
Detecting Vulnerabilities in C Programs Using Trace-BasedTesting

Dazhi Zhang, Donggang Liu, Yu Lei, David Kung, Christoph Csallner, and Wenhua Wang
Department of Computer Science and Engineering

The University of Texas at Arlington

Abstract

Security testing has gained significant attention recently
due to frequent attacks against software systems. This paper
presents atrace-based security testingapproach. It reuses
test cases generated from previous testing methods to pro-
duceexecution traces. An execution trace is a sequence of
program statements exercised by a test case. Each trace is
symbolically executed to produceprogram constraintsand
security constraints. A program constraint is a constraint
imposed by program logic on program variables. A se-
curity constraint is a condition on program variables that
must be satisfied to ensure system security. A security flaw
exists if there is an assignment of values to program vari-
ables that satisfies the program constraint but violates the
security constraint. This approach detects security flaws
even if existing test cases do not trigger them. The nov-
elty of this method is a test model thatunifies program con-
straints and security constraintssuch that formal reason-
ing can be applied to detect vulnerabilities. A tool named
SecTAC is implemented and applied to 14 benchmark pro-
grams and 3 open-source programs. The experiment shows
that SecTAC quickly detects all reported vulnerabilities
and 13 new ones that have not been detected before.

1 Introduction
Software security has gained significant attention in re-

cent years due to the huge number of security attacks that
exploit vulnerabilities in software.Security testingis be-
coming an active area of research, aiming at identifying
software vulnerabilities effectively. Recently, many ap-
proaches have been proposed to detect vulnerabilities in
programs [25, 14, 11, 5, 22, 1, 20, 6, 23, 4, 10, 12, 26].

Static analysishas been used to scan source code for er-
rors that crash a system or cause security problems [24, 25].
These static analysis tools use heuristics to determine if a
security problem could occur; they usually approximate or
even ignore runtime dynamics such as branch conditions
and how buffer elements are visited. Thus, they are often
imprecise, causing many false alarms.

Dynamic analysisexamines program execution to detect
security problems [13, 8, 9, 1, 20, 23]. These tools feed
test data to a program and monitor its runtime behavior. A

security vulnerability is detected if the behavior is consid-
ered abnormal, e.g., the program accessed a buffer outside
its bounds. Although dynamic analysis reduces false alarm
rates, it requires test inputs that actually cause securityprob-
lems. This places a huge burden on testers.

Dynamic symbolic execution, also calledconcolic test-
ing, is often used in automatic test data generation for find-
ing errors that crash a system or cause security problems
[11, 22, 21, 6, 4, 10, 12, 26]. These tools perform concrete
and symbolic execution of a program simultaneously to ex-
plore as many paths as possible. They do not need inputs
that can actually cause security problems. However, they
are either ineffective in the sense that unguided path explo-
ration may not cover important vulnerabilities, or do not
scale well to large and complex programs.

In this paper, we propose a novel security testing ap-
proach usingtrace-based symbolic executionandsatisfia-
bility analysis. Trace-based symbolic execution avoids the
search space explosion of conventional symbolic execution.
In our approach, each existing test case is used to generate
an execution trace, i.e., the sequence of exercised program
statements. Symbolic execution is then applied to produce
two kinds of predicates. The first predicate is called apro-
gram constraint(PC), which specifies a condition that pro-
gram variables must satisfy after the execution of the state-
ment. The second predicate is called asecurity constraint
(SC), which specifies the condition that program variables
must satisfy to ensure the security of the given program ex-
ecution. A security vulnerability is detected if there is an
assignment of values to program variables satisfies PC but
violates SC, i.e., PC∧¬ SC is satisfiable.

The advantages of our approach are as follows. First, As
opposed to previous approaches, we can guide our search
to focus on those features of the user program that are most
important to the user–as indicated by the developers’ will-
ingness to write test cases for them. Our approach can de-
tect security flaws even if these existing test cases do not
trigger them. In other words, our technique can generate
new inputs that trigger security problems, even if the user-
supplied inputs do not. Second, we propose a test model
that unifies program constraints and security constraints us-
ing logical expressions so that formal reasoning can be per-
formed to detect security vulnerabilities. Hence, our ap-

proach can handle new types of vulnerabilities by simply
formulating new security requirements for them. Third,
trace-based symbolic execution also makes it possible to
test programs for vulnerability in parallel. This is because
analyses on different execution traces are independent from
each other. We can partition the test cases into a number of
disjoint subsets and analyze these subsets in parallel. This
cannot be directly achieved in dynamic symbolic execution
based approaches since test cases exercising different paths
are generated during path exploration. Certainly, tools like
DART [11] and CUTE [22] can be modified to reuse ex-
isting test cases and only test the paths exercised by these
test cases. However, in this case, they lose the benefit of
automatically exploring program paths.

To evaluate the effectiveness of our approach, we im-
plemented a tool namedSecTAC (A Security Testing
Approach for Cprograms) and applied it to 14 benchmark
programs given in [28] and 3 open source programs. The
benchmark programs were designed to evaluate buffer over-
flow detection tools by simulating historic real-world vul-
nerabilities in server programs. Compared with the results
in [28, 27, 26],SecTAC can detect every reported vul-
nerability as long as the vulnerability exists in the execu-
tion traces tested in our experiments. In addition,SecTAC
detected 6 previously unreported vulnerabilities in the 14
benchmark programs.SecTAC also detected 7 vulnerabil-
ities in the open-source programs that, to the best of our
knowledge, have not been reported previously.

The rest of this paper is organized as follows. In the
next section, we explain our basic ideas. In Section 3, we
overview theSecTAC design. In Section 4, we describe
theSecTAC implementation. In Section 5, we present the
experiment result. In Section 6, we review related work. We
discuss the limitations ofSecTAC in Section 7 and draw
some conclusions in Section 8.

2 Basic Ideas of Our Approach
Software systems must be tested to ensure that the re-

quired functionalities are correctly implemented. Unlike
conventional software testing, our goal is to detect security
vulnerabilities that exist in the software system. A program
is said to bevulnerableif there is an execution path that
can be exploited to compromise the security of the system.
To detect such security vulnerability, we rely on a set of
security requirementsthat must be satisfied by all execu-
tion paths of the program. An example of security require-
ments is that the length of the string copied to a buffer using
strcpy must not exceed the capacity of the buffer.

Testing for security vulnerabilities implies the generation
of test cases that can effectively detect violations of secu-
rity requirements. However, it is well known that effective
test case generation is both difficult and time-consuming.
Therefore, it is desirable to reuse the test cases that are al-
ready generated during conventional software testing. The
merit of this is twofold. First, these test cases typically ac-

complish some required coverage criteria such as branch
coverage. Second, the branches covered by the test cases
are deemed important by the developer. Our goal is to pro-
vide a security testing method for software developers who
have access to the source program and the test cases pro-
duced by traditional functional testing.

In our approach, we use existing test cases to generate
execution traces. Each execution trace is a sequence of
source code statements exercised by a test case. There are
no loops in execution traces since a loop in the original pro-
gram will be unfolded when it is exercised by a test case.
We then symbolically execute each execution trace to deter-
mine whether it contains a security vulnerability. Symbolic
execution of each trace produces two kinds of predicates.
The first predicate is theprogram constraint(PC), which is
updated during the symbolic execution of the trace; it spec-
ifies a condition that the program variables must satisfy. In
other words, the program constraint specifies the possible
values of variables at each point during the symbolic ex-
ecution of the trace. The second predicate is thesecurity
constraint(SC), which is produced at certain points during
the symbolic execution of the trace; it specifies a condition
that program variables must satisfy to ensure the security of
the software system. A security problem will occur when
the values of some variables violate the security constraint.
Testing C programs for vulnerabilities is therefore equiva-
lent to determining whether at each point in the trace, there
exists an assignment of values to program variables that sat-
isfies PC but violates SC.

Program constraints: The program constraint at a
given point in the trace is determined by the program
statements exercised to reach this point. These state-
ments include declaration statements, assignment state-
ments, branching statements, and library function calls;
they impact the values of variables as follows:

• A declaration statement contains important information
about thetypeandsizeof the declared program variable.
These two pieces of information determine the initial pro-
gram constraint on the variable. As an example, the de-
clared size of a buffer or an array constrains the space
available for holding data.

• An assignment statement constrains the value of its left
expression to the result of its right expression.

• A branching statement indicates that different execution
paths could be taken under different conditions. How-
ever, our execution trace is produced by running the pro-
gram under a real test case. We already know which ex-
ecution path is taken by the test case. Hence, we can im-
mediately determine a condition expression that specifies
a constraint between the involved variables. For example,
if statement “if(i>j)” exercises the FALSE branch,
we know thati≤j is a constraint betweeni andj.

• A library function call restricts the range of its return
value if it has one. For example, the return value of func-

tion open is always greater than or equal to -1. In addi-
tion, some library functions have side-effects (i.e., modi-
fying the states in addition to returning a value) that also
impose constraints on variables. For example, calling
functiongetcwd will change the content of the buffer
specified by the parameter.

According to the above rules, symbolically executing
each statement produces an expression describing the con-
straint between the program variables involved in the state-
ment. To distinguish it from the program constraint (PC),
we call such expression theprogram constraint conjunc-
tion (PCC). PCC may get updated during program execu-
tion. The program constraint at any given point in the trace
can be expressed as the conjunction of all current PCCs.

Security constraints: Producing security constraints
requires clearly-defined high-level security requirements,
e.g., the length of the string copied to a buffer must not ex-
ceed the capacity of the buffer. A wide range of security
vulnerabilities like buffer overflow, SQL injection, and for-
mat string, are caused by improper uses of operations such
asstrcpy, sql.exec, andprintf. Correct uses of
such operations can be expressed as security requirements,
which can then be used to generate security constraints.
For example, a security requirement forstrcpy will be
“ the length of the second argument must not exceed the ca-
pacity of the first argument”. If the trace includes a state-
mentstrcpy(a,b), wherea is a buffer andb is a string,
we produce a security constraint:a.space>b.strlen,
wherea.space is the capacity of buffera andb.strlen
is the length of stringb. We use first-order logic to express
security constraints.

security-critical func. security requirement
strcpy(dst,src) dst.space>src.strlen
strncpy(dst,src,n) (dst.space≥ n) ∧ (n≥ 0)
strcat(dst,src) dst.space>dst.strlen + src.strlen
getcwd(buf,size) (buf.space≥ size)∧ (size≥ 0)
fgets(dst,size,f) (dst.space≥ size)∧ (size≥ 0)
scanf(format, ...) # formats = # parameters-1
printf(format, ...) # formats = # parameters-1

Table 1. Security requirements for library
function calls. “x.space” is the size of the
memory allocated to x and “x.strlen” is the
string length of x.

SecTAC can detect the violation of a security require-
ment as long as such requirement can be expressed as a
condition that program variables must satisfy. In the cur-
rent implementation, we support two kinds of security re-
quirements:pointer addition requirementsandfunction pa-
rameter requirements. The former is derived from a useful
observation made in [15], i.e., the result of a pointer addi-
tion must point to the same original object. The latter is
generated fromsecurity-critical library functions, i.e., the
library functions whose parameters must satisfy a condition
to ensure the security of a software system. For example,

functionsstrcpy andprintf are both security-critical
library functions. We have selected 20+ library functions
that are well known to be “insecure” and formulated their
security requirements. Table 1 shows some of these func-
tions and their security requirements. Although these re-
quirements are written by hand, in practice we have found
it to be not too difficult for well-known functions.

1: void foo(int a,char *s){
2: char buf[10];
3: if(a>0)
4: strcpy(buf,s);
5: }

Figure 1. A sample program

An example: Figure 1 shows a sample program, which
copies the second arguments into a buffer, if the first ar-
gument is greater than 0. Assume that there is only one
security requirement, i.e., the length of a string copied toa
buffer using functionstrcpy must not exceed the capac-
ity of the buffer. Furthermore, we assume that both argu-
ments are user inputs, meaning they can be any values that
are not known in advance. Now, consider a test case that
includes the callfoo(x,y) with x=1 andy="test".
This test case generates an execution trace(1,2,3,4) of
statement numbers. Although this test case does not trigger
any security problem, we will demonstrate that our method
can effectively find the vulnerability in the trace. Table 2
shows the result of symbolically executing this execution
trace. The first column indicates the statement number, and
the second and third columns give the program and security
constraints at the respective statements.

Line# Program Constraint Security Constraint
1 (MIN≤ a≤ MAX)∧

(s.strlen≥ 0) TRUE
2 (MIN≤ a≤ MAX)∧

(s.strlen≥ 0) TRUE
3 (0<a≤ MAX)∧

(s.strlen≥ 0) TRUE
4 (0<a≤ MAX)∧

(s.strlen≥ 0) s.strlen<10

Table 2. Program and security constraints for
the execution trace (1, 2, 3, 4)
As shown in the table, the PC at statement 1 is

(MIN≤a≤MAX)∧(s.strlen≥ 0), where[MIN, MAX]
defines the range of an integer number, which is usually
machine dependent, ands.strlen is a symbolic value
denoting the length of strings. This is because botha ands
are user inputs, i.e.,a can be any integer value ands can be
any string. The security constraint at statement 1 is TRUE
since the statement does not include any operation that may
violate any security requirement. More specifically, it does
not include a call to thestrcpy function. Statement 2 is
a declaration statement of a buffer; it sets the space of the
buffer to10. We do not include this in the program con-
straint. Instead, we directly update thespace field of the

buffer, i.e.,buf.space=10, for simplicity.
Statement 3 is a condition statement and the test

case exercises the TRUE branch, which implies that
a > 0 must be TRUE. Thus, the program constraint
changes from (MIN≤ a≤MAX)∧(s.strlen≥0) to
(0<a≤MAX)∧(s.strlen≥0), as shown in the third line
of the table. A security constraint is produced at state-
ment 4, as shown in the fourth line of the table. The rea-
son is that functionstrcpy is associated with a secu-
rity requirement, i.e., the string length of the second ar-
gument must be less than the space allocated to the first
argument. As a result, we produce a security constraint:
s.strlen<buf.space. Sincebuf.space=10, we
haves.strlen<10.

A security vulnerability exists at a given point if an as-
signment of values to variables satisfies PC but violates
SC, i.e., PC∧¬ SC is satisfiable. At statement 4, we
check the satisfiability of PC∧¬ SC, i.e., (0<a≤ MAX) ∧

(s.strlen≥ 0)∧¬ (s.strlen<10). We use a theorem
prover and find thata=1 ands="012345678910" satis-
fies PC∧¬ SC. Thus a test case can be generated to uncover
the vulnerability.

3 SecTAC Design
The goal ofSecTAC is to detect security vulnerabilities

in a program. As discussed,SecTAC reuses existing test
cases for achieving high coverage and reducing testing ef-
fort. Specifically, we extract the execution trace of the pro-
gram under each test case and then analyze each execution
trace to determine whether it contains a security vulnerabil-
ity. Figure 2 shows the workflow ofSecTAC.

Source

Program

Instrumenter

SymbolTable

Builder

Symbolic

Executor

Test Cases

Satisfiability

Checker

Satisfiable ?
Find the solution and

generate a test case

Y

Transformed

Program

Intrumented

Program

Program

Executor

Execution

Traces

Symbol

Table

Security

Requirements

Program

Constraints

Security

Constraints

S
te
p
 1
:

P
re
p
ro
c
e
s
s

S
te
p
 2
:

S
y
m
b
o
lic
 E
x
e
c
u
ti
o
n

S
te
p
 3
:

S
a
ti
s
fi
a
b
ili
ty
 A
n
a
ly
s
is

Transformer

Figure 2. SecTAC Workflow

SecTAC performs security testing through three steps,
preprocessing, symbolic execution, andsatisfiability anal-

ysis, as indicated in Figure 2. In preprocessing, we gen-
erate execution traces from existing test cases and prepare
the symbol table for tracking the state of program variables;
in symbolic execution, we analyze every execution trace to
extract the program and security constraints at each point in
the trace; and in satisfiability analysis, we find inputs that
can detect security vulnerabilities.

Preprocessing: In this step, we first use thetransformer
to transform the source program into three-address code to
simply the analysis. To obtain execution traces, theinstru-
menterparses and inserts the trace-logging code into this
transformed program. This transformed, instrumented pro-
gram is compiled and then executed by theprogram execu-
tor using all test cases. The trace-logging code generates an
execution trace for each test case.

The symbol-table builderconstructs asymbol tablefor
all program variables for effectively tracking the program
constraints on them. In addition to the size and type infor-
mation, each program variable is also associated with addi-
tional attributes. For example, for a pointer that points into
a buffer, we introduce two attributes to trackwhich buffer
and which position in the buffer it points intoso that we can
test the out-of-bounds buffer access.

Symbolic execution: We use thesymbolic executor
to symbolically execute the trace to capture program con-
straints and check the pattern of each executed statement
against the security requirements. Whenever a security re-
quirement applies, e.g., a security-critical function call or a
pointer addition statement is exercised, we generate a secu-
rity constraint corresponding to such security requirement.
The program and security constraints are predicates on the
symbolic values of program variables and their attributes.

Satisfiability analysis: For each statement in the trace
that generates a security constraint (SC), we get the pro-
gram constraint (PC) at that statement and use asatisfia-
bility checkerto check if PC∧¬ SC is satisfiable. If it is,
a security vulnerability is detected. The solution given by
the satisfiability checker is then used to generate test data
to uncover the vulnerability. We express both program and
security constraints using the SMT-LIB format [19] and use
the Yices SMT-solver [7] as the satisfiability checker.

4 SecTAC Implementation
In this section, we describe the implementation of

SecTAC in detail based on the workflow in Figure 2.

4.1 Step 1: Preprocessing

The main tasks of preprocessing are (1)generating exe-
cution tracesand (2)constructing the symbol table.

4.1.1 Generating Execution Traces
In SecTAC, the program is transformed by CIL [18], instru-
mented by the Java parser generatorJavaCC, and executed
under each test case to produce the corresponding execution
trace. An execution trace was previously defined in Section
2 as a sequence of source code statements exercised by a

test case. This definition facilitates the understanding ofthe
basic ideas of our approach. However, our implementation
generates execution traces consisting of sequences of ex-
pressions and special marks. Expressions are either assign-
ment statements or library function calls. Special marks are
used to indicate: (1) function call entry and exit, (2) con-
ditional branching, (3) parameter passing, and (4) returning
of values to variables from function calls.

Note that declaration statements are not included in ex-
ecution traces since they are not “executed” by test cases.
However, they contain important information about thetype
andsizeof program variables.SecTAC handles declaration
statements in the symbol-table builder.

4.1.2 Constructing the Symbol Table
The symbol table is used to track the state of program vari-
ables; it includes information about all program variables
and user-defined functions in the trace. Specifically, the
symbol-table builder parses the program and creates adata
objectfor each program variable and afunction objectfor
each user-defined function. These objects include various
attributes to track the state of program variables. Next we
describe the creation of the objects and discuss features
added to addresspointer dependency.

Data objects: The symbol-table builder creates adata
class for every program variable type. A data class in-
cludes the size and type information as well as some other
attributes about the data type it represents; an object of this
class is created for each program variable of this data type.
We have a pre-defined class for each primitive type or prim-
itive type with qualifiers. For example, we use classesInt
andBCharacter for integers and characters declared in
the program, respectively. For each composite type, we cre-
ate a class using its type name. We also have a pre-defined
classPointer for pointers, arrays, and buffers. All the
above data classes are extended from a commonbase class
BaseType that defines common attributes such as name,
type, and symbolic value. It also includes atypesize
field to record the size of the memory allocated to the vari-
able. For example, thetypesize field of anInt object
is 4 in a 32-bit computer.

Function objects:SecTAC also creates a class for each
user-defined function to facilitate the trace analysis, i.e.,
help locate objects in the scope of any user-defined function.
For every function classf, we create objects for the param-
eters to the corresponding function and the local variables
declared in this function. These objects are the members of
this function classf. Other statements in the function body
are not included in classf.

All function classes are extended from a common ab-
stract base classFunction that includes agetObject
method, which can be used to locate the object represent-
ing a local variable or function parameter in the scope of a
user-defined function given a name.

In C programs, the global variables or static variables de-
clared in the file scope are not included in any function. To

track these variables,SecTAC also constructs aGlobal
class and afile-scopeclass for each file, and puts the vari-
ables in these classes accordingly.

Pointer dependency:It is possible that several pointer-
type variables are declared and point to the same array.
For example, we can declare “char p[10]” and define
a pointer “char *q=p+5” in a C program. We know that
both pointersp andq point into the same array. The only
difference is thatp points to the beginning of the array,
whileq points to the sixth element of the array. The pointer
objects are said to berelatedor dependentif they point into
the same array. Hence,p andq are related. We notice that
the operation on a given pointer object may impact its re-
lated pointer objects. For example, if we copy a string of
length 6 top, then the string lengths ofp andq become 6
and 1, respectively. If we immediately copy another string
of length 4 toq, then the string lengths ofp andq become
9 and 4, respectively.

To correctly analyze the impact of pointer operations
on related pointer objects, thePointer class also in-
cludes astart field and aspace field. A pointer object
usesstart to record its starting position in the array, and
space to record the size of the space from its starting po-
sition to the end of the array. Thus, we can determine how
the operation on one pointer object can impact others. From
the previous example, we know that thestart fields of the
objects forp andq are 0 and 5, respectively. If a string of
length 6 is copied top, then we immediately know thatq is
impacted and its string length should be 1.

Object locating: Object locating addresses how to de-
termine the target object(s) of a program statement. For
example, for statement “i=j.id;”, we need to locate the
objects created for variablei and the memberid of the
structurej. As discussed before, each function class pro-
vides a methodgetObject to locate the object created for
variables in its scope given a name. However, when a mem-
ber of a composite type variable, e.g.,j.id in the above
example, is referenced, we need to further locate themem-
ber objectrepresenting the member of this variable. Every
class created for a composite type variable (e.g., struct orar-
ray) has a methodgetObject to locate the member object
given anameor anoffset.

4.2 Step 2: Symbolic Execution

Once we have the execution trace and the symbol table,
we start to analyze the execution trace statement by state-
ment to capture the program and security constraints using
symbolic execution (symbolic value propagation).

4.2.1 Producing Program and Security Constraints
The program constraint will be initialized when we are
building the symbol table. Specifically, when we create
an object for a program variable, we produce a program
constraint conjunction according to the variable declaration
information. For example, statement “int i;” leads to
the creation of anInt type objecti. Thus, we produce

a program constraint conjunction (MIN≤i.sym≤ MAX),
wherei.sym is the symbolic value ofi. The program con-
straint will also be updated when a statement in the trace is
symbolically executed.

• If it is an assignment statement, the attributes of the ob-
ject for the right part determines the attributes of the ob-
ject for the left part. In this case, we directly update the
attributes of the left object instead of updating the pro-
gram constraint.

• If it is a branch statement, we update the program con-
straint based on which branch is exercised. For example,
a conditional expression “@true i>j” indicates that
the TRUE branch is exercised. Thus,SecTAC generates
a program constraint conjunction (i.sym>j.sym).

• If the statement calls a library function, we need to up-
date the program constraint according to its semantics. If
the return value of the library function is assigned to a
variable, we generate a program constraint conjunction
according to this return type. Since some library func-
tions have constraints on their return values, a program
constraint conjunction that further restricts the range of
the returned value is produced. For example, the return
value offopen is always greater than or equal to -1,
which is different from the default range of its return
type. In addition, some library functions have side-effects
on their parameters. Some side-effects can be consid-
ered as equivalent to updating the object attributes, e.g.,
for strcpy(dst,src), the strlen field (a sym-
bolic value that denotes the string length) of thedst
object is updated to that of thesrc object. Some side-
effects, however, impose constraints on the involved pa-
rameters. For example, after callinggetcwd(buf,n),
thestrlen of buf is less thann if the length of the cur-
rent path is less thann, and unchanged otherwise. In this
case, we also generate a program constraint conjunction.

A program statement in the execution trace is said to be
security criticalif it may violate a security requirement. In
the current implementation ofSecTAC, any statement in-
volving either a security-critical function or a pointer ad-
dition is a security-critical statement.SecTAC produces a
security constraint, i.e., a first order logic expression, at ev-
ery security-critical statement.

4.2.2 Algorithm for Symbolic Executor
We now describe the detail of theSecTAC symbolic ex-
ecutor. We first create astackto keep track of the current
function object, i.e., the active function object in use, which
is always the one at the top of the stack.SecTAC then
processes each statement in the trace according to the fol-
lowing rules: (1) if it is a function entry,SecTAC creates
a new object of this function class and pushes the object
into the stack; (2) if it is a function return,SecTAC pops
an object from the stack; (3) If it is an assignment state-
ment, SecTAC performs symbolic execution on the left

and right expressions, and updates the object attributes for
the involved variables; (4) if it is a conditional statement,
SecTAC produces a program constraint conjunction that
captures which branch is exercised; (5) if it is a library func-
tion call, SecTAC processes as follows. If the function is
in the right part of an assignment statement, a new object
is created according to its return type. If the function fur-
ther limits its return value to a smaller range compared to its
type, the program constraint on this object is updated. If the
function also has side-effects, the attributes of the involved
objects are updated accordingly, and the program constraint
is also updated as needed. If the function is also a security-
critical function, a security constraint is generated.

Symbolic Execution on Expressions: A critical part
of symbolic execution is the symbolic execution on expres-
sions. The symbolic execution procedure on a given ex-
pressione works as follows: (1) ife is a constant number
or character, a new object of the class for such data type is
created, and its symbolic value is set to this constant value;
(2) if it is a constant string, aPointer object is created,
and itsstrlen field is set to be the length of this constant
string; (3) if it is a variable, we will locate the correspond-
ing object and return it; (4) if it is∗v, we locate the object
corresponding tov and return the object specified by the
point_to field of this pointer object; (5) if it is&v, we
locate the object corresponding tov and create aPointer
object. We then set thepoint_to field of the newly cre-
ated object to the object corresponding tov; (6) if it is v.m,
we locate the object ofv, then return its member object with
the namem; (7) if it is e1 op e2, we recursively perform
symbolic execution on expressionse1 ande2. Based on the
types of the returned objects, we take different actions; (8)
if it is a library function call, we handle it in the same way
as we handle library function calls.
SecTAC generates a security constraint for every pointer

addition to check whether the result still points to the same
original object. We thus take special care of the addition be-
tween aPointer objectp and anInt objecti as follows:

• If p points to a buffer, we create a newPointer
objectobj and set itsspace, start, andstrlen
fields based onp and i. Specifically, obj.space
and obj.start are set top.space-i.sym and
p.start+i.sym respectively.obj.strlen is set to
the following conditional expression:

((p.strlen≥i.sym) (p.strlen-i.sym) newsym)

This expression indicates thatobj.strlen is set to
p.strlen-i.sym if p.strlen≥i.sym, and a new
symbolnewsym otherwise. A program constraint con-
junction is also produced for the new symbolnewsym,
i.e.,newsym≥ 0. Finally, objectobj is returned.

• If p points to a composite type object, e.g. array or struct,
then we need to find a member object inside this com-
posite object through offseti. In this case, we use the

getObject(i)method in objectp.point_to to lo-
cate and return the object.

• If p points to neither a buffer nor a composite type data,
then it is a pointer arithmetic. In this case, a new object
will be created in a similar way as the first case. The only
difference here is that thestrlen field need not be set.

Pointer analysis : We will discuss how we address the
pointer dependency problem mentioned in Section 4.1.2.
Specifically, when we create an object for a buffer, we also
include a number of links in this object through which we
can locate allPointer objects that operate on this buffer.
Let us consider a particular pointerp that points into a
buffer. When we update the object for this pointer, we will
need to find the object for the original buffer this pointer
points into and locate allPointer objects that operate on
this buffer. Letq be aPointer object we find. We first
checkp.start andq.start to decide their relative po-
sitions in the buffer. There are two cases:

• If q’s position in the buffer is before that ofp’s, we
compareq.strlen with the distance between them. If
q.strlen is larger than the distance, we have to update
q.strlen accordingly.

• If q’s position in the buffer is afterp’s, we compare
p.strlen with the distance between their positions. If
p.strlen is larger than the distance, we have to update
q.strlen accordingly.

4.3 Step 3: Satisfiability Analysis

Finally, the program and security constraints are ex-
pressed in SMT-LIB [19] format, which is recognized by
many SMT solvers. We use the SMT solver Yices [7] to
check the satisfiability of PC∧¬ SC for each SC and the PC
at the same point in the trace. Note that the PC at a given
point in the trace may include a huge number of conjunc-
tions. In this case, checking the satisfiability of PC∧¬ SC
could be very expensive. However, we note that a lot of PC
conjunctions are actually irrelevant to SC since they only
involves variable symbols that do not impact SC. Remov-
ing these irrelevant conjunctions will not change the result
of satisfiability analysis. We thus use onlySC-dependent
PC conjunctions to save the cost. Two conjunctions are said
to bedirectly relatedif they include at least one common
variable symbol. Then, starting from an emptyS, we first
identify all PC conjunctions that are directly related to SC
and put them inS. We thenrepeatedlycheck every PC con-
junction and add it intoS if it is SC-dependent, i.e., directly
related to at least one conjunction inS. We stop when there
are no more SC-dependent PC conjunctions. Let PC′ be the
conjunction of all conjunctions inS. We only need to check
the satisfiability of PC′ ∧¬ SC instead of PC∧¬ SC.

4.4 False Negatives and Positives

SecTAC can detect a security vulnerability in a program
if (1) the vulnerability is modeled by one of the security

requirements, (2) an execution path that can trigger such se-
curity problem is exercised by one of the test cases, (3) the
program and security constraints are derived correctly, and
(4) the theorem prover for satisfiability analysis can cor-
rectly find a solution if PC∧¬ SC is satisfiable. In other
words, there will be false negatives if one of the above three
conditions is false. For example, if we derive constraints on
library functions from documentation, there might be false
negatives due to the inconsistency between the documen-
tation and the actual implementation. We can use LFI to
check such consistency [17]. Similarly,SecTAC will gen-
erate a false positive if (1) the theorem prover returns a so-
lution when PC∧¬ SC is not satisfiable or (2) the program
and security constraints are extracted incorrectly. In ourex-
periments, we did not find any false positive.

5 Experiments
To evaluate the effectiveness of our approach, we applied

SecTAC on 14 benchmark programs [28], two open source
http server programs,nullhttpd-0.5.1 andlancer,
and an open source ftp server programbftpd-2.3. We
used their latest versions in our experiment. The bench-
mark programs represent various kinds of memory corrup-
tion vulnerabilities in certain versions of theBind, Send-
mail, andWu-ftp programs. They have been used to evalu-
ate the effectiveness of many buffer overflow detection tools
[28, 27, 26]. For each of these programs, there is a buggy
version and a fixed version. We used the buggy version in
our experiment. Our results show thatSecTAC can detect
every reported vulnerability as long as the vulnerability ex-
ists in the traces. In addition,SecTAC also detected six vul-
nerabilities in the benchmark programs, four vulnerabilities
in nullhttpd-0.5.1, four vulnerabilities inlancer,
and one vulnerability inbftpd-2.3 that, to the best of
our knowledge, have not been reported previously. Next,
we will report our findings in detail.

Table 3 summarizes our experimental results. The first
14 rows show the result of evaluatingSecTAC on the 14
benchmark programs [28]. As shown in the last column of
the table, we found new vulnerabilities in Bind 4, Sendmail
1, Sendmail 3, Wu-ftp 2, Wu-ftp 3,nullhttpd-0.5.1,
lancer, andbftpd2.3 programs.

Test inputs: For each buggy benchmark program ver-
sion, a specific input file or hard-coded assignment to vari-
ables is provided in [28] as the test data to trigger the vul-
nerability. However, a major merit ofSecTAC is that it
can detect vulnerabilities under test cases from functional
testing that do not trigger vulnerability. Hence, in our ex-
periments,whenever it is possible, we construct test inputs
that exercise paths containing the reported vulnerabilities
but do not trigger them. Only when it is impossible to find a
test case exercising the known vulnerable path without trig-
gering the vulnerability, do we use the test input provided in
[28]. For the sake of presentation, we call a test casenormal
if it does not trigger any vulnerability. We call the test cases

Program LOC Input LOT Time(mm:ss) #KnownBugs #FoundBugs #FP Remark
Bind 1 1116 www.cnn.com 539 00:01 1 1 0
Bind 2 1306 cnn.com 1117 00:01 1 1 0
Bind 3 380 default 365 00:01 1 1 0
Bind 4 645 www.nbc.com; 162 00:01 1 2 0 1 new bug

www.cnn.com
Sendmail 1 537 default 6207 00:02 6(5)∗ 6 0 1 new bug
Sendmail 2 791 default 5509 00:03 1 1 0
Sendmail 3 416 default 2534 00:03 1 2 0 1 new bug
Sendmail 4 485 default 1379 00:03 4 4 0
Sendmail 5 622 default 6669 00:03 3 3 0
Sendmail 6 390 default 129 00:01 1 1 0
Sendmail 7 929 default 2145 00:03 2 2 0
Wu-ftp 1 503 /tmp/aa 79 00:01 4 4 0
Wu-ftp 2 744 /tmp/test.c 106 00:01 1 2 0 1 new bug
Wu-ftp 3 689 /tmp/aa 399 00:01 6 8 0 2 new bugs

nullhttpd-0.5.1 2328 50 test cases 12447 08:07 1 3 0 2 new bug
lancer 4261 50 test cases 118657 49:18 0 4 0 4 new bugs

bftpd-2.3 5766 10 test cases 65027 11:42 0 1 0 1 new bug

* According to the BAD marks in the program, there are 6 bugs inthe trace. However, we found that one of them is not a bug.

Table 3. Experimental Results. “LOC” represents the number of lines of the code; “Input” represents
the program input we use; “LOT” represents the number of line s in the execution trace exercised by
the test case; “Time” represents the time that our tool used; “ #KnownBugs” is the number of previ-
ously reported vulnerabilities in the execution trace; “ #FoundBugs” is the number of vulnerabilities
found by SecTAC; and “ #FP” is the number of false positives.

provided in [28]defaultin the table.
For http server programs, we randomly generate 50 nor-

mal http requests. For the ftp server program, we manually
generate 10 test cases that include basic ftp commands such
as “ls”, “get”, and “put”. We use the GCC bounds check-
ing extension to monitor the program execution. These test
cases do not trigger any out-of-bounds operation. Next we
describe the test input to every benchmark program tested
in the experiment.

In the Bind 1 program, buffer overflow occurs when a
negative value is passed as the third argument ofmemcpy.
In [28], a constant string “sls.lcs.mit.edu” is hard-coded
as the second argument ofstrcpy to achieve this. We
use “www.cnn.com” instead as the normal test data under
which the program runs normally, andSecTAC can detect
this vulnerability. Similarly, for the Bind 2 program, we
use string “cnn.com” as the normal test input instead of the
original hard-coded input “sls.lcs.mit.edu” that crashes
the program. The Bind 3 program does not check the buffer
space when callingmemcpy. The provided test case is a
file s3.in whose content is “9283721”. However, we no-
tice that as long as its content is not “0”, the vulnerability
always occurs. Thus we just use the original test case. The
Bind 4 program usessprintf without boundary check-
ing. A string of 1072 bytes long is provided in [28] as the
input to trigger the vulnerability. We do not use this input;
instead, we use a normal test input as given in Table 3.

Most of the vulnerabilities in the Sendmail programs are
caused by out-of-bounds pointer operations. These opera-
tions are usually in a loop where the pointer is increased
by 1 for each iteration. As a result, in the execution trace,
the out-of-bounds operation of a pointer only occurs when

a test case can actually trigger the vulnerability. In other
words, the execution trace under a normal test case does not
contain the vulnerability. Thus, we use test cases provided
by the benchmark programs in our experiments.

The test input to each Wu-ftp program is a string that
represents a path. For the Wu-ftp 1 program, the original
test case in [28] is “/tmp/” followed by 24 ’a’s. This is
carefully designed to trigger the buffer overflow caused by
strcpy. For the Wu-ftp 2 program, the original test case
is also a specific complex path with 9 subdirectories, which
triggers the vulnerability caused bystrcat. For the Wu-
ftp 3 program, the length of the input path is made more
than 47 to trigger the vulnerability caused bystrcpy. In
our experiments, we use normal test inputs. Specifically, for
Wu-ftp 1 and Wu-ftp 3, we use a normal input “/tmp/aa”
that does not trigger the vulnerability. For Wu-ftp 2, we
use “/tmp/test.c”, which is the path of an existing file and
does not trigger the vulnerability.

Performance: We did the experiments on a 2GHz Core
2 Desktop running Ubuntu-8.10 Linux operating system.
We let the Java use a maximum of 1G heap memory dur-
ing our experiments. The fifth column of Table 3 shows the
execution time ofSecTAC for analyzing all traces for each
program. The execution time is the sum of the times needed
for trace-based symbolic execution and satisfiability analy-
sis, which increases nearly linearly with the trace size in our
experiments. We can see thatSecTAC can quickly analyze
C programs for vulnerability.

New vulnerabilities: In addition to the known bugs,
SecTAC also detected six new vulnerabilities in the 14
benchmark programs as shown in Table 4. Test cases
that trigger these vulnerabilities can be directly derived

Program Test Input that Triggers the New Vulnerability Location of the New Vulnerability Remarks
Bind 4 www.cnn.com; www.nbc.com ns-lookup-bad.c:277 nspout-of-bound

Sendmail 1 default crackaddr-bad.c:460 buflimout-of-bound
Sendmail 3 default mime1-bad.c:212 infile out-of-bound
Wu-ftp 2 a 200 bytes long string for argv[1] call fb realpath.c:94 strcpybuffer overflow
Wu-ftp 3 /a...a (48 a’s)/aa realpath-2.4.2-bad.c:269 whereout-of-bound
Wu-ftp 3 /a...a (48 a’s)/aa realpath-2.4.2-bad.c:257 strcpybuffer overflow

Table 4. New Vulnerabilities in the benchmark programs

from the solutions given by the satisfiability checker Yices
[7] in SecTAC. Notably, we detected a vulnerability in
code that was previously considered to be safe. The au-
thors of [28] explicitly commented the line 257 of file
realpath-2.4.2-bad.c in the Wu-ftp 3 program as
a safe call. However, our experiment shows that it is not.
As shown in Table 4, when the length of a directory name is
long enough, thestrcpy function at line 257 will overflow
the destination buffer whose size is only 46 bytes.

For nullhttpd-0.5.1, SecTAC found three buffer
overflow vulnerabilities at line 143 of file “http.c”. The at-
tacker can overflow three different buffers in this line of
code. In addition, it also found a new vulnerability at line
58 of file “config.c”, where the program usessnprintf
to copy a string variableconfig.server_base_dir
and a constant string “/bin” to bufferserver_bin_dir.
However, the space allocated toserver_bin_dir is
255. If the string length ofconfig.server_base_dir
is 255, the buffer is not null terminated and the string “/bin”
cannot be copied to the buffer, causing a configuration error.
Lines 59 to 61 in the same file have the same vulnerability.
For thelancer program,SecTAC found four buffer over-
flow problems in “handler.c” and “host.c”. These problems
have the same pattern: the author declared a buffer with the
size ofn, and usedstrncpy to copy at mostn-1 non-
zero characters to the buffer. However, the value at position
n-1, which does not belong to this buffer, could be a non-
zero value. Thus, it is possible that the string in the bufferis
not properly null-terminated, which may cause buffer over-
flow. For thebftpd-2.3 program,SecTAC detected that
the buffer “bu host” (whose content is from an external in-
put) may be not properly null-terminated. We have reported
this vulnerability to the author of the program and a new
version was subsequently released to fix this bug.

6 Related Work
The method in [14] detects buffer overflow using exist-

ing test cases. They do not perform symbolic analysis and
ignore branch conditions, causing many false alarms. The
predictive testing in [16] inserts assertions into the source
program and uses a combination of concrete and symbolic
execution on the given test inputs to discover assertion vi-
olations. DART [11, 10] and CUTE [22] can automatically
generate test cases. However, they use concrete values for
complex constraints that they cannot handle. They may
miss many paths that are covered by the test cases carefully
designed in traditional testing.SecTAC takes advantage of

previous test effort. In addition, DART and CUTE over-
look useful information about variables and functions such
as pointer dependency and function return type. SPLAT
[26] improves DART by introducing a length attribute in
each buffer. It also represents a fixed-length prefix of the
buffer elements symbolically. Other buffer elements are
represented using concrete values during execution. The
limitation is that when the program visits a buffer element
beyond the prefix, their symbolic execution becomescon-
crete. SecTAC generates new objects only when a buffer el-
ement is visited, which improves the precision and reduces
the cost. EXE [6] and KLEE [4] were developed to achieve
high branch coverage. They can detect memory overflow
vulnerabilities. SAGE [12] also employs trace-based sym-
bolic execution with satisfiability analysis. However, SAGE
works on the binary level; a lot of useful information in the
source code is no longer available for analysis.

7 Limitations and Suggestions
SecTAC has a number of limitations. First, we must

have the test cases ready before doing the security testing.
The effectiveness ofSecTAC depends on the completeness
of the existing test cases. In fact, the branch coverage of the
test cases determines the number of paths that our method
can check. Second, the size of an execution trace for large
complex programs may be huge. Analyzing a large execu-
tion trace can cause many problems. For example, it may be
the case that a large number of statements in the trace gen-
erate security constraints. As a result,SecTAC may invoke
the SMT solver very frequently, which can slow down se-
curity testing significantly. We plan to improveSecTAC by
managing program and security constraints more efficiently,
e.g., by using BDDs [2, 3].

8 Conclusion and Future Work
In this paper, we proposed an approach for testing the

security of C programs using trace-based symbolic execu-
tion and satisfiability analysis. We developed a tool named
SecTAC to demonstrate the effectiveness of our approach.
We evaluated this tool on 14 benchmark programs and 3
open source programs. The result shows that our tool
quickly identified every reported vulnerability in the traces
and also found 13 new vulnerabilities. In conclusion, our
tool is effective and efficient in testing the security of cur-
rent software systems.

We are interested in the following directions. First, al-
though our approach can handle multi-threaded programs
as long as the test cases are available, it only analyzes a

specific combination of the traces generated by different
threads. We propose to identify the trace for each thread and
seek effective ways to combine them to improve the detec-
tion of security vulnerabilities in multi-threaded programs.
Second, we will also seek solutions to further improve the
efficiency ofSecTAC and conduct more experiments on
large and complex programs to evaluate our approach.

Acknowledgment

The authors would like to thank the anonymous review-
ers for their valuable comments.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-
flow integrity. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), pages 340–
353, 2005.

[2] S. B. Akers. Binary decision diagrams.IEEE Transaction
on Computers, C-27(6):509 – 516, June 1978.

[3] R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Transaction on Computers, C-
35(8):677–691, 1986.

[4] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for com-
plex system programs. InProceedings of the USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI), 2008.

[5] C. Cadar and D. Engler. Execution generated test cases:
How to make systems code crash itself. InProceedings
of the International SPIN Workshop on Model Checking of
Software, 2005.

[6] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler.
EXE: automatically generating inputs of death. InProceed-
ings of the ACM Conference on Computer and Communica-
tions Security (CCS), pages 322–335, 2006.

[7] B. Dutertre and L. de Moura. A fast linear-arithmetic solver
for DPLL(T). In Proceedings of the Computer-Aided Verifi-
cation Conference (CAV), pages 81–94, 2006.

[8] G. Fink, C. Ko, M. Archer, and K. Levitt. Towards
a property-based testing environment with applications to
security-critical software. InProceedings of the 4th Irvine
Software Symposium, pages 39–48, 1994.

[9] A. Ghosh, T. O’Connor, and G. McGraw. An automated ap-
proach for identifying potential vulnerabilities in software.
In Proceedings of the IEEE Symposium on Security and Pri-
vacy, pages 104–114, 1998.

[10] P. Godefroid. Compositional dynamic test generation.In
Proceedings of the Symposium on Principles of Program-
ming Languages (POPL), 2007.

[11] P. Godefroid, N. Klarlund, and K. Sen. DART: directed au-
tomated random testing. InProceedings of the ACM SIG-
PLAN conference on Programming Language Design and
Implementation, pages 213–223, 2005.

[12] P. Godefroid, M. Y. Levin, and D. Molnar. Automated white-
box fuzz testing. InProceedings of the Network and Dis-
tributed Systems Security (NDSS), pages 151–166, 2008.

[13] R. Hastings and B. Joyce. Purify: Fast detection of mem-
ory leaks and access errors. InProceedings of the Winter
USENIX Conference, pages 125–136, 1992.

[14] E. Haugh and M. Bishop. Testing C programs for buffer
overflow vulnerabilities. InProceedings of the Network and
Distributed System Security Symposium (NDSS), pages 123–
130, 2003.

[15] R. Jones and P. Kelly. Backwards-compatible bounds check-
ing for arrays and pointers in C programs. InProceedings of
the International Workshop on Automated Debugging, 1997.

[16] P. Joshi, K. Sen, and M. Shlimovich. Predictive testing: am-
plifying the effectiveness of software testing. InProceed-
ings of the Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pages 561–564,
2007.

[17] P. Marinescu and G. Candea. LFI: A practical and gen-
eral library-level fault injector. InProceedings of the Inter-
national Conference on Dependable Systems and Networks
(DSN), 2009.

[18] G. C. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transforma-
tion of C programs. InProceedings of the International Con-
ference on Compiler Construction, pages 213–228, 2002.

[19] S. Ranise and C. Tinelli. The satisfiability modulo theories
library(smt-lib).www.SMT-LIB.org, 2006.

[20] M. Ringenburg and D. Grossman. Preventing format-string
attacks via automatic and efficient dynamic checking. In
Proceedings of the ACM Conference on Computer and Com-
munications Security (CCS), pages 354–363, 2005.

[21] K. Sen. Concolic testing. InProceedings of the IEEE/ACM
nternational Conference on Automated Software Engineer-
ing (ASE), 2007.

[22] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C. InProceedings of the joint Meeting
of the European Software Engineering Conference and the
ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 263–272, 2005.

[23] E. C. Sezer, P. Ning, C. Kil, and J. Xu. Memsherlock: an au-
tomated debugger for unknown memory corruption vulner-
abilities. InProceedings of the ACM Conference on Com-
puter and Communications Security (CCS), pages 562–572,
2007.

[24] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. ITS4: A
static vulnerability scanner for C and C++ code. InProceed-
ings of the Annual Computer Security Applications Confer-
ence (ACSAC), page 257, 2000.

[25] D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step
towards automated detection of buffer overrun vulnerabili-
ties. InProceedings of the Network and Distributed System
Security Symposium (NDSS), pages 3–17, 2000.

[26] R. Xu, P. Godefroid, and R. Majumdar. Testing for buffer
overflows with length abstractions. InProceedings of the
International Symposium on Software Testing and Analysis
(ISSTA), pages 27–38, 2008.

[27] M. Zhivich, T.Leek, and R. Lippmann. Dynamic buffer over-
flow detection. InProceedings of the Workshop on the Eval-
uation of Software Defect Detection Tools, 2005.

[28] M. Zitser, R. Lippmann, and T. Leek. Testing static analysis
tools using exploitable buffer overflows from open source
code. InProceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages
97–106, 2004.

