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Abstract security vulnerability is detected if the behavior is cahsi
ered abnormal, e.g., the program accessed a buffer outside

Security testing has gained significant attention recently its bounds. Although dynamic analysis reduces false alarm
due to frequent attacks against software systems. Thig paperates, it requires testinputs that actually cause sequnaty-
presents drace-based security testiagproach. It reuses lems. This places a huge burden on testers.
test cases generated from previous testing methods to pro- Dynamic symbolic executipmlso calledconcolic test-
duceexecution tracesAn execution trace is a sequence of ing, is often used in automatic test data generation for find-
program statements exercised by a test case. Each trace isng errors that crash a system or cause security problems
symbolically executed to produpeogram constraintand [11, 22, 21, 6, 4, 10, 12, 26]. These tools perform concrete
security constraintsA program constraint is a constraint and symbolic execution of a program simultaneously to ex-
imposed by program logic on program variables. A se- plore as many paths as possible. They do not need inputs
curity constraint is a condition on program variables that that can actually cause security problems. However, they
must be satisfied to ensure system security. A security flavare either ineffective in the sense that unguided path explo
exists if there is an assignment of values to program vari- ration may not cover important vulnerabilities, or do not
ables that satisfies the program constraint but violates the scale well to large and complex programs.
security constraint. This approach detects security flaws In this paper, we propose a novel security testing ap-
even if existing test cases do not trigger them. The nov-proach usingrace-based symbolic executiamd satisfia-
elty of this method is a test model thatifies program con-  hility analysis Trace-based symbolic execution avoids the
straints and security constrairgsich that formal reason-  search space explosion of conventional symbolic execution
ing can be applied to detect vulnerabilities. A tool named In our approach, each existing test case is used to generate
SecTACis implemented and applied to 14 benchmark pro- an execution trace, i.e., the sequence of exercised program
grams and 3 open-source programs. The experiment showstatements. Symbolic execution is then applied to produce
that Sec TAC quickly detects all reported vulnerabilities two kinds of predicates. The first predicate is callgof@

and 13 new ones that have not been detected before. gram constrain{PC), which specifies a condition that pro-
gram variables must satisfy after the execution of the state
1 Introduction ment. The second predicate is calledezurity constraint

Software security has gained significant attention in re- (SC), which specifies the condition that program variables
cent years due to the huge number of security attacks thaimust satisfy to ensure the security of the given program ex-
exploit vulnerabilities in software Security testings be- ecution. A security vulnerability is detected if there is an
coming an active area of research, aiming at identifying assignment of values to program variables satisfies PC but
software vulnerabilities effectively. Recently, many ap- violates SC, i.e., P@— SC is satisfiable.
proaches have been proposed to detect vulnerabilities in The advantages of our approach are as follows. First, As
programs [25, 14, 11, 5, 22, 1, 20, 6, 23, 4, 10, 12, 26]. opposed to previous approaches, we can guide our search

Static analysidas been used to scan source code for er-to focus on those features of the user program that are most
rors that crash a system or cause security problems [24, 25]important to the user—as indicated by the developers’ will-
These static analysis tools use heuristics to determine if aingness to write test cases for them. Our approach can de-
security problem could occur; they usually approximate or tect security flaws even if these existing test cases do not
even ignore runtime dynamics such as branch conditionstrigger them. In other words, our technique can generate
and how buffer elements are visited. Thus, they are oftennew inputs that trigger security problems, even if the user-
imprecise, causing many false alarms. supplied inputs do not. Second, we propose a test model

Dynamic analysigxamines program execution to detect that unifies program constraints and security constragis u
security problems [13, 8, 9, 1, 20, 23]. These tools feed ing logical expressions so that formal reasoning can be per-
test data to a program and monitor its runtime behavior. A formed to detect security vulnerabilities. Hence, our ap-



proach can handle new types of vulnerabilities by simply complish some required coverage criteria such as branch
formulating new security requirements for them. Third, coverage. Second, the branches covered by the test cases
trace-based symbolic execution also makes it possible toare deemed important by the developer. Our goal is to pro-
test programs for vulnerability in parallel. This is becaus vide a security testing method for software developers who
analyses on different execution traces are independent fro have access to the source program and the test cases pro-
each other. We can partition the test cases into a number ofluced by traditional functional testing.
disjoint subsets and analyze these subsets in parallet. Thi In our approach, we use existing test cases to generate
cannot be directly achieved in dynamic symbolic execution execution traces. Each execution trace is a sequence of
based approaches since test cases exercising differést pat source code statements exercised by a test case. There are
are generated during path exploration. Certainly, to&ks li  no loops in execution traces since a loop in the original pro-
DART [11] and CUTE [22] can be modified to reuse ex- gram will be unfolded when it is exercised by a test case.
isting test cases and only test the paths exercised by thes®V/e then symbolically execute each execution trace to deter-
test cases. However, in this case, they lose the benefit oimine whether it contains a security vulnerability. Symboli
automatically exploring program paths. execution of each trace produces two kinds of predicates.
To evaluate the effectiveness of our approach, we im- The first predicate is therogram constrain{PC), which is
plemented a tool name&ecTAC (A Searity Testing updated during the symbolic execution of the trace; it spec-
Approach for Gorograms) and applied it to 14 benchmark ifies a condition that the program variables must satisfy. In
programs given in [28] and 3 open source programs. Theother words, the program constraint specifies the possible
benchmark programs were designed to evaluate buffer overvalues of variables at each point during the symbolic ex-
flow detection tools by simulating historic real-world vul- ecution of the trace. The second predicate issbeurity
nerabilities in server programs. Compared with the resultsconstraint(SC), which is produced at certain points during
in [28, 27, 26], Sec TAC can detect every reported vul- the symbolic execution of the trace; it specifies a condition
nerability as long as the vulnerability exists in the execu- that program variables must satisfy to ensure the secufrity o
tion traces tested in our experiments. In additi®ac TAC the software system. A security problem will occur when
detected 6 previously unreported vulnerabilities in the 14 the values of some variables violate the security condtrain
benchmark programsec TAC also detected 7 vulnerabil- Testing C programs for vulnerabilities is therefore equiva
ities in the open-source programs that, to the best of ourlent to determining whether at each point in the trace, there
knowledge, have not been reported previously. exists an assignment of values to program variables that sat
The rest of this paper is organized as follows. In the isfies PC but violates SC.
next section, we explain our basic ideas. In Section 3, we Program constraints: The program constraint at a
overview theSec TAC design. In Section 4, we describe given point in the trace is determined by the program
the Sec TAC implementation. In Section 5, we present the statements exercised to reach this point. These state-
experiment result. In Section 6, we review related work. We ments include declaration statements, assignment state-
discuss the limitations o8ec TAC in Section 7 and draw ments, branching statements, and library function calls;
some conclusions in Section 8. they impact the values of variables as follows:

2 Basic Ideas of Our Approach e A declaration statement contains important infor_mation
about thetypeandsizeof the declared program variable.
Software systems must be tested to ensure that the re- These two pieces of information determine the initial pro-
quired functionalities are correctly implemented. Unlike  gram constraint on the variable. As an example, the de-
conventional software testing, our goal is to detect sécuri  clared size of a buffer or an array constrains the space
vulnerabilities that exist in the software system. A pragra available for holding data.
is said to bevulnerableif there is an execution path that
can be exploited to compromise the security of the system.
To detect such security vulnerability, we rely on a set of i o ) )
security requirementthat must be satisfied by all execu- ® A branching statement indicates that different execution
tion paths of the program. An example of security require- ~ Paths could be taken under different conditions. How-
ments is that the length of the string copied to a buffer using ~€Ver, our execution trace is produced by running the pro-
st r cpy must not exceed the capacity of the buffer. gram under a real test case. We already know which ex-
Testing for security vulnerabilities implies the genesati ecution path is taken by the test case. Hence, we can im-
of test cases that can effectively detect violations of secu Mediately determine a condition expression that specifies
rity requirements. However, it is well known that effective @ constraint between the involved variables. For example,
test case generation is both difficult and time-consuming. If statement ¥ (i >j )" exercises the FALSE branch,
Therefore, it is desirable to reuse the test cases that-are al We know thai <j is a constraint betweénand; .
ready generated during conventional software testing. Thee A library function call restricts the range of its return
merit of this is twofold. First, these test cases typically a value if it has one. For example, the return value of func-

e An assignment statement constrains the value of its left
expression to the result of its right expression.



tion open is always greater than or equal to -1. In addi- functionsst r cpy andpri nt f are both security-critical
tion, some library functions have side-effects (i.e., modi library functions. We have selected 20+ library functions
fying the states in addition to returning a value) that also that are well known to be “insecure” and formulated their
impose constraints on variables. For example, calling security requirements. Table 1 shows some of these func-
functionget cwd will change the content of the buffer tions and their security requirements. Although these re-
specified by the parameter. guirements are written by hand, in practice we have found

According to the above rules, symbolically executing it to be not too difficult for well-known functions.

each statement produces an expression describing the con- 1:  void foo(int a,char *s){

straint between the program variables involved in the state char buf[10];

ment. To distinguish it from the program constraint (PC), if(a>0)

we call such expression th&ogram constraint conjunc- strepy(buf, s);

tion (PCC). PCC may get updated during program execu-

tion. The program constraint at any given point in the trace Figure 1. A sample program

can be expressed as the conjunction of all current PCCs.
Security constraints: Producing security constraints

requires clearly-defined high-level security requirersgnt

e.g., the length of the string copied to a buffer must not ex-

ceed the capacity of the buffer. A wide range of security buffer using functiorst r opy must not exceed the capac-

vulnerabilities like buffer overflow, SQL injection, andrfo ity of the buffer. Furthermore, we assume that both argu-

mat string, are caused by improper uses of operations such . ;
/ ments are user inputs, meaning they can be any values that
asstrcpy, sql . exec, andprintf. Correct uses of

. . ; are not known in advance. Now, consider a test case that
such operations can be expressed as security requirements

which can then be used to generate security constraintsmc.IUdes the calf oo(x, y) with X?l andy="test".
. ; . This test case generates an execution t(dce?, 3, 4) of
For example, a security requirement firr cpy will be

“the length of the second argument must not exceed the Ca§tatement numbers. Although this test case does not trigger

pacity of the first argumeht If the trace includes a state- any security pro_blem, we wil der_n_on_strate that our method
: . X can effectively find the vulnerability in the trace. Table 2
mentst r cpy( a, b) , wherea is a buffer and is a string, . . X .
K L shows the result of symbolically executing this execution
we produce a security constraiat: space>b. stri en, trace. The first column indicates the statement number, and
wherea. space is the capacity of buffest andb. strl en ) ’

is the length of strindp. We use first-order logic to express the secc_)nd and third CO'UT"”S give the program and security
: : constraints at the respective statements.
security constraints.

aRwen

An example: Figure 1 shows a sample program, which
copies the second argumeninto a buffer, if the first ar-
gument is greater than 0. Assume that there is only one
security requirement, i.e., the length of a string copied to

. — _ . Line# | Program Constraint Security Constraint

security-critical func. security requirement 1 (MIN < a< MAX) A
strcpy(dst,src) dst.spacesrc.strlen (s_strEm 0) TRUE
strncpy(dst,src,n) (dst.space> n) A (n > 0) > (MINl< a< K/IAX) A
strcat(dst,src) dst.spacedst.strlen + src.strlen (s;trﬁm 0) TRUE
getcwd(buf,size) (buf.space> size)A (size> 0) 3 (O<Ia< M;\X) x
fgets(dst,size,f) (dst.space> size)A (size> 0) (s strler> 0) TRUE
scanf(format, ...) # formats = # parameters-1 : —=

: _ 4 (0<a< MAX) A
printf(format, ...) # formats = # parameters-1 (s.strlen 0) s.strlerc10

Table 1. Security requirements for library ] ,
function calls. “x.space” is the size of the Table 2. Program and security constraints for

memory allocated to x and “x.strlen” is the the execution trace (1,2, 3,4) .
string length of x. As shown in the table, the PC at statement 1 is
(MIN <a<MAX) A(s. strl en> 0), where[MIN, MAX ]

SecTAC can detect the violation of a security require- defines the range of an integer number, which is usually
ment as long as such requirement can be expressed as machine dependent, ared strl en is a symbolic value
condition that program variables must satisfy. In the cur- denoting the length of string. This is because botnands
rent implementation, we support two kinds of security re- are user inputs, i.eq can be any integer value asctan be
guirementspointer addition requiremen@ndfunction pa- any string. The security constraint at statement 1 is TRUE
rameter requirementsThe former is derived from a useful  since the statement does not include any operation that may
observation made in [15], i.e., the result of a pointer addi- violate any security requirement. More specifically, it soe
tion must point to the same original object. The latter is not include a call to thet r cpy function. Statement 2 is
generated fronsecurity-critical library functionsi.e., the a declaration statement of a buffer; it sets the space of the
library functions whose parameters must satisfy a conditio buffer to 10. We do not include this in the program con-
to ensure the security of a software system. For example straint. Instead, we directly update tepace field of the



buffer, i.e.,buf . space=10, for simplicity. ysis as indicated in Figure 2. In preprocessing, we gen-
Statement 3 is a condition statement and the testerate execution traces from existing test cases and prepare
case exercises the TRUE branch, which implies thatthe symbol table for tracking the state of program varigbles
a > 0 must be TRUE. Thus, the program constraint in symbolic execution, we analyze every execution trace to
changes from (MIN< a<MAX)A(s.strlen>0) to extract the program and security constraints at each point i
(0<a<MAX)A(s. st rl en>0),as shown in the third line  the trace; and in satisfiability analysis, we find inputs that
of the table. A security constraint is produced at state- can detect security vulnerabilities.
ment 4, as shown in the fourth line of the table. The rea- Preprocessing: In this step, we first use theansformer
son is that functiorst r cpy is associated with a secu- to transform the source program into three-address code to
rity requirement, i.e., the string length of the second ar- simply the analysis. To obtain execution traces, ittstru-
gument must be less than the space allocated to the firstnenterparses and inserts the trace-logging code into this
argument. As a result, we produce a security constraint:transformed program. This transformed, instrumented pro-
s. strl en<buf. space. Sincebuf.space=10, we gram is compiled and then executed by ginegram execu-
haves. st rl en<10. tor using all test cases. The trace-logging code generates an
A security vulnerability exists at a given point if an as- execution trace for each test case.
signment of values to variables satisfies PC but violates The symbol-table buildeconstructs asymbol tablefor
SC, i.e.,, PCA— SC is satisfiable. At statement 4, we all program variables for effectively tracking the program
check the satisfiability of PG— SC, i.e., 0<a< MAX) A constraints on them. In addition to the size and type infor-
(s.strlen>0)A—(s. strl en<10). We use atheorem mation, each program variable is also associated with addi-
prover and find thaa=1 ands="012345678910" satis- tional attributes. For example, for a pointer that pointe in
fies PC\— SC. Thus a test case can be generated to uncoven buffer, we introduce two attributes to traakich buffer

the vulnerability. and which position in the buffer it points inso that we can
. test the out-of-bounds buffer access.
3 SecTAC Design Symbolic execution: We use thesymbolic executor

The goal ofSec TAC is to detect security vulnerabilities  to symbolically execute the trace to capture program con-
in a program. As discusse&ecTAC reuses existing test  straints and check the pattern of each executed statement
cases for achieving high coverage and reducing testing ef-against the security requirements. Whenever a security re-
fort. Specifically, we extract the execution trace of the-pro quirement applies, e.g., a security-critical functiorl cala
gram under each test case and then analyze each executigpointer addition statement is exercised, we generate a secu
trace to determine whether it contains a security vulnérabi rity constraint corresponding to such security requireimen

ity. Figure 2 shows the workflow dec TAC. The program and security constraints are predicates on the
ettt ittt b b bbb \ symbolic values of program variables and their attributes.
] . . age . .
Ul | Transformer | [<—  Source 'j i Satisfiability analysis: For each statement in the trace
g | 7 Loy ! that generates a security constraint (SC), we get the pro-
ég i Transformed | [ mtrumented : gram constraint (PC) at that statement _an_d usatias_ﬁe_\—
R Program __| | | 'mstrumenter Program ' bility checkerto check if PCA— SC is satisfiable. If it is,
= ! i a security vulnerability is detected. The solution given by
' | | SymbolTable Test Case;j.é Program [ the satisfiability checker is then used to generate test data
H Builder Executor '
\

to uncover the vulnerability. We express both program and

------------------------------------- security constraints using the SMT-LIB format [19] and use

i R Security | | the Yices SMT-solver [7] as the satisfiability checker.
H equirements : )

i ! 4 SecTAC Implementation

| ]

| |

Symbol Symboli Execution . . . . .

Table }" Executor | [ Traces In this section, we describe the implementation of
\_/_— . . . .

SecTACin detail based on the workflow in Figure 2.

Step 2
Symbolic Execution

4.1 Step 1: Preprocessing

o | \
B 1
= P isfiabili Securit ' . . .
2| Conswants Satshabily | le comstraints | The main tasks of preprocessing are g&perating exe-
- . .
22 | ! cution tracesand (2)constructing the symbol table
g Y Find the solution and ! ; ;
z generate a test case | 4.1.1 Generating Exec_utlon Traces _
60 >~ In Sec TAC, the program is transformed by CIL [18], instru-

. mented by the Java parser generdtavaCC, and executed
Figure 2. SecTACWorkflow under each test case to produce the corresponding execution
SecTAC performs security testing through three steps, trace. An execution trace was previously defined in Section
preprocessingsymbolic executignandsatisfiability anal- 2 as a sequence of source code statements exercised by a



test case. This definition facilitates the understandirntgef  track these variable§ec TAC also constructs & oball
basic ideas of our approach. However, our implementationclass and dile-scopeclass for each file, and puts the vari-
generates execution traces consisting of sequences of exables in these classes accordingly.
pressions and special marks. Expressions are either assign Pointer dependency:lt is possible that several pointer-
ment statements or library function calls. Special marks ar type variables are declared and point to the same array.
used to indicate: (1) function call entry and exit, (2) con- For example, we can declaretfar p[ 10] " and define
ditional branching, (3) parameter passing, and (4) retgrni  a pointer ‘thar *q=p+5”in a C program. We know that
of values to variables from function calls. both pointergp andq point into the same array. The only
Note that declaration statements are not included in ex-difference is thafp points to the beginning of the array,
ecution traces since they are not “executed” by test caseswhile g points to the sixth element of the array. The pointer
However, they contain important information about tyyee objects are said to brelatedor dependenif they pointinto
andsizeof program variablesSec TAChandles declaration  the same array. Hencp,andq are related. We notice that
statements in the symbol-table builder. the operation on a given pointer object may impact its re-
4.1.2 Constructing the Symbol Table lated pointer objects. Fo_r example, if we copy a string of
The symbol table is used to track the state of program vari-!€ngth 6 top, then the string lengths @f andq become 6
ables; it includes information about all program variables and 1, respectively. If we immediately copy another string
and user-defined functions in the trace. Specifically, the Of length 4 toqg, then the string lengths gf andg become
symbol-table builder parses the program and creatiega 9 and 4, respectively. . _ _
objectfor each program variable andfanction objectfor To correctly analyze the impact of pointer operations
each user-defined function. These objects include variousOn related pointer objects, théPoi nter class also in-
attributes to track the state of program variables. Next we cludes ast art field and aspace field. A pointer object
describe the creation of the objects and discuss feature$/S€sst art to record its starting position in the array, and
added to addregminter dependency space to record the size of the space from its starting po-
Data objects: The symbol-table builder createsiata sition to th_e end of the array. T_hus, we can determine how
classfor every program variable type. A data class in- the operation on one pointer object can impact others. From
cludes the size and type information as well as some otherth€ previous example, we know that titear t fields of the
attributes about the data type it represents; an objecif th objects forp andq are 0 and 5, respectively. If a string of
class is created for each program variable of this data typelength 6 is copied tp, then we immediately know thatis
We have a pre-defined class for each primitive type or prim- impacted and its string length should be 1.
itive type with qualifiers. For example, we use clasises Object locating: Object locating addresses how to de-
andBChar act er for integers and characters declared in termine the target object(s) of a program statement. For
the program, respectively. For each composite type, we cre-€xample, for statement =j . i d; ", we need to locate the
ate a class using its type name. We also have a pre-define@bjects created for variable and the memberd of the
classPoi nt er for pointers, arrays, and buffers. All the Structurej . As discussed before, each function class pro-
above data classes are extended from a contrasa class ~ Vides amethodet Cbj ect to locate the object created for
BaseType that defines common attributes such as name, Variables in its scope given a name. However, when a mem-
type, and symbolic value. It also includeg gpesi ze ber of a composite type variable, e.p.,i d in the above
field to record the size of the memory allocated to the vari- €xample, is referenced, we need to further locatentben-
able. For example, theypesi ze field of anl nt object ber objectrepresenting the member of this variable. Every
is 4 in a 32-bit computer. class created for a composite type variable (e.g., struator
Function objects: Sec TACalso creates a class for each ay) has amethoget Obj ect to locate the member object
user-defined function to facilitate the trace analysis, i.e 9iven anameor anoffset
help locate objects in the scope of any user-defined function 4,2 Step 2: Symbolic Execution
For every function clask, we create objects for the param- )
eters to the corresponding function and the local variables Once we have the execution trace and the symbol table,
declared in this function. These objects are the members ofVe Start to analyze the execution trace statement by state-
this function clas$ . Other statements in the function body Ment to capture the program and security constraints using

are not included in clads. symbolic execution (symbolic value propagation).
All function classes are extended from a common ab- 4.2.1 Producing Program and Security Constraints
stract base clagsunct i on that includes aget Obj ect The program constraint will be initialized when we are

method, which can be used to locate the object representbuilding the symbol table. Specifically, when we create
ing a local variable or function parameter in the scope of a an object for a program variable, we produce a program
user-defined function given a name. constraint conjunction according to the variable deciamat

In C programs, the global variables or static variables de- information. For example, statemenitrit i ;" leads to
clared in the file scope are not included in any function. To the creation of anl nt type objecti . Thus, we produce



a program constraint conjunction (MINi . sym< MAX), and right expressions, and updates the object attributes fo
wherei . symis the symbolic value df. The programcon-  the involved variables; (4) if it is a conditional statement
straint will also be updated when a statement in the trace isSec TAC produces a program constraint conjunction that
symbolically executed. captures which branch is exercised; (5) if itis a librarydun
tion call, Sec TAC processes as follows. If the function is
in the right part of an assignment statement, a new object
is created according to its return type. If the function fur-
ther limits its return value to a smaller range comparedsto it
type, the program constraint on this object is updated ef th
function also has side-effects, the attributes of the wvedl
e If it is a branch statement, we update the program con- gbjects are updated accordingly, and the program constrain
straint based on which branch is exercised. For example js also updated as needed. If the function is also a security-
a conditional expression@r ue i>j " indicates that critical function, a security constraint is generated.
the TRUE branch is exercised. Thi&c TAC generates Symbolic Execution on Expressions: A critical part
a program constraint conjunction.(syn®j . sym). of symbolic execution is the symbolic execution on expres-
o If the statement calls a library function, we need to up- sions. The symbolic execution procedure on a given ex-
date the program constraint according to its semantics. Ifpressiore works as follows: (1) ife is a constant number
the return value of the library function is assigned to a or character, a new object of the class for such data type is
variable, we generate a program constraint conjunctioncreated, and its symbolic value is set to this constant yalue
according to this return type. Since some library func- (2) if it is a constant string, &oi nt er object is created,
tions have constraints on their return values, a programand itsst r | en field is set to be the length of this constant
constraint conjunction that further restricts the range of string; (3) if it is a variable, we will locate the correspend
the returned value is produced. For example, the returning object and return it; (4) if it isv, we locate the object
value off open is always greater than or equal to -1, corresponding ta and return the object specified by the
which is different from the default range of its return poi nt _t o field of this pointer object; (5) if it ist-v, we
type. In addition, some library functions have side-effect locate the object correspondingi@nd create &oi nt er
on their parameters. Some side-effects can be consid-object. We then set theoi nt _t o field of the newly cre-
ered as equivalent to updating the object attributes, e.g.,ated object to the object corresponding1d6) if it is v.m,
for strcpy(dst, src), thestrlen field (a sym- we locate the object af, then return its member object with
bolic value that denotes the string length) of thet the namem; (7) if it is e; op e2, we recursively perform
object is updated to that of tter ¢ object. Some side-  symbolic execution on expressiosisande,. Based on the
effects, however, impose constraints on the involved pa-types of the returned objects, we take different action; (8
rameters. For example, after calliggt cwd( buf , n), if it is a library function call, we handle it in the same way
thestr| en of buf isless tham if the length of the cur-  as we handle library function calls.
rent path is less tham, and unchanged otherwise. Inthis  Sec TACgenerates a security constraint for every pointer
case, we also generate a program constraint conjunctionaddition to check whether the result still points to the same
original object. We thus take special care of the addition be
tween aPoi nt er objectp and anl nt objecti as follows:

e If it is an assignment statement, the attributes of the ob-
ject for the right part determines the attributes of the ob-
ject for the left part. In this case, we directly update the
attributes of the left object instead of updating the pro-
gram constraint.

A program statement in the execution trace is said to be
security criticalif it may violate a security requirement. In
the current implementation @ecTAC, any statement in-
volving either a security-critical function or a pointer-ad
dition is a security-critical statemen&ec TAC produces a
security constraint, i.e., a first order logic expressidmeyva
ery security-critical statement.

e If p points to a buffer, we create a neRoi nt er
objectobj and set itsspace, start, andstrl en
fields based orp andi. Specifically,obj . space
and obj . start are set top. space-i.sym and
p. start +i . symrespectivelyobj . strl enis set to

4.2.2 Algorithm for Symbolic Executor the following conditional expression:

We now describe the detail of tigec TAC symbolic ex- ((p.strlen>i.sym (p.strlen-i.sym newsym)

ecutor. We first create stackto keep track of the current

function object, i.e., the active function object in usejaeth

is always the one at the top of the stackec TAC then

processes each statement in the trace according to the fol-

lowing rules: (1) if it is a function entrySec TAC creates

a new object of this function class and pushes the object

into the stack; (2) if it is a function returigec TAC pops o If p points to a composite type object, e.g. array or struct,

an object from the stack; (3) If it is an assignment state- then we need to find a member object inside this com-
ment, Sec TAC performs symbolic execution on the left posite object through offsét. In this case, we use the

This expression indicates thabj . strl en is set to
p.strlen-i.symif p.strlen>i.symandanew
symbolnewsymotherwise. A program constraint con-
junction is also produced for the new symbawsym
i.e.,newsym> 0. Finally, objectobj is returned.



get Obj ect (i ) method in objecp. poi nt _t otolo-
cate and return the object.

o If p points to neither a buffer nor a composite type data,
then it is a pointer arithmetic. In this case, a new object
will be created in a similar way as the first case. The only
difference here is that thet r | en field need not be set.

Pointer analysis : We will discuss how we address the

pointer dependency problem mentioned in Section 4.1.2.

Specifically, when we create an object for a buffer, we also
include a number of links in this object through which we
can locate alPoi nt er objects that operate on this buffer.
Let us consider a particular pointer that points into a
buffer. When we update the object for this pointer, we will
need to find the object for the original buffer this pointer
points into and locate aloi nt er objects that operate on
this buffer. Letq be aPoi nt er object we find. We first
checkp. st art andq. st art to decide their relative po-
sitions in the buffer. There are two cases:

e If g's position in the buffer is before that qf's, we
compargy. st rl en with the distance between them. If
g. strl enislarger than the distance, we have to update

g. strl en accordingly.

If g's position in the buffer is aftep’s, we compare

p. st rl en with the distance between their positions. If
p. strl enislarger than the distance, we have to update
g. strl en accordingly.

4.3 Step 3: Satisfiability Analysis

Finally, the program and security constraints are ex-
pressed in SMT-LIB [19] format, which is recognized by
many SMT solvers. We use the SMT solver Yices [7] to
check the satisfiability of PG— SC for each SC and the PC

requirements, (2) an execution path that can trigger such se
curity problem is exercised by one of the test cases, (3) the
program and security constraints are derived correctly, an
(4) the theorem prover for satisfiability analysis can cor-
rectly find a solution if PCA— SC is satisfiable. In other
words, there will be false negatives if one of the above three
conditions is false. For example, if we derive constraimts o
library functions from documentation, there might be false
negatives due to the inconsistency between the documen-
tation and the actual implementation. We can use LFI to
check such consistency [17]. SimilarecTAC will gen-
erate a false positive if (1) the theorem prover returns a so-
lution when PCA— SC is not satisfiable or (2) the program
and security constraints are extracted incorrectly. Ineour
periments, we did not find any false positive.

5 Experiments

To evaluate the effectiveness of our approach, we applied
Sec TACon 14 benchmark programs [28], two open source
http server programsyul | htt pd- 0. 5. 1 andl ancer,
and an open source ftp server progrbafit pd- 2. 3. We
used their latest versions in our experiment. The bench-
mark programs represent various kinds of memory corrup-
tion vulnerabilities in certain versions of tl&nd, Send-
mail, andWu-ftp programs. They have been used to evalu-
ate the effectiveness of many buffer overflow detectiongool
[28, 27, 26]. For each of these programs, there is a buggy
version and a fixed version. We used the buggy version in
our experiment. Our results show tiggc TAC can detect
every reported vulnerability as long as the vulnerability e
ists in the traces. In additioBec TACalso detected six vul-
nerabilities in the benchmark programs, four vulnerabait
in nul | htt pd- 0. 5. 1, four vulnerabilities inl ancer ,

at the same point in the trace. Note that the PC at a given@nd one vulnerability irbf t pd- 2. 3 that, to the best of

point in the trace may include a huge number of conjunc-
tions. In this case, checking the satisfiability of RE& SC

our knowledge, have not been reported previously. Next,
we will report our findings in detail.

could be very expensive_ However’ we note that a lot of PC Table 3 summarizes our eXpeI‘imental results. The first

conjunctions are actually irrelevant to SC since they only
involves variable symbols that do not impact SC. Remov-
ing these irrelevant conjunctions will not change the resul
of satisfiability analysis. We thus use orfBC-dependent

14 rows show the result of evaluatir8gc TAC on the 14
benchmark programs [28]. As shown in the last column of
the table, we found new vulnerabilities in Bind 4, Sendmail
1, Sendmail 3, Wu-ftp 2, Wu-ftp Jyul | ht t pd- 0. 5. 1,

PC conjunctions to save the cost. Two conjunctions are said ancer , andbf t pd2. 3 programs.

to bedirectly relatedif they include at least one common
variable symbol. Then, starting from an emtywe first
identify all PC conjunctions that are directly related to SC
and put them ir. We thernrepeatediycheck every PC con-
junction and add it intc'if it is SC-dependent, i.e., directly
related to at least one conjunctionin We stop when there
are no more SC-dependent PC conjunctions. LéteGhe
conjunction of all conjunctions if. We only need to check
the satisfiability of PCA— SC instead of PG\— SC.

4.4 False Negatives and Positives

SecTACcan detect a security vulnerability in a program
if (1) the vulnerability is modeled by one of the security

Test inputs: For each buggy benchmark program ver-
sion, a specific input file or hard-coded assignment to vari-
ables is provided in [28] as the test data to trigger the vul-
nerability. However, a major merit dbec TAC is that it
can detect vulnerabilities under test cases from functiona
testing that do not trigger vulnerability. Hence, in our ex-
perimentswhenever it is possible, we construct test inputs
that exercise paths containing the reported vulneraletiti
but do not trigger themOnly when it is impossible to find a
test case exercising the known vulnerable path without trig
gering the vulnerability, do we use the test input provided i
[28]. For the sake of presentation, we call a test casenal
if it does not trigger any vulnerability. We call the testeas



Program LOC Input LOT Time(mm:ss)| #KnownBugs | #FoundBugs| #FP Remark
Bind 1 1116 | www.cnn.com 539 00:01 1 1 0
Bind 2 1306 cnn.com 1117 00:01 1 1 0
Bind 3 380 default 365 00:01 1 1 0
Bind 4 645 | www.nbc.com; 162 00:01 1 2 0 1 new bug
WWW.CNn.com
Sendmail 1 537 default 6207 00:02 6(5)* 6 0 1 new bug
Sendmail 2 791 default 5509 00:03 1 1 0
Sendmail 3 416 default 2534 00:03 1 2 0 1 new bug
Sendmail 4 485 default 1379 00:03 4 4 0
Sendmail 5 622 default 6669 00:03 3 3 0
Sendmail 6 390 default 129 00:01 1 1 0
Sendmail 7 929 default 2145 00:03 2 2 0
Wu-ftp 1 503 ltmp/aa 79 00:01 4 4 0
Wu-ftp 2 744 /tmpl/test.c 106 00:01 1 2 0 1 new bug
Wu-ftp 3 689 ltmp/aa 399 00:01 6 8 0 2 new bugs
nullhttpd-0.5.1 | 2328 50 test cases | 12447 08:07 1 3 0 2 new bug
lancer 4261 50 test cases | 118657 49:18 0 4 0 4 new bugs
bftpd-2.3 5766 10 test cases | 65027 11:42 0 1 0 1 new bug
* According to the BAD marks in the program, there are 6 bugh@trace. However, we found that one of them is not a bug.
Table 3. Experimental Results. “LOC” represents the number of lines of the code; “Input” represents
the program input we use; “LOT” represents the number of line s in the execution trace exercised by
the test case; “Time” represents the time that our tool used,; “#KnownBugs” is the number of previ-
ously reported vulnerabilities in the execution trace; “ #FoundBugs” is the number of vulnerabilities

found by SecTAC; and “ #FP” is the number of false positives.

provided in [28]defaultin the table. a test case can actually trigger the vulnerability. In other
For http server programs, we randomly generate 50 nor-words, the execution trace under a normal test case does not

mal http requests. For the ftp server program, we manuallycontain the vulnerability. Thus, we use test cases provided

generate 10 test cases that include basic ftp commands suchy the benchmark programs in our experiments.

as “Is”, “get”, and “put”. We use the GCC bounds check- The test input to each Wu-ftp program is a string that

ing extension to monitor the program execution. These testrepresents a path. For the Wu-ftp 1 program, the original

cases do not trigger any out-of-bounds operation. Next wetest case in [28] is /tmp/” followed by 24 'a’'s. This is

describe the test input to every benchmark program testeccarefully designed to trigger the buffer overflow caused by

in the experiment. st r cpy. For the Wu-ftp 2 program, the original test case
In the Bind 1 program, buffer overflow occurs when a is also a specific complex path with 9 subdirectories, which
negative value is passed as the third argumenteofc py. triggers the vulnerability caused Isy r cat . For the Wu-

In [28], a constant stringsis.lcs.mit.edu” is hard-coded  ftp 3 program, the length of the input path is made more
as the second argument sf r cpy to achieve this. We  than 47 to trigger the vulnerability caused ®yr cpy. In
use ‘www.cnn.com” instead as the normal test data under our experiments, we use normal test inputs. Specificalty, fo
which the program runs normally, aig#c TAC can detect ~ Wu-ftp 1 and Wu-ftp 3, we use a normal inpyttinp/aa”
this vulnerability. Similarly, for the Bind 2 program, we that does not trigger the vulnerability. For Wu-ftp 2, we
use string &nn.com” as the normal test input instead of the use “/tmp/test.c”, which is the path of an existing file and
original hard-coded inputsis.lcs.mit.edu” that crashes  does not trigger the vulnerability.
the program. The Bind 3 program does not check the buffer  Performance: We did the experiments on a 2GHz Core
space when callingentpy. The provided test case is a 2 Desktop running Ubuntu-8.10 Linux operating system.
file s3. i n whose content is “9283721". However, we no- We let the Java use a maximum of 1G heap memory dur-
tice that as long as its content is not “0”, the vulnerability ing our experiments. The fifth column of Table 3 shows the
always occurs. Thus we just use the original test case. Theexecution time oSec TAC for analyzing all traces for each
Bind 4 program usespri ntf without boundary check-  program. The execution time is the sum of the times needed
ing. A string of 1072 bytes long is provided in [28] as the for trace-based symbolic execution and satisfiability ynal
input to trigger the vulnerability. We do not use this input; sis, which increases nearly linearly with the trace sizeuin o
instead, we use a normal test input as given in Table 3. experiments. We can see tt&c TAC can quickly analyze
Most of the vulnerabilities in the Sendmail programs are C programs for vulnerability.
caused by out-of-bounds pointer operations. These opera- New vulnerabilities: In addition to the known bugs,
tions are usually in a loop where the pointer is increased Sec TAC also detected six new vulnerabilities in the 14
by 1 for each iteration. As a result, in the execution trace, benchmark programs as shown in Table 4. Test cases
the out-of-bounds operation of a pointer only occurs when that trigger these vulnerabilities can be directly derived



Program | Test Input that Triggers the New Vulnerability Location of the New Vulnerability Remarks
Bind 4 WwWw.cnn.com; www.nbc.com ns-lookup-bad.c:277 nspout-of-bound
Sendmail 1 default crackaddr-bad.c:460 buflim out-of-bound
Sendmail 3 default mimel-bad.c:212 infile out-of-bound
Wu-ftp 2 a 200 bytes long string for argv[1] call_fb_realpath.c:94 strcpybuffer overflow
Wu-ftp 3 /a...a (48 a’s)/aa realpath-2.4.2-bad.c:269 whereout-of-bound
Wu-ftp 3 /a...a (48 a’s)/aa realpath-2.4.2-bad.c:257 strcpybuffer overflow

Table 4. New Vulnerabilities in the benchmark programs

from the solutions given by the satisfiability checker Yices previous test effort. In addition, DART and CUTE over-
[7] in SecTAC. Notably, we detected a vulnerability in look useful information about variables and functions such
code that was previously considered to be safe. The au-as pointer dependency and function return type. SPLAT
thors of [28] explicity commented the line 257 of file [26] improves DART by introducing a length attribute in
real pat h- 2. 4. 2- bad. c in the Wu-ftp 3 program as  each buffer. It also represents a fixed-length prefix of the
a safe call. However, our experiment shows that it is not. buffer elements symbolically. Other buffer elements are
As shown in Table 4, when the length of a directory name is represented using concrete values during execution. The
long enough, thet r cpy function at line 257 will overflow  limitation is that when the program visits a buffer element
the destination buffer whose size is only 46 bytes. beyond the prefix, their symbolic execution becoroes-
Fornul | htt pd- 0. 5. 1, SecTAC found three buffer  crete Sec TACgenerates new objects only when a buffer el-
overflow vulnerabilities at line 143 of file “http.c”. The at- ement s visited, which improves the precision and reduces
tacker can overflow three different buffers in this line of the cost. EXE [6] and KLEE [4] were developed to achieve
code. In addition, it also found a new vulnerability at line high branch coverage. They can detect memory overflow

58 of file “config.c”, where the program ussspri nt f vulnerabilities. SAGE [12] also employs trace-based sym-
to copy a string variableonfi g. server _base dir bolic execution with satisfiability analysis. However, SBG
and a constant string/®in” to bufferser ver _bi n_di r. works on the binary level; a lot of useful information in the
However, the space allocated s®rver _bin_dir is source code is no longer available for analysis.

255. Ifthe stringlength ofonf i g. server _base dir 7 Limitations and Suaqaestions
is 255, the buffer is not null terminated and the strifigi.” 99

cannot be copied to the buffer, causing a configuration error
Lines 59 to 61 in the same file have the same vulnerability.
For thel ancer programSec TACfound four buffer over-

flow problems in “handler.c” and “host.c”. These problems
have the same pattern: the author declared a buffer with th
size ofn, and usedst r ncpy to copy at mosh- 1 non-

zero characters to the buffer. However, the value at pasitio
n- 1, which does not belong to this buffer, could be a non-

SecTAC has a number of limitations. First, we must
have the test cases ready before doing the security testing.
The effectiveness dec TAC depends on the completeness
of the existing test cases. In fact, the branch coverageeof th
dest cases determines the number of paths that our method
can check. Second, the size of an execution trace for large
complex programs may be huge. Analyzing a large execu-
tion trace can cause many problems. For example, it may be

zero value. Thus, it is possible that the string in the buffer the case th‘f"t alarge number of statements in th? trace gen-
not properly null-terminated, which may cause buffer over- erate security constraints. As a res$£,cTACmay invoke

flow. For thebf t pd- 2. 3 programSec TAC detected that the_SMT _solve_r very frequently, Wh'C_h can slow down se-
the buffer ‘bu_host” (whose content is from an external in- curity te;stmg significantly. We_plan to Imp roﬁecTAC_by

put) may be not properly null-terminated. We have reported Managing program and security constraints more efficiently

this vulnerability to the author of the program and a new €.g., by using BDDs [2, 3].
version was subsequently released to fix this bug. 8 Conclusion and Future Work

In this paper, we proposed an approach for testing the

6 Related Work security of C programs using trace-based symbolic execu-

The method in [14] detects buffer overflow using exist- tion and satisfiability analysis. We developed a tool named
ing test cases. They do not perform symbolic analysis andSec TAC to demonstrate the effectiveness of our approach.
ignore branch conditions, causing many false alarms. TheWe evaluated this tool on 14 benchmark programs and 3
predictive testing in [16] inserts assertions into the seur open source programs. The result shows that our tool
program and uses a combination of concrete and symbolicquickly identified every reported vulnerability in the tesc
execution on the given test inputs to discover assertion vi-and also found 13 new vulnerabilities. In conclusion, our
olations. DART [11, 10] and CUTE [22] can automatically tool is effective and efficient in testing the security of cur
generate test cases. However, they use concrete values faent software systems.
complex constraints that they cannot handle. They may We are interested in the following directions. First, al-
miss many paths that are covered by the test cases carefullthough our approach can handle multi-threaded programs
designed in traditional testingec TAC takes advantage of as long as the test cases are available, it only analyzes a



specific combination of the traces generated by different [14] E. Haugh and M. Bishop. Testing C programs for buffer
threads. We propose to identify the trace for each thread and
seek effective ways to combine them to improve the detec-
tion of security vulnerabilities in multi-threaded progrs.
Second, we will also seek solutions to further improve the [15]
efficiency of SecTAC and conduct more experiments on
large and complex programs to evaluate our approach.
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