
JCrasher: An Automatic
Robustness Tester for Java

Christoph Csallner
csallner@cc.gatech.edu

Yannis Smaragdakis
yannis@cc.gatech.edu

SPARC Brown Bag, Mo. 6. October 2003

Mo. 6. Oct. 2003 Christoph Csallner 1

What Do We Mean by Robustness?

!Assume testee written in an object-oriented language.
!General robustness quality goal

A public method should not throw an unexpected
runtime exception when encountering an internal
problem, regardless of the parameters provided.
" Instead: should handle internal problem and throw for

example an IllegalArgumentException.
" Goal does not encode knowledge about the testee’s domain.
" The same robustness goal applies to all testees.

!General function to determine testee’s robustness:
exception type # {pass | fail}

Mo. 6. Oct. 2003 Christoph Csallner 2

Testing for Robustness

! What is testing?
" Write test case method, which creates parameters, calls testee with

parameters, compares result with expected result, and reports
" xUnit frameworks do not contain or retrieve quality goals of testees.

xUnit frameworks cannot automate test case generation.

! Robustness testing: huge parameter space
" Example: m(int, int) has 28*4 * 28*4 parameter combinations
" Covering all parameter combinations is generally impossible

! You might not need all parameter combinations to cover all
control paths through the method that throw an exception
" Pick a random sample
" Control flow analysis on byte code (JABA) could derive parameter

equivalence classes

Mo. 6. Oct. 2003 Christoph Csallner 3

JCrasher Automates Robustness Testing

Class-
loader

Reflection Reflection

JCrasher application JUnit

filter

javac

traverse

Class-
loader

T.java

T.class TTest.class

TTest.java

T test-casesTTest

JCrasher
runtime

T‘s parameter-graph

execute

javac
(P.java)*

(P.class)*

results

(P)*
mapping:

type # rules
returning type

Testee Test Cases
for Testee

Referenced
by Testee

Mo. 6. Oct. 2003 Christoph Csallner 4

Collect Type Inference Rules

! Search class under test for inference rules
!Transitively search referenced types
! Inference rules

" Method T.m(P1, P2 , ..., Pn) returns X:
X $ T, P1, P2 , ..., Pn

" Sub-type Y {extends | implements} X:
X $ Y

" Constructors and preset values are implicitly known

!Add each discovered inference rule to mapping:
X # inference rules returning X

Mo. 6. Oct. 2003 Christoph Csallner 5

Generate Test Cases For a Method

Test Cases:
f(null, -1), f(null, 0), f(null, 1),
f(A(null), -1), ...,

Parameter Graph for Method T.f(A, int)

static T.f(

-1

A, int)

A

B

int 0 1A(B) A .m()null B int

B()null

method under test

inference rule
returning type

Mo. 6. Oct. 2003 Christoph Csallner 6

Generate a Random Sample of Test Cases

! Tree never completely in
memory—implicitly represented
by mapping: type # rule

1. Build tree of depth n = 2
2. Determine number of possible

test cases = 19
1. Inference rule: product of the

parameter sub spaces
2. Parameter: sum of the inference

rule sub spaces
3. Pick a random sample,

for example 1, 3, 16
4. Derive test cases:

1. 1<16 # m1
2. 1=0*4+1*1 # m1(-1, 0)

ClassUnderTest

m1(P p1, P p2) m2(int p1)

P P

P()P(int p1)

-1, 0, 1

3

3 1+

4

...

4*

16 3

...

+

Index=0

Mo. 6. Oct. 2003 Christoph Csallner 7

Test Case Execution and Exception Filtering

Class-
loader

Reflection Reflection

JCrasher application JUnit

filter

javac

traverse

Class-
loader

T.java

T.class TTest.class

TTest.java

T test-casesTTest

JCrasher
runtime

T‘s parameter-graph

execute

javac
(P.java)*

(P.class)*

results

(P)*
mapping:

type # rules
returning type

Testee Test Cases
for Testee

Referenced
by Testee

Mo. 6. Oct. 2003 Christoph Csallner 8

Test Case Execution and Exception Filtering

! JCrasher generated test cases look like:
public void test1() throws Throwable {

try { /* test case */ }

catch (Exception e) {

dispatchException(e); /* JCrasher runtime */

}

}

! JCrasher runtime catches all exceptions and uses
heuristics to decide whether the exception is a
" Bug of the testee # pass exception on to JUnit
" Expected exception # suppress exception

Mo. 6. Oct. 2003 Christoph Csallner 9

Exception Filter Heuristics

!An exception indicates one of the following
" As a part of the method’s contract, the method under test

signals a violated precondition—no bug.
" The method under test has run into an unforeseen problem

and is terminated because it has not handled an exception
thrown by code invoked by the method—bug.

! JCrasher uses heuristics to distinguish between bugs
and violated preconditions.

Mo. 6. Oct. 2003 Christoph Csallner 10

Exception Filter Heuristics

ArrayIndexOutOfBoundsException,
ClassCastException
• Heuristic: bug—testee should

prevent or catch this exception

IllegalArgumentException,
NullPointerException
• Heuristic: bug if thrown by a

public function called by testee

RuntimeException
• Can be declared

Exception Error
• Can be declared
• Serious problem
• Heuristic: no bug—

should not be caught
by testee

Throwable

Checked exceptions
• Must be declared
• Heuristic: no bug—

could be part of contract

Mo. 6. Oct. 2003 Christoph Csallner 11

Test Case Execution:
Problem of Side-Effect between Test Cases

class T {
static int i=0;
void m(int) {}

}

TestRunner.class

TestRunner

object class
instance

of

class TTest extends TestCase {
void test1() {new T().m(0);}
void test2() {new T().m(1);}

}

Subject Two JUnit Test Cases Execute

T TTest
1. Load „TTest“

test1T

2. Ask for methods

3. Invoke methods

Compiler,
jvm

uses

jvm
Compiler,
jvm

Heap

T test2

Mo. 6. Oct. 2003 Christoph Csallner 12

Problem of Side-Effects Between Test Cases

!Cause
" All test cases refer to the same object representing a class at

runtime
" Each test case can change this object’s state
" Subsequent test cases may execute on modified state

!Makes it hard to understand result of test cases
!Two solution approaches

" Provide a separate copy of a class object for each test case
" Stick to same class object for each test case, but

reset its state after a test case has executed
!Limitation of solutions: change to external state

cannot be undone, for example files, databases

Mo. 6. Oct. 2003 Christoph Csallner 13

Separate Copies of a Class Object

!Naive approach: separate JVM instances
" Script to start each test case in its own JVM instance
" High overhead of JVM initialization
" Contradicts the JUnit execution model

! Separate class objects in same JVM instance
" Class at runtime defined by

tupel (fully qualified name, class loader)
" Given the same fully qualified class name, each class loader

% Independently loads the class’s byte code if not already done so by
itself or a parent class loader

% Keeps its own class state

Mo. 6. Oct. 2003 Christoph Csallner 14

Separate Class Objects in Same JVM Instance
with Hierarchy of Class Loaders

ClassLoader parent

ClassLoader child_1

child-of

TTtest

loaded
by

loaded
by

ClassLoader child_2

TTtest

• test1() {new T();}
• ...

• ...
• test2() {new T();}

T
uses

T
uses

loadClass(TTest)
test1().invoke(..)

loadClass(TTest)
test2().invoke(..)

Mo. 6. Oct. 2003 Christoph Csallner 15

Reset State of All Referenced Classes After a
Test Case Has Been Executed

!The JCrasher runtime imitates the JVM’s Class
Initialization Algorithm

!Requirements
" A list of the referenced classes in the order in which they

have been initialized.
" The ability to reset the values of the static fields of each of

these classes to the default all-zero value (null, 0, false).
" The ability to execute the variable initializer of each static

field. A class’s variable initializers are compiled into the
class’s <clinit>() method.

Mo. 6. Oct. 2003 Christoph Csallner 16

Implementation

!Modify JUnit to use a class loader that changes a
class’s byte code before loading it [BCEL]
" Copy static initializer method <clinit>()to

user-accessible methods _clinit() and _clreinit()
" Modify _clreinit() to avoid resetting static constants.
" <clinit>() is changed to first call _clinit() and then

appends the class to the list of classes to be reset

! JCrasher runtime method after a test case has executed
" Set static fields of listed classes to all-zero values.
" Call _clreinit() of each listed classes

Mo. 6. Oct. 2003 Christoph Csallner 17

Discussion of Re-Initialization Approach

! Benefits
" Faster: eliminate re-loading of classes for second, third, …, n-th test

case.
" Less memory needed: all test cases reference same class object

! Weakened semantics
" Initialization order of first test case fixes re-init order.
" Eager initialization instead of Java’s lazy initialization.
" Incorrect if static initializer depends on previous state changes.

class A {static int a = 100;}

class B {static int b = A.a;}

A referenced before B: a=100; a=???; b=a
B referenced before A: a=100; b=a

" False positives: bad style, rare—tradeoff with benefits
" False negatives: inherent to random testing anyways

Mo. 6. Oct. 2003 Christoph Csallner 18

Performance

! Summary, testee executing only a few instructions
" Restarting JVM approach = 100 percent
" Multiple class loader approach = 45 percent
" Resetting class state approach = 2 percent

! Details
" Start JVM and execute a trivial JUnit test = 270 ms.

% Load JUnit classes, test class, testee, and run JUnit code.
% Starting a JVM and execute a trivial method = 170 ms.
% Average time to execute a test with JUnit = 5 ms.

" Multiple class loader approach, reload a single class = 120 ms.
% Multiple class loader approach saves the 270 ms of JVM and JUnit startup.
% Going to disk and reload a single class file reduces benefit to about 150 ms.

" Re-initialization approach
% JCrasher machinery to reinitialize a class with 10 static fields = 0.06 ms.

" Test environment: 1.2 GHz Intel mobile Pentium 3 processor with 512
MB RAM running Windows XP and a 12 ms avg., 100 MB/s hard disk.

Mo. 6. Oct. 2003 Christoph Csallner 19

JCrasher Can Be Integrated Into Eclipse

JCrasher as eclipse plug-in JUnit swingUI

Mo. 6. Oct. 2003 Christoph Csallner 20

Conclusions And Future Work

!General definition of robustness testing
! JCrasher automates robustness testing

" Cheap way to supplement structured testing

!Undesired side-effect between JUnit test cases
!Two approaches to reset class state

" Slow and correct: multiple JVM instances or class loaders
" Fast and almost correct: imitate JVM’s class initialization

! Integration with popular tools Eclipse and Junit
!Replace/ compare test case selection with control flow

analysis (=JABA) based test case selection.

Mo. 6. Oct. 2003 Christoph Csallner 21

References

[BCEL]
http://jakarta.apache.org/bcel/

[eclipse]
http://www.eclipse.org

[JCrasher]
http://www.cc.gatech.edu/~csallnch/jcrasher

[JTest]
http://www.parasoft.com/jsp/products/home.jsp?product=Jtest

[JUB]
http://jub.sourceforge.net/

[JUnit]
http://www.junit.org

