GROPG: A Graphical On-Phone Debugger

Tuan Anh Nguyen, Christoph Csallner

Computer Science and Engineering Department

University of Texas at Arlington
Arlington, TX 76019, USA
tanguyen @mavs.uta.edu, csallner@uta.edu

Abstract—Debugging mobile phone applications is hard, as
current debugging techniques either require multiple computing
devices or do not support graphical debugging. To address
this problem we present GROPG, the first graphical on-phone
debugger. We implement GROPG for Android and perform a
preliminary evaluation on third-party applications. Our experi-
ments suggest that GROPG can lower the overall debugging time
of a comparable text-based on-phone debugger by up to 2/3.

Index Terms—Mobile computing, debugging.

I. INTRODUCTION

Debugging is a common activity during software devel-
opment and maintenance. For example, in a study of Java
developers who were using the Eclipse IDE, over 90% of
the developers used the built-in debugger to inspect memory
values during program execution [1]. Likewise a recent study
found professional software developers to use debuggers heav-
ily for general program comprehension tasks [2].

Debugging mobile phone applications is hard, as current de-
bugging techniques either do not provide powerful debugging
features such as a graphical user interface or require multiple
computing devices. Specifically, there are currently three types
of debugging techniques for mobile phone applications. Main-
stream are the first two, which run a standard debugger on a
desktop computer. Type (1) techniques attach the debugger to a
mobile phone emulator or virtual device that runs the debuggee
application. All major mobile application platforms including
Android, i0S, and Windows Phone provide such emulators.
Emulators are useful but not sufficient, as they do not simulate
all phone features precisely. Thus developers resort to type (2)
techniques, which attach the desktop debugger to a phone,
e.g., via a USB cable. The mainstream techniques therefore
ultimately require two connected computing devices, which
we also call the two-device requirement.

Type (3) techniques were recently pioneered by TouchDe-
velop [3] and DroidDebugger!. These techniques only require
a single device, i.e., a mobile phone. However these techniques
do not provide the powerful features of desktop-based debug-
gers. That is, type (3) techniques are either text-based (Droid-
Debugger) or lack basic debugging features (TouchDevelop).
Overall, missing in type (3) techniques is a user interface that
allows the programmer to (a) quickly navigate and manipulate
the debuggee memory and (b) view the debuggee’s current

Uhttps://play.google.com/store/apps/details ?id=net.sf.droiddebugger

978-1-4673-3076-3/13 © 2013 IEEE

1189

Nikolai Tillmann
Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA
nikolait@microsoft.com

source code location, memory values, call stack, and user
interface side-by-side.

The two-device requirement of mainstream debugging ex-
cludes many, e.g., those who own a smartphone but cannot
afford a second computing device such as a desktop computer.
This requirement also limits people who have multiple devices,
as it constrains debugging style. For example, to get real
location sensor readings, a developer has to move the phone,
which can be a hassle if the phone is connected to a desktop
computer with a short USB cable.

When abandoning mainstream debugging, developers are
confronted with the lack of powerful features of on-phone
debugging. From the history of debugging we already know
that certain debugger features enable higher debugging effi-
ciency. For example, consider the well-known tradeoffs be-
tween textual vs. graphical debuggers exemplified by GDB
and DDD [4], [5]. We thus argue that mobile phone application
debugging overall could be significantly improved by adding
powerful features to on-phone debuggers.

The most significant challenge of adding powerful features
to on-phone debuggers is limited screen real estate, as dictated
by the comparatively small mobile phone screen size. From
desktop-based debugging however, developers are used to
seeing during debugging several kinds of information on the
screen, including the debugged program’s current source code
location in the context of the surrounding code, the program’s
runtime memory values, call stack, and user interface.

Besides screen size there are other issues that make it
hard to port an existing desktop debugger to mobile phones.
Desktop debuggers use user interface elements optimized for
keyboard short-cuts and mouse interaction, which do not
exist on phones. Similarly, the user interface libraries desktop
debuggers are constructed from typically do not exist on
phones. For example, Android does not provide the SWT
Standard Widget Toolkit on which the mainstream Java and
Android debugger Eclipse is built.

Powerful on-phone debugging has only recently come
within reach, with mobile phones evolving to powerful inter-
active computers, narrowing the performance gap with desktop
computers in terms of CPU and memory resources. More im-
portantly, mobile phones only recently started to provide high-
resolution touch-screens, which enable interactive debugging.

In this paper we present our initial work on providing
on-phone debugging with a powerful graphical user inter-

ICSE 2013, San Francisco, CA, USA
New Ideas and Emerging Results

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

face. That is, we describe the design and implementation
of GROPG, the first Graphical On-Phone Debugger. We
implement GROPG for Android as Android is a mobile phone
platform that is used widely. We also describe a preliminary
comparison of our GROPG prototype with the most closely
related tool, the text-based on-phone debugger DroidDebugger.

Although we describe our work in terms of Android appli-
cation debugging, our techniques can also be applied to de-
bugging related languages on related mobile phone platforms
such as i0OS and Windows Phone. Our implementation is open
source and freely available?.

II. BACKGROUND ON ANDROID DEBUGGING

In this section we provide necessary background infor-
mation on the Android operating system and its Java-like
infrastructure for application debugging.

A. Android Applications Are Signed Java Applications

Android is an open source operating system that is used
widely for mobile phones. For example, it is estimated that
in the second quarter of 2012 various vendors shipped a
total of over 100 million Android phones’. Android consists
of operating system services, a Linux-based kernel, and the
Dalvik virtual machine. Dalvik is conceptually similar to a
Java virtual machine and provides similar memory safety.

While Android is mostly implemented in C, almost all
Android applications are written in Java. An application is
compiled from Java or Java bytecode to the Dalvik Executable
(DEX) bytecode language, the language Dalvik can execute.
Android runs an application only if it is digitally signed.
Developers can compile and sign an application either for
release or for debugging. If an application is compiled for
release mode, Android prevents it from being debugged.

B. Android’s Infrastructure For Application Debugging

For application-level debugging, Dalvik implements two
interfaces defined by the Java virtual machine. This makes
it easy for existing Java debuggers to connect to Dalvik and
control debuggee applications. At a high level, these two
interfaces follow the cooperative debugging model, which
assumes that the virtual machine is implemented correctly and
faithfully provides its debugging infrastructure. Cooperative
debugging is standard for application debugging. Specifically,
these two interfaces are the Java Debug Interface JDI and the
Java Debug Wire Protocol JDWP and are part of the Java
Platform Debugger Architecture JPDA.

A debugger can communicate with Dalvik via the Android
Debug Bridge ADB, which consists of client, server, and
daemon. Each Android device runs a daemon, which may be
discovered by the server. The server can be discovered by
clients, which are typically started by tools such as a debugger.

Figure 1 illustrates the Android debugging infrastructure
in the context of two-device debugging. The Eclipse IDE is
connected with an Android application running on a mobile

Zhttp://cseweb.uta.edu/~tuan/GROPG/
3http://www.idc.com/getdoc jsp?containerld=prUS23638712

Desktop computer
- Mobile device
Eclipse
‘ DT Debug }4_; Android OS
i i
‘ Eclipse JDI impl. ‘ ‘ ADT App
Dalvik VM
JDWP
Android SDK ibwp
‘ ADB clients % ADB server } USE ADB daemon

Fig. 1. Architecture overview of a desktop-based debugger, Eclipse, using
the Android debugging infrastructure for debugging an application running
on a mobile phone.

phone via a communication stack consisting of, bottom-up,
a USB cable, the Android Debug Bridge ADB, the Java
Debug Wire Protocol JDWP, and the Java Debug Interface JDI.
Since Android follows the standard Java debugging interfaces
JDWP and JDI, the Eclipse Java debugger only needs minimal
adaption for Android debugging. This adaption is provided by
the Android Development Tools ADT, which direct debugger
interactions over the Android Debug Bridge.

III. GRAPHICAL ON-PHONE DEBUGGING

The biggest challenge in the design of a graphical on-phone
debugger is the design of its user interface, as the user interface
has to provide within a mobile phone’s constraints the features
developers expect from desktop-based debugging.

Figure 2 shows the main user interface of our GROPG
graphical on-phone debugger on the right and compares it
with the closest related tool, the text-based on-phone debugger
DroidDebugger. At a high level, GROPG and DroidDebugger
make available similar kinds of information.

The main difference between the two approaches is in how
they display and let the user interact with debugging infor-
mation. DroidDebugger provides a text-based user interface,
essentially via a shell. The user types command lines and
DroidDebugger prints its responses as text output. GROPG
on the other hand provides information graphically and in-
teractively. For example, whereas DroidDebugger just prints
out the fields of an object, GROPG users can expand such
fields and their child fields iteratively by tapping on the desired
fields in a graphical display of such a linked data structure.
Moreover, whereas DroidDebugger occupies the entire screen,
GROPG displays the debugger in a transparent layer on top
of the debuggee application.

If the developer wants to interact with the debugged ap-
plication’s user interface, DroidDebugger forces her to fre-
quently switch contexts between debuggee and debugger, as
the debugger occupies the entire screen. GROPG on the other
hand provides a transparent layer or debug pane, which allows
the user to interact with debugger and debuggee on the same
screen, saving the user from frequent context switches. The
user can move the debug pane by dragging its handle and
adjust the pane’s transparency with its slider, to provide just

1190

= . &11:05PM

oF B¢ il 2:34 PM

® < B

< 1101-1505 Ar...

Debug pane handle and
transparency slider
| —
Control HWOESNILLP N
buttons |™F @ this : MapFragment (830036715952)
In-scope A track @ Track (830029793496) b
; tripStatistics : TripStatistics
track = instance of com.google.android.apps.pytrad variables and € (838030605344) P
content. Track(id=830031231080) reachable
tripStatistics = instance of com.google.andrpid.aj heap values d ;/[32758627 v x
mytracks.stats.TripStatistics(id=83003123115p) ol =577 }
bott = 32758626 .
orton Write to 578
set bottom = 32758627: 1 S| memory 579 TripStatistics FripSte}ti;tics = track.
bottom = 32758627 = 32758627 | Ll 580 int bottom = tripStatistics.getBottom(
581 int left = tripStatistics.getlLeft();
list: 7 582 int latitudeSpanE6 = tripStatistics.ge
g;g b 583 int longitudeSpanE6 = tripStatistics.g
. s . cerire = 4} 584 if (latitudeSpanE6 > 0 && latitudeSpar
setTripstatisticsr e {1 fsource code | fsas & longitudespanks < 360E6) {
580 int bottom = tripStatistics.getBofTOMP with €586 keepMyLocationVisible = false;
581 => int left = tripStatistics.getLeft(); breakpoint 'EQ<1> main
582 int latitudeSpanE6 = tripStatistifs.getTopty > i
- bottom; ===com.google.android. apps.mytracks.
583 int longitudeSpanE6 = tripStatistfics. =fragments.lvlapFragment.showTrack(): 581
getRight() - left; — :
584 if (latitudeSpanE6 > 0 && latitudpSpanE6 < E;?Zﬁ:g%iengng:glgeigpiIgzzgﬁ;k?) 511
180E6 && longitudeSpanE6 > 0 8 ahapaias oUfY IR WL
585 && longitudeSpanE6 < 360E6) { +Q<20> android. hardware.
586 keepllyLocationVisible = false; | Threads and #&¥Sensorlanager$SensorThread
where: invocal‘:'ion <__‘FQ<15> MapService
[1] com.google.android.apps.mytracks.fragm . stacks -
MapFragment.showTrack (MapFragment.java:581) I .l 2 3 4 5 6 7 8 9 0
[2] com.google.android.apps.mytracks.fragments. O
MapFragment.updatelMap (MapFragment.java:511) . * = =
[3]1 com.google.android.apps.mytracks.fragments Virtual k] @ # $ /0 & ()
MapFragment.access$5 (MapFragment.java:502) keyboard | ”) . . 2
[4] com.google.android.apps.mytracks.fragments . " ’ / g
MapFragment$3.run (MapFragment.java:369)
[5] android.os.Handler.handleCallback (Hanfller. L ABC
java:605) — ’
[6] android.os.Handler.dispatchMessage (Ha User interface |
java:o2) of debuggee [€4-009¢

Fig. 2. DroidDebugger (left) and GROPG (right) while debugging the My Tracks application on a Samsung Galaxy S3 phone. In both cases the programmer
set a breakpoint at line 580 of the MapFragment class. After My Tracks stopped at the breakpoint, the programmer stepped to line 581, inspected in-scope

memory values, and updated the local variable named bottom.

enough visual contrast between debugger and the underlying
debuggee user interface.

GROPG enables a workflow that mirrors debugging of a
desktop application. That is, the user can load source code files
into the debugger, navigate through them, set breakpoints by
tapping a line, view and edit the list of all active breakpoints,
inspect in-scope memory values, step into, over, and out of
instructions, inspect the current threads and runtime stacks,
jump to calling methods, and change the values of in-scope
memory and heap locations. All actions are available via
graphical on-phone interactions, via tap and multi-touch.

IV. GROPG IMPLEMENTATION FOR ANDROID PHONES

Figure 3 shows an overview of the GROPG implementation
for Android. We re-use many components of the two-device
setup of Figure 1. That is, debugger and Dalvik communicate

via ADB and the standard debugging interfaces JDWP and
JDI. But instead of a USB cable, our ADB components com-
municate directly over a network socket. External machines
should not connect to this socket and take control of our virtual
machine with debug commands. We prevent that scenario
by only allowing local connections to this socket. This on-
phone communication via a network socket works for Android
versions 2.3 to 4.2.1.

To run all components on a single mobile phone, we
structure our system as a graphical front-end of the minimal
debugger JDB. This setup mirrors the architecture of Droid-
Debugger, which builds on another JDB Android port. JDB in
turn is built on the JDI reference implementation and is one
of the example debuggers that are part of JDPA.

Following is the main workflow. After setting a breakpoint
and starting the debuggee, the programmer interacts with the

1191

Mobile device
Android OS
The Java Debugger (JDB) GROPG
‘ Expression Parser ‘ ‘ TTY ‘ ul
t ‘ Java ‘ ‘ Memory H Outline ‘
‘ - ‘ Editor View View
JDi reference impl. ‘ Breakpoint ‘ Stack ‘ ‘ Thread ‘
JDWP View View View
Android SDK ¢
'ﬁ JDB extension ‘
ADB clients I
socket JDWP| App II
ADB server }" ADB daemon

Fig. 3. The graphical on-phone debugger GROPG is built on the same
ADB, JDWP, and JDI debugging infrastructure as the two-device debugger of
Figure 1.

full debuggee UI. When the debuggee is paused (e.g., at a
breakpoint), GROPG displays its debug pane on top of the
debuggee UI. After performing debug actions, the programmer
switches back to interacting with the full debuggee UI. At this
point GROPG saves the current state of the debug pane and
removes it from the screen. GROPG will recreate its debug
pane UI state at the next debuggee execution break.

V. PRELIMINARY EXPERIENCE

We compare GROPG with the closest related tool, Droid-
Debugger, on a typical debugging task performed on three
example open source applications. Table I summarizes the
applications and their size. F2C prompts the user for a
temperature and converts it from Fahrenheit to Celsius. My
Tracks* uses a phone’s GPS sensor to record the user’s motion
outdoors. ZXing? is a library that enables barcode scanning via
a phone’s camera. All measurements were taken on a dual-
core 1.5GHz, 2GB RAM Samsung Galaxy S3 mobile phone
running the recent Android 4.0.4 version.

TABLE I
MEMORY CONSUMPTION OF APPLICATION AND DEBUGGER [MB] AND
DEBUGGING TIME [MIN:S]. GROPG HAS A HIGHER MEMORY FOOTPRINT
BUT ENABLES FASTER DEBUGGING.

Debuggee LOC DroidDebugger GROPG

F2C 27 310 2:13 324 45
My Tracks 21,563 | 19 11 335 | 19 26 52
ZXing 5,756 7 12 2:53 7 25 1:.01

The debugging task we chose for this comparison is to (1)
start debugger and debuggee, (2) attach debugger to debuggee,
(3) set one breakpoint, (4) once the debuggee reaches the
breakpoint step to the next instruction, and (5) display current
memory values and the frame stack of the current thread. We
set the breakpoints at F2C class F2CActivity line 17, My
Tracks class MapFragment line 580 (Figure 2), and ZXing
class CaptureActivity line 440. For each task, Table I shows
the peak memory consumption and the total time spent.

4hltps://play. google.com/store/apps/details?id=com.google.android.maps.mytracks
5 https://play.google.com/store/apps/details?id=com.google.zxing.client.android

For space reasons we can break out sub-step measurements
only for one step. Table II shows the sub-steps of step (3),
setting a breakpoint, for My Tracks. The individual times
depend on user experience and will vary among users. But
the bottom line is that a GROPG user can set a breakpoint
faster and with fewer sub-steps, as she can leverage GROPG’s
comprehensive debug pane and graphical user interface.

TABLE II
GROPG NEEDS FEWER STEPS FOR SETTING A BREAKPOINT.
DroidDebugger GROPG
1| Open source file in external tool 21 | Open source file 18
2| Review code in external tool 19 | Review code 19
3| Remember class, line for breakpoint 5
4| Switch back to debugger 3
5| Recall command syntax 0
6| Type stop at com.google.android.apps. ~ 63 | Tap line 1
mytracks.fragments.MapFragment:580
7| Tap Exec command 1 | Tap @button 1
112 39

Given the well-known trade-offs between graphical and
text-based debugging our measurements are not surprising.
GROPG has a higher memory overhead, due to the addition of
a graphical front-end. The memory overhead is modest, with
some 25MB on a 2GB RAM phone, and does not seem to
increase significantly with debuggee size. Table I also suggests
that GROPG can reduce debugging time by up to 2/3.

VI. CONCLUSIONS AND FUTURE WORK

We described GROPG, the first graphical on-phone de-
bugger. For future work, we want to integrate our approach
with on-phone coding [3], to create a full on-phone IDE.
We also want to address many of the traditional debugging
challenges on-phone, including cross-language Java and native
code debugging [6] and support for why-questions [7].

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grants No. 1017305 and 1117369.

REFERENCES

[11 G. C. Murphy, M. Kersten, and L. Findlater, “How are Java software
developers using the Eclipse IDE?” IEEE Software, vol. 23, no. 4, pp.
76-83, Jul. 2006.

[2] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional
developers comprehend software?” in Proc. 34th ACM/IEEE International
Conference on Software Engineering (ICSE). 1EEE, Jun. 2012, pp. 255-
265.

[3] N. Tillmann, M. Moskal, J. de Halleux, and M. Fihndrich, “Touchde-
velop: Programming cloud-connected mobile devices via touchscreen,”
in Proc. 10th SIGPLAN ONWARD. ACM, 2011, pp. 49-60.

[4] A. Zeller and D. Liitkehaus, “DDD - A free graphical front-end for Unix
debuggers,” SIGPLAN Notices, vol. 31, no. 1, pp. 22-27, Jan. 1996.

[5] N. Matloff and P. J. Salzman, The Art of Debugging with GDB, DDD,
and Eclipse. No Starch Press, Sep. 2008.

[6] B.Lee, M. Hirzel, R. Grimm, and K. S. McKinley, “Debug all your code:
portable mixed-environment debugging,” in Proc. 24th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). ACM, Oct. 2009, pp. 207-226.

[71 A.J. Ko and B. A. Myers, “Designing the Whyline: A debugging interface
for asking questions about program behavior,” in Proc. ACM SIGCHI
CHI. ACM, Apr. 2004, pp. 151-158.

1192

