
Managing Performance Testing with Release Certification 
and Data Correlation 

Tuli Nivas 
Performance Lab 

Sabre Holdings Inc. 
Southlake, TX 76092, USA 

Tuli.Nivas@sabre.com 

Christoph Csallner 
Computer Science and Engineering Department 

University of Texas at Arlington 
Arlington, TX 76019, USA 

csallner@uta.edu
 

 

 
 

ABSTRACT 

Performance testing is a key element of industrial software 
development. While basic performance testing concepts are well 
understood, it is less clear how to manage performance tests in 
practice. I.e., we have encountered the following two problems. 
(1) While testing textbooks prescribe writing tests against 
performance goals, we find that it is impractical to gather from 
business analysts performance goals that are detailed enough for 
finding subtle performance bugs. (2) Once performance tests are 
conducted, we were asked questions such as the following, which 
we found hard to answer. How can you be confident that the 
executed tests assess the performance of the software truthfully?  
To enable practitioners to address these problems, this paper 
introduces two additional performance testing process 
components, which we call release certification and test data 
correlation. Our key idea to address problem (1) is to run two 
different versions of the same subject application side-by-side in 
the same test environment. This allows us to use the performance 
profile of the previous version as the detailed performance 
specification of the version under test. Our key idea to address the 
questions of (2) is to correlate the performance measurements of 
the test and production environments. We also report on our 
experience of applying this implementation on several releases of 
a commercial airline sales application. 

Categories and Subject Descriptors 

D.2.9 [Software Engineering]: Management—Life cycle, 

software quality assurance; D.2.5 [Software Engineering]: 
Testing and Debugging  

General Terms 

Management, Measurement, Performance, Reliability, 
Verification 

Keywords 

Performance testing, release certification, data correlation 

 

1. INTRODUCTION 
For a commercial computing environment that processes 
transactions 24*7, 365 days a year, software and hardware 
stability and reliability are crucial. Any disruption of service could 
have catastrophic effects on the company in terms of revenue 
earned, brand credibility and customer loyalty. Bottlenecks or 
other issues that could degrade the performance of a deployed 
application should thus ideally be found and resolved in the test 
environment.  
While an application is being used on production servers, 
developers often already work on subsequent versions. Before 
deploying such a new version to production servers, the new 
version has to be tested, to minimize the risk that it will cause 
service disruption. The conventional wisdom on performance 
testing is to specify performance goals such as response times and 
to test the application against these goals. Following is a typically 
textbook description of this process: “The objective of 

performance testing is to validate the software ‘speed’ against the 

business need for ‘speed’ as documented in the software 

requirements. Software ‘speed’ is generally defined as some 

combination of response time and workload during peak load 

times.” [6, page 129]  
However, in practice, we have found it hard to impossible to 
gather a performance specification that is detailed enough for 
finding subtle performance bugs. Performance goals are typically 
maintained in service level agreements (SLAs), which are created 
by business units. SLAs contain some valuable high-level 
information, such as end-to-end response times. But missing in 
SLAs are fine-grained performance goals that are expressed in 
terms of low-level technical performance metrics, because 
business units that formulate SLAs are not familiar with such 
technical metrics. Examples of such fine grained metrics include 
CPU time, garbage collection time, virtual memory cache misses 
and hits, virtual memory usage, and system exceptions.  
The following example from our experience of testing an airlines 
sales application, shown in Figure 1, highlights the importance of 
having such fine-grained performance goals. The CPU usage 
behavior for the two releases being compared is similar, but there 
is a significant increase in the virtual and residual memory of the 
new release. This behavior can cause the system to crash, which 
means we would like to catch and fix this problem during 
performance testing. 
Although fine-grained technical performance goals are important, 
we have found that results obtained from measuring performance 
metrics in the test environment cannot be used directly to make 
predictions about the eventual performance in the production 
environment. 

 
       

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
FSE’11, September 5-9, 2011, Szeged, Hungary. 
Copyright 2011 ACM X-X-XXXX-XXX-X/XX/XX…$10.00. 

 



 

Figure 1 Performance Bug in Airline Sales Application Found with Fine Grained Performance Goals 

  

                                          
Figure 2: Performance Testing Workflow Extended with Release Certification and Data Correlation Components 

 
The reason is that the behaviors of the test and production 
environments typically diverge at some point. To address this 
problem, we are experimenting with a technique for test data 
correlation. This has allowed us to pinpoint problems in the test 
environment and in the test cases used to emulate production 
usage of the software under test.  

2. SOLUTION OVERVIEW 
We propose to take a traditional performance testing workflow 
and extend it, by adding two components, release certification and 
test data correlation. Figure 2 shows an example resulting 
workflow, which we have been using over the last year for 
performance testing of several large-scale applications, including 
an airline sales application. The workflow is complete and can be 



repeated for new releases if the last branch of the flow chart ends 
in a “Yes”.  If it ends in a “No”, the offending issues need to be 
identified and resolved before the next new release can be 
certified and deployed in production. This will ensure that the test 
environment and workflow are as close to production as possible. 
The process is general enough to be utilized for any end to end 
enterprise system. It is not dependent on any particular hardware 
or software and can be followed to get reliable performance test 
numbers before an application is deployed in production.  
 

3. RELEASE CERTIFICATION 
Release certification is the process of gathering all application and 
system metrics needed to review the performance of that specific 
application and setting targets for them. All metrics for two 
releases of the same application are considered and then the 
performance targets are classified as red, green or yellow. We 
picked the colors in analogy to traffic lights. Green is a go, with 
yellow you move cautiously and red means stop. For us these 
categories encode the range of performance targets from 
unacceptable to acceptable. The numbers for each category are 
determined together by the developer and performance testers, 
taking into account the SLAs and the performance measurements 
of previous releases.  
We follow this process even if we add a new feature or traffic 
profile. In production, the new release will have to process both 
the existing and new traffic profiles. So when the workload 
analysis is done, we need to establish the percentage of the new 
traffic as part of the total and then use that as the input to the new 
release. 
Establishing a baseline is a related approach [7]. As in release 
certification, a broad set of key performance indicators can be 
used, such as response time, processor capacity, memory usage, 
disk capacity, and network bandwidth. The key difference is that 
in release certification we test the existing and new releases at the 
same time, each time a performance test is being run. We found 
that establishing a baseline and later using it as a reference for a 
new release is often not practical, as requirements change 
constantly. For example, in a web-facing application, the amount 
and mix of traffic an application is expected to handle can change 
significantly in a short time frame. Such changes can quickly, 
within a few months or even weeks, render a once valuable 
baseline obsolete. On the other hand, we maintain baseline results 
and compare current results with these baselines. This remains 
useful when traffic profiles remain relatively similar. 
To implement release certification, we need a test environment in 
which both the existing and the new application release can be 
tested side by side on the same traffic.  
 

3.1 Example: Certification for Airline A 
To illustrate the certification process, consider our example of an 
online airline shopping website. Users on the website are able to 
search for flights between a source and destination city, get 
schedules and availability data. They are also able to specify how 
many solutions they want returned for their particular request. 
Table 1 is part of the certification criteria table for this sample 
shopping application. The first column specifies the metric being 
measured and the next three columns are the criteria for the new 
release, some expressed as absolute values and some as a 
percentage of the measurement of the previous release. In order to 
properly compare memory utilization and CPU usage, 
performance tests are run for at least 48 hours and therefore these 
metrics are compared in terms of usage per day.  

Setting up a test environment with two identical data flow paths 
for the two releases enables us to test the existing and new 
releases side by side. For example, if we have a SLA for elapsed 
time (the time taken by a piece of code to execute a particular 
transaction) set as maximum 4 seconds, anything less than 4 
seconds is good. Historical data indicated that even if the piece of 
code is taking about 5 seconds to process transactions it does not 
affect the application, so that is a warning but still an acceptable 
number. However, anything over 5 seconds is unacceptable and 
the application will not be deployed in production to prevent 
performance-related problems.  
 

Metric Green Yellow  Red 

Client resp. time [s] < 10 10–15 >15 

Add. CPU time < 5% 5–10% >10% 

Add. trans. time < 5% 5–10% >10% 

Trans. time [ms] < 4 4-5 >5 

CPU utilization < 60% 60–70% >70% 

RAM utilization < 20%  20–30% >30%  

 
Table 1: Release certification criteria for a flight shopping 

application for airline A.  

4. TEST DATA CORRELATION 
The decision to deploy a particular release in production depends 
on the results from performance tests, which therefore should be 
reliable, giving stakeholders the confidence to trust the numbers. 
Even though performance engineers and application teams try to 
create a test environment that mirrors production, it usually does 
have certain differences. I.e., the test environment is typically a 
scaled down version of the production environment. For example, 
the storage area network used for databases in test might be 
slower than the one being used in production or the network 
configurations might be different. For this reason it is common 
practice to set a 5% plus or minus acceptable range between the 
test and production numbers. In this step, we compare results 
from the test environment with actual performance numbers seen 
in production. This enables improving the test harness, test cases, 
data collection procedures, scripts, and workload analysis. 
Correlation needs to be done for each metric that is collected 
during tests. 
The process of test data correlation is to take the 95% percentile 
value for each measured performance metric during a successful 
test and then compare that with the 95% percentile value of the 
same metric in production after the new release has been 
deployed. During testing, scenarios of varying load along with 
peak traffic are simulated during a 48 hour interval, so resource 
utilization numbers measured during tests might be higher than 
those observed in production. This along with incorporating the 
differences associated with the test environment as compared to 
production is the reason why a plus minus 5% range between the 
numbers is considered acceptable. The duration over which the 
numbers are collected in production also needs to be closely 
monitored. Performance tests are run for short durations as 
compared to the life of an application when deployed in 
production. The traffic profile used during testing which might 
contain new types of transactions might become live only after a 
few days of application deployment. For this reason the metrics in 
production should be collected after a few days of the application 
going live. This will give us a basis to compare the performance 
of the same release under the same traffic profile in the two 
environments.  



  

4.1 Example: Correlation for Airline A 
Table 2 shows the correlation of the time taken by a piece of 
software to execute a particular transaction for the sample flight 
shopping application between test and production. There is a large 
difference between the values recorded during test (pLab) and 
production (Prod). This indicates that changes have to be made 
either to the environment setup, data collection technique, test 
scenarios, or even the workload being used. Since the test results 
are not comparable to production numbers, the tests being run are 
not reliable. After changes are made to better the system from 
release 2009.06.00 onwards correlation data looks more 
favorable, but improvements are still needed. This exercise 
ensures that proper tests are being run using the right traffic 
profiles. As can be seen from table 2, the correlation exercise also 
results in a red or a green release signifying how close the test 
results are to production.  

 

Table 2: Correlating Production and Test for Airline A 

 

5. RELATED WORK 
A lot of work has been done in the field of performance testing 
and measurement [8], [2], [3]. But the majority of the research is 
devoted to web testing and load drivers that can drive traffic to 
web applications. [4] discusses which metrics should be collected 
during testing to measure performance, which are limited to client 
side response times and errors. It also explains how Little’s Law 
can be used to determine if test results are close to numbers 
calculated by that law. How well a particular piece of code will 
perform is dependent on more than just how much throughput it 
can sustain or how fast it processes transactions. [7] describes 
testing processes and automation taking web applications as 
examples. [9] describes the importance of workload analysis and 
gathering of test requirements and explains how test cases and 
traffic profiles can be created. [8] explores performance testing in 
distributed computing environments and how performance test 
cases can be derived from system architecture design. In addition 
to the above, we should also confirm that test cases, data 
collection, and workload used during testing are emulating real 
world scenarios. Our certification and correlation phases, added to 
the general performance testing guideline, will help in 
determining all factors – system and application that affect the 
performance of a particular piece of code. These two steps will 
not only be able to provide the necessary performance evaluation 

process but also help in validating that the right set of activities 
are being followed during testing. 

6. CONCLUSIONS 
In performance testing, following the regular conventional steps 
of identifying test objectives, setting up a test environment, 
analyzing the workload and running tests for a particular release 
of the application is often not sufficient in the practical world. 
Revenue, credibility, and customer loyalty are all at stake for a 
company when applications are deployed in production. So in 
order to guarantee that a new release going live will not hamper 
the processing of incoming traffic, we have found it useful o add 
to the traditional performance testing activities two new steps, 
certification and correlation. Both certification and correlation 
ensure that the releases going into production are thoroughly and 
properly tested and compared to the existing release in terms of 
performance. 

7. ACKNOWLEDGMENTS 
This material is based upon work supported by the National 
Science Foundation under Grant No. 1017305. Any opinions, 
findings, and conclusions or recommendations expressed in this 
material are those of the author(s) and do not necessarily reflect 
the views of the National Science Foundation. 

8. REFERENCES  
[1] A. Avritzer and E.J. Weyuker, 1995. The automatic 

generation of load test suites and the assessment of resulting 
software, IEEE Transactions on Software Engineering (TSE), 
(21)9:  705-716 

[2] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and 
A. Fox, 2005. Capturing, indexing, clustering, and retrieving 
system history, In Proc. 20th ACM Symposium on Operating 
Systems Principles (SOSP), p105-118 

[3] Z.M. Jiang, A.E. Hassan, G, Hamann, and P. Flora, 2008. An 
automated approach for abstracting execution logs to 
execution events, Journal of Software Maintenance and 
Evolution: Research and Practice, (20)4:249-267 

[4] R. Mansharamani, A. Khanapurkar, B. Mathew, and R. 
Subramanyan, 2010. Performance testing: Far from steady 
state, In Proc. 34th Annual IEEE Computer Software and 
Applications Conference Workshops (COMPSACW), p341-
346 

[5] G.D. Everett and R. McLeod Jr., 2007. Software Testing: 
Testing Across the Entire Software Development Life Cycle, 
Wiley-IEEE Computer Society Press  

[6] J.D. Meier, C. Farre, P. Bansode, S. Barber, and D. Rea, 
2007. Performance Testing Guidance for Web Applications, 
Microsoft Press 

[7] T. Riley and A. Goucher, 2009. Beautiful Testing, O'Reilly 
Publications 

[8] G. Denaro, A. Polini, and W. Emmerich, 2004.  Early 
performance testing of distributed software applications, In 
Proc. 4th ACM International Workshop on Software and 
Performance (WOSP), p94-103 

[9] E.J. Weyuker and F.I. Vokolos, 2000. Experience with 
performance testing of software systems: Issues, an approach, 
and case study, In IEEE Transactions on Software 
Engineering (TSE), (26)12:1147-1156 


