are
multiple rules available for a non-terminal, we randomly choose
one that satisfies the overall program configuration. For example,
if we have reached the configured maximum depth of nested condi-
tions in the current method, we skip the if-else rule. Similarly, if we
have reached the configured total LOC, we choose only terminals.

At first glance such a blind random generation process may seem
simplistic. However, modern object-oriented languages such as
Java, C++, or C# contain many complex features that impose ad-
ditional well-formedness rules on generated programs. It is there-
fore more challenging to generate correct programs, especially if
we want the generated programs to use a wide variety of complex
language features. Our goal is to let the user choose the size of
the generated programs as well as the mix of language features the
generated programs should be using. In the following, we briefly
describe how we solve some of the key challenges.

3.1 Language Features
Many language features cannot be generated correctly by blind

random program generation, because they have associated well-
formedness rules that any legal program must satisfy. For exam-
ple, a method can only be called if it and its defining type have
a visibility that permits the call from the specific call-site, a final
field defined by class C must be initialized directly or by each con-
structor of C, and generated non-abstract classes have to provide
implementations for all inherited abstract methods. Special care
has to be given to avoid generation of loops that may not terminate
or non-terminating recursive calls, if desired.

To enforce these restrictions, RUGRAT utilizes internal tables

and sets. I.e., RUGRAT implements a symbol table to ensure that
only variables from correct scopes are used, it maintains type com-
patibility, and it makes a type cast for every assignment expres-
sion. It allows primitive and reference types in method parameters
and method bodies. To avoid runtime exceptions such as divide-
by-zero, RUGRAT enforces that only non-zero valued expressions
occur in the denominator of a division operation. For iteration state-
ments, RUGRAT only uses for loops with literals in the loop condi-
tion to avoid infinite loops. It uses special configuration parameters
to enable and control recursion and indirect recursion. It also en-
sures that all abstract methods of all (transitive) super-types are im-
plemented and no non-static field is referenced in a static method.

For instance fields our prototype currently only supports primi-
tive types. Not generated are calls to Java library methods. Several
advanced language features such as generics are also not yet imple-
mented. All of these are subject to future work.

3.2 Configuration Options
RUGRAT is highly configurable. Some of the important parame-

ters include number of classes, number of methods per class, num-
ber of interfaces, number of methods per interface, maximum depth
of the inheritance hierarchy, number of class fields, number of pa-
rameters per method, and recursion depth (if recursion is enabled).
Most of the parameters have a lower and an upper limit. Moreover,
many parameters are inter-dependent (e.g., there should be enough
classes to populate an inheritance tree of a desired depth). Once
these limits are defined, RUGRAT randomly chooses values from
each range.

For each of these configuration parameters, we define a default
range that seems reasonable based on empirical data [11, 30, 5].
For example, to determine the number of classes, we follow Zhang
et al.’s [30] observation that LOC is roughly 114 times the num-
ber of classes in a program and set classes = LOC/114. To define
the number of interfaces, we follow the observation of Collberg
et al. [5], that each package in a program has roughly 12 classes
and there is 1 interface per package. Hence we set inter f aces =
LOC/(114∗12) = LOC/1368. Grechanik et al. [11] found that the
average value for the ‘maximum number of methods per interface’
is 3.4, we took ten times the average value and set the upper limit
of the range to 34. Collberg et al. found that 96% of the programs
have less than 20 class fields, and 99% of the programs have less
than 60 methods per class. We conformed to these observations and
used these values as the upper bound for respective parameters. We
used similar heuristics for other parameters, such as number of pa-
rameters per method and maximum inheritance depth. The tool
website, given in Footnote 1, has a complete list of the configura-
tion parameters and their default values.

4. CASE STUDY ON A LOADER
RUGRAT was implemented for generating C++ programs by a

Fortune 100 company, and it was used to reproduce a bug in a
loader, which is a utility that copies a program from a secondary
storage into main memory so it can be run [16]. We cannot reveal
the company name for confidentiality reasons. (Revealing the com-
pany name would not change the nature or validity of our results.)
A loader is one of many products of this company, and RUGRAT
was evaluated by the team that maintains and evolves the loader
code. The loader was written in the middle of the 1970s and since
then has been ported to different platforms and is maintained regu-
larly. In 2010, a large customer complained that it takes an unusu-
ally long to load a large C++ program with more than three million
LOC. Repeated attempts failed to reproduce this problem on differ-
ent subject applications. The client could not share its source code

to reproduce the bug, for trade-secret and other reasons.
After a costly search, the loader maintainers found the problem

in a hash function used in the symbol table. The objective of mak-
ing a simple and efficient hash function was possibly the main rea-
son why the loader developers decided to compute a hash value by
applying the binary operation XOR to every third character in an
access path starting with the first character up to a certain limit,
which was 128 characters. The identifier was inserted in the list
of the bucket in the hash, and the bucket number was determined
by dividing modulo the hash value by the number of buckets in the
hash. As long as identifiers were spread among different buckets,
retrieving them was fast. This was probably a good choice for pro-
grams decades ago, as back then storage space was tight, which
motivated programmers to use short identifier names that fit easily
into the 128 character range used in the loader’s hash function.

The efficient hash table approach worked fine for many years.
However over time programmers started using longer names, deeper
inheritance hierarchies and nested namespaces, and more access
paths had the same 128 character prefix. At some point, tens of
thousands of identifiers were put in a single bucket, reducing the
hash table to a linked list. This situation was aggravated by the
fact that this application dynamically linked to many external li-
braries, and the loader performed extensive relocations, which in-
volved searching and retrieving different identifiers. With the hash
structure reduced to a linked list, the complexity of searching in-
creased to O(n) and caused a significant performance penalty.

In retrospect, this bug should be easy to find. But since the
program that exposed this problem could not be shared with en-
gineers who worked on the loader, they had to first reproduce the
bug. To expose the bug, it was important to have a subject pro-
gram with several key characteristics including deep levels of inher-
itance, deeply nested namespaces, and long identifier names. Since
loader engineers thought of at least two dozen possible causes of
this bug, it took over three weeks for a team of five engineers to fi-
nally find the cause of this bug (over 600 man hours with the cost of
over $35,000). Fixing the bug then took just a couple of hours. The
main reason for this high cost of the bug is the inability to quickly
reproduce it and locate the fault in the hash data structure.

With RUGRAT, it took less than four hours to generate and com-
pile ten programs with 10MLOC with over 5,000 classes and 200
inheritance hierarchies, whose length on average was five classes.
Once ran, the bug was immediately reproduced and the fault was
found very quickly, since a profile showed that most time was spent
searching for identifiers in the hash table. The team now uses RU-
GRAT routinely to generate subject programs for testing linkers
and loaders.

5. EXPERIMENTATION ON RATS
In this section, we describe our initial experimentation with our

RUGRAT prototype implementation for Java. The goal of the ex-
perimentation is to determine whether RUGRAT-generated appli-
cations can be useful for finding bugs or shortcomings in program
analysis and testing (RAT) tools. In the context of RAT tools we
also refer to RUGRAT-generated applications as applications un-
der test (AUTs). Specifically, we explore the following concrete
research questions.

• RQ1. How similar are RUGRAT-generated applications to
third-party applications?

• RQ2. How do program analysis tools behave while analyz-
ing RUGRAT-generated applications?

• RQ3. Can RUGRAT-generated applications find defects in
program analysis tools?

To explore these research questions, we ran two experiments. In
the first experiment, we generated AUTs using RUGRAT’s default
parameter ranges, which model the properties of typical third-party
applications. In the second experiment, we widened the parameter
ranges to also allow for values that are only found rarely in third-
party applications (but are still possible according to the empirical
data described in Section 3.2).

For both experiments we used RUGRAT to generate AUTs of
various sizes, ranging from some 10kLOC to 5MLOC. Specifi-
cally, we picked 7 LOC sizes (10k, 50k, 100k, 500k, 1M, 2.5M,
and 5M) and generated several AUTs for each LOC value. (Due to
implementation limitations the actual LOC of an AUT may devi-
ate slightly from the target value.) For the first experiment we used
RUGRAT to generate 10 random AUTs per LOC value, yielding 70
AUTs. For the second experiment we just generated a single AUT
per LOC value, yielding 7 AUTs. In this initial experimentation,
we only generated single-threaded applications. We ran all experi-
ments on a HotSpot 1.6.0_24 JVM on Windows XP on a 2.33GHz
64-bit Xeon processor with 32GB RAM.

5.1 Program Analysis and Testing (RAT) Tools
On each of the 77 generated AUTs, we applied four Java pro-

gram analysis tools: three static analysis tools, FindBugs, PMD,
and JLint, and one dynamic analysis tool, Randoop. These tools
apply different techniques in analyzing programs and produce var-
ious kinds of warnings. Such program analysis tools are typically
highly configurable. To approximate the behavior of the tools un-
der different configurations, for each tool we set a minimum and a
maximum configuration. In the minimum configuration, we try to
evoke a minimum amount of tool features; in the maximum config-
uration, we try to invoke all tool features.

FindBugs2 applies syntactic bug patterns and dataflow-analysis
on AUT bytecode to find bugs. It supports custom patterns and
is easily expandable. For the configurations, we used two flags
(‘effort’ and ‘reportLevel’). For the maximum configuration, we
set ‘effort’ to maximum and ‘reportLevel’ to ‘low’, which reports
all the found bugs. In the minimum configuration, we set ‘effort’ to
minimum and ‘reportLevel’ to ‘high’, to restrict reporting to high
priority bugs.

PMD3 applies syntactic bug patterns on AUT source code. It
supports custom bug patterns (called ruleset) and is easily expand-
able. For the minimum configuration, we enabled only ruleset
‘basic’. For the maximum configuration, we also enabled rule-
sets braces, clone, codesize, controversial, coupling, design, im-
ports, naming, strictexception, strings, typersolution and unused-
code. Descriptions of these ruleset are in the PMD manual.

Like FindBugs, JLint4 applies syntactic bug patterns and data-
flow analysis on AUT bytecode, but it is not easy to expand [22].
JLint has patterns for detecting thread synchronization bugs, which
we disabled in the minimum configuration. For the maximum con-
figuration, we enable all patterns.

Randoop5 applies feedback-directed test generation on AUT
bytecode to deduce program behavior and create assertions to de-
tect bugs. Randoop does not have any flags or configuration options
we could set for our configurations. By default, it runs either for
100 seconds or until 100,000,000 tests are generated. We limit the
timing to 100 seconds and 2,400 seconds (40 minutes) for the min-
imum and the maximum configurations, respectively.

2Version 1.3.9, http://findbugs.sourceforge.net/
3Version 4.2.5, http://pmd.sourceforge.net
4Version 2.3, http://artho.com/jlint
5Version 1.3.2, http://code.google.com/p/randoop

 1

 10

 100

 1000

 10000 100000 1e+006 1e+007
 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007
T

im
e

 [
s
e

c
]

#
 W

a
rn

in
g

s

LOC

MaxTime
MinTime

MaxWarnings
MinWarnings

(a) FindBugs.

 1

 10

 100

 1000

 10000 100000 1e+006 1e+007
 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

T
im

e
 [

s
e

c
]

#
 W

a
rn

in
g

s

LOC

(b) FindBugs skipping some classes.

 1

 10

 100

 1000

 10000 100000 1e+006 1e+007
 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

T
im

e
 [

s
e

c
]

#
 W

a
rn

in
g

s

LOC

(c) Randoop.

Figure 2: Experimental results for RUGRAT-generated programs. The x-axis shows LOC on a logarithmic scale, the y-axis shows
a RAT tool’s runtime and the number of warnings it produced. ‘Max’ and ‘Min’ refer to our maximum and minimum RAT tool
configurations. Each data point in 2(a) and 2(c) is the average of 10 AUTs from RUGRAT’s default parameter range (experiment 1),
2(b) shows a single data point each from a wider range of configuration parameters (experiment 2).

5.2 RQ1: RUGRAT-Generated AUTs are Sim-
ilar to Open-Source Applications

We collected 78 different software metrics for the generated pro-
grams and for 33 open-source applications that we selected from
SourceForge. These open-source applications are downloaded many
times, they are nontrivial, and they are actively evolving (the appli-
cations are listed on the tool website given in Footnote 1). Our goal
was to determine if the generated applications differ from these
open-source applications by software metrics. To do that, we used
ANOVA to determine if there are significant differences w.r.t. the
collected software metrics. The result shows with strong statisti-
cal significance that these applications differ from one another not
only between different categories (i.e., open-source and generated),
but also intra-categorically. That is, when applying pairwise t-tests,
we determine that some applications from these two categories are
highly similar to each other, while significant differences exist be-
tween applications within the same categories. To summarize this
result, it is statistically impossible to tell whether an application is
generated or written by programmers using such software metrics.

5.3 RQ2: Comparing RAT Tools
We performed 616 experiments by invoking 4 RAT tools in two

configurations each on 77 generated AUTs. Figure 2 plots average
tool runtime and warnings for each target LOC value. For space
reasons we omit JLint and PMD and show the results of the second
experiment (wider parameter ranges) only for FindBugs. In general
we found that, for static analysis tools, execution time and the num-
ber of warnings increase with the program size (LOC). Three other
observations are (1) JLint had the smallest execution time, followed
by PMD and FindBugs. (2) JLint also produced the fewest warn-
ings, followed by FindBugs and PMD. (3) PMD had almost the
same runtime for both configurations.

5.4 RQ3: RUGRAT Found RAT Bugs/Issues
RUGRAT-generated programs let us independently rediscover

several issues in RAT tools. While not dramatic, these results
demonstrate the potential usefulness of RUGRAT.

FindBugs may skip classes and miss bugs. I.e., in the second
experiment, which used wider parameter ranges, we encountered
the situation depicted in Figure 2(b), where FindBugs did not show
its usual execution time and warning behavior. Instead, it termi-
nated quickly and reported only few warnings. Further investiga-
tion revealed that FindBugs has two limitations, which cause it to
skip some code; i.e., if a class has more than 1,000 methods or is

larger than 1MB, FindBugs declares it to be too large and skips
it. In the generated AUT, the majorities of classfiles were larger
than 1MB. FindBugs thus skipped almost the entire AUT and ter-
minated quickly, reporting few warnings. FindBugs has no con-
figuration option to prevent such skipping. We confirmed with the
tool authors that the recommend solution is to instead modify the
FindBugs source code.

One may argue that such limitations only affect analysis of gen-
erated programs. However, we have found real (manually writ-
ten as well as generated but then manually edited) applications on
SourceForge that have such large classes, including Apache Derby,
DoctorJ, Drools, and OpenJDK. Reducing the number of methods
for some of the applications caused FindBugs to report warnings
where it was previously skipping the analysis.

While the other analysis tools generated more warnings for larger
programs, Randoop, surprisingly, does the opposite; i.e., the larger
the programs the fewer warnings Randoop generated (Figure 2(c)).
We verified this behavior in a separate experiment, in which we in-
creased the time allotted to Randoop’s execution from 40 minutes
to up to 8 hours, which would mirror an overnight run as part of an
automated build and integration system. Doing so did not change
the average number of warnings produced by Randoop.

Increasing the runtime to up to 8 hours also lead us to indepen-
dently discover another issue with Randoop. This issue has been
reported previously as Issue 14 in Randoop’s issue tracking sys-
tem6; i.e., in the test generation phase, if no test is generated after
10 seconds of the last generated test, Randoop terminates without
writing any tests, not even the last generated test.

A third issue we discovered is that for larger programs, Randoop
does not terminate after 100 seconds as it was supposed to in the
default setting (our minimum configuration).

6. RELATED WORK
In this section, we focus on related random program generation

techniques and tools, as we have already discussed the most closely
related non-generated RAT benchmarks in Section 1. Grammar-
based test input generation, pioneered by Hanford and Purdom [12,
21] in the 1970s, can be divided into two broad categories, ran-
dom [18, 25] and systematic [10, 15, 17, 7]. In the following, we
discuss pieces of related work in more detail that are either repre-
sentative or closely related.

Csmith constructs legal C programs randomly using a subset of

6http://code.google.com/p/randoop/issues/detail?id=14

the C language production rules [28]. Specifically, Csmith con-
sults a probability table, similar to our stochastic selection. Csmith
systematically avoids generating programs that use language fea-
tures classified as undefined or unspecified by the C language. To
achieve the goal, CSmith employs selective construction and anal-
ysis of the generated programs. Csmith has been used to test com-
pilers [28] and static analyzers [6]. Unlike RUGRAT, Csmith does
not support object-oriented language features.

In the domain of object-oriented programs, a random program
generator has been used to test Java just-in-time compilers [29].
This generator takes the number of desired classes and branches
as input. Then, it generates branches and fills them randomly with
bytecode instructions. In contrast to RUGRAT, this generator does
not allow features such as recursive calls. Moreover, it was eval-
uated only on small programs with up to ten classes, ten methods
per class, and less than 100 bytecode instructions per method. We
were unable to obtain the tool to compare it with RUGRAT.

ASTGen [7] systematically generates small Java programs. How-
ever, it requires the user to combine several generators. More im-
portantly, many generated programs have compile errors, and they
do not have complex structures (e.g., only ‘==’ is supported in con-
ditions and no deep ‘if-else’ nesting is possible).

7. CONCLUSIONS
We propose a novel approach for generating random benchmarks

for evaluating program analysis and testing tools using the concept
of stochastic parse trees, where language grammar production rules
are assigned probabilities that specify the frequencies with which
instantiations of these rules will appear in the generated programs.
We implemented our tool for Java and applied it to generate bench-
marks with which we evaluated different program analysis and test-
ing tools. Our tool was also implemented by a major software com-
pany for C++ and used by a team of developers to generate bench-
marks that enabled them to reproduce a bug in less than four hours.

8. ACKNOWLEDGMENTS
We thank Balamurugan Prabakaran, Nischit Rangapan, and Arthi

Vijayakumar from the University of Illinois for their contribution as
part of their M.S. work. This material is based upon work supported
by the National Science Foundation under Grants No. 0916139,
1017633, 1017305, and 1117369, as well as Accenture.

9. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, Jan. 1986.
[2] S. M. Blackburn et al. The DaCapo benchmarks: Java benchmarking

development and analysis. In Proc. 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pages 169–190. ACM, Oct. 2006.

[3] S. M. Blackburn et al. Wake up and smell the coffee: evaluation
methodology for the 21st century. Commun. ACM, 51(8):83–89,
Aug. 2008.

[4] S. Cohen and B. Kimelfeld. Querying parse trees of stochastic
context-free grammars. In Proc. 13th International Conference on
Database Theory (ICDT), pages 62–75. ACM, Mar. 2010.

[5] C. Collberg, G. Myles, and M. Stepp. An empirical study of Java
bytecode programs. Software—Practice & Experience,
37(6):581–641, May 2007.

[6] P. Cuoq et al. Testing static analyzers with randomly generated
programs. In Proc. 4th NASA Formal Methods Symposium (NFM),
pages 120–125. Springer, Apr. 2012.

[7] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated testing of
refactoring engines. In Proc. 15th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE), pages
185–194. ACM, Sept. 2007.

[8] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure and its
potential impact. Empirical Software Engineering, 10(4), Oct. 2005.

[9] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic
metrics for Java. In Proc. 18th Annual ACM SIGPLAN Conference
on Object-Oriented Programing, Systems, Languages, and
Applications (OOPSLA), pages 149–168. ACM, Oct. 2003.

[10] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based whitebox
fuzzing. In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 206–215.
ACM, June 2008.

[11] M. Grechanik et al. An empirical investigation into a large-scale Java
open source code repository. In Proc. 4th International Symposium
on Empirical Software Engineering and Measurement (ESEM).
ACM, Sept. 2010.

[12] K. V. Hanford. Automatic generation of test cases. IBM Systems
Journal, 1970.

[13] A. Joshi, L. Eeckhout, R. H. Bell, Jr., and L. K. John. Distilling the
essence of proprietary workloads into miniature benchmarks. ACM
Transactions on Architecture and Code Optimization (TACO),
5(2):10:1–10:33, Sept. 2008.

[14] K. Kanoun and L. Spainhower. Dependability Benchmarking for
Computer Systems. Wiley-IEEE, July 2008.

[15] R. Lämmel and W. Schulte. Controllable combinatorial coverage in
grammar-based testing. In Proc. 18th IFIP TC6/WG6.1 International
Conference on Testing of Communicating Systems (TestCom), pages
19–38. Springer, May 2006.

[16] J. R. Levine. Linkers and Loaders. Morgan Kaufmann, Oct. 1999.
[17] R. Majumdar and R.-G. Xu. Directed test generation using symbolic

grammars. In Proc. 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 134–143. ACM, Nov.
2007.

[18] P. M. Maurer. Generating test data with enhanced context-free
grammars. IEEE Software, 7(4):50–55, July 1990.

[19] G. McDaniel. IBM Dictionary of Computing. McGraw-Hill, Dec.
1994.

[20] K. S. Nash. Information technology budgets: Which industry spends
the most?, Nov 2007.

[21] P. Purdom. A sentence generator for testing parsers. BIT Numerical
Mathematics, 12(3):366–375, 1972.

[22] N. Rutar, C. B. Almazan, and J. S. Foster. A comparison of bug
finding tools for Java. In Proc. 15th International Symposium on
Software Reliability Engineering (ISSRE), pages 245–256, Nov.
2004.

[23] R. H. Saavedra and A. J. Smith. Analysis of benchmark
characteristics and benchmark performance prediction. ACM Trans.
Comput. Syst., 14(4):344–384, Nov. 1996.

[24] M. Schwab, M. Karrenbach, and J. Claerbout. Making scientific
computations reproducible. Computing in Science and Engineering,
2(6):61–67, Nov. 2000.

[25] E. G. Sirer and B. Bershad. Using production grammars in software
testing. In Proc. 2nd Conference on Domain-Specific Languages
(DSL), pages 1–13. ACM, Oct. 1999.

[26] D. R. Slutz. Massive stochastic testing of SQL. In Proc. 24rd
International Conference on Very Large Data Bases (VLDB), pages
618–622. Morgan Kaufmann, Aug. 1998.

[27] J. William A. Ward. Role of application benchmarks in the DoD HPC
acquisition process. U.S. Army Engineer Research and Development
Center, ERDC MSRC Resource, 2005.

[28] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding
bugs in C compilers. In Proc. 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages
283–294. ACM, June 2011.

[29] T. Yoshikawa, K. Shimura, and T. Ozawa. Random program
generator for Java JIT compiler test system. In Proc. 3rd
International Conference on Quality Software (QSIC), pages 20–24.
IEEE, Nov. 2003.

[30] H. Zhang and H. B. K. Tan. An empirical study of class sizes for
large Java systems. In Proc. 14th Asia-Pacific Software Engineering
Conference (APSEC), pages 230–237. IEEE, Dec. 2007.

