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ABSTRACT
The problem of skyline computation has attracted considerable re-
search attention. In the categorical domain the problem becomes
more complicated, primarily due to the partially-ordered nature of
the attributes of tuples.

In this paper, we initiate a study of streaming categorical sky-
lines. We identify the limitations of existing work for offline cat-
egorical skyline computation and realize novel techniques for the
problem of maintaining the skyline of categorical data in a stream-
ing environment. In particular, we develop a lightweight data struc-
ture for indexing the tuples in the streaming buffer, that can grace-
fully adapt to tuples with many attributes and partially ordered do-
mains of any size and complexity. Additionally, our study of the
dominance relation in the dual space allows us to utilize geomet-
ric arrangements in order to index the categorical skyline and effi-
ciently evaluate dominance queries. Lastly, a thorough experimen-
tal study evaluates the efficiency of the proposed techniques.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications

General Terms
Algorithms, Performance

Keywords
Skyline, data stream, categorical, partial order

1. INTRODUCTION
Abundance of data has been both a boon and a curse, as it has

become increasingly difficult to process data in order to isolate use-
ful and relevant information. In order to compensate, the research
community has invested considerable effort into developing tools
that facilitate the exploration of a data space. One such success-
ful tool is the skyline query. The skyline of a data set is the subset
of tuples that are not dominated on all of their attributes by any
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other tuple. Intuitively, the skyline consists of the tuples that have
a uniquely interesting combination of attribute values that no other
tuple can match.

Given the practicality of skyline queries, which arises from the
elegant and parameterless manner in which they capture a notion
of interestingness, previous work has concentrated on the efficient
evaluation of skyline queries in both offline and online environ-
ments. In an offline environment data resides on disk and skyline
queries are answered on demand, while in an online data streaming
environment the skyline of the most recent stream data is continu-
ously maintained up to date.

Most of this work reasoned about tuples with numerical attributes
and totally ordered domains, and relied on the cleanness of the
dominance relation between tuples, induced by the linearity of the
numerical domains, in order to derive efficient solutions. However,
in real applications data can either include or be exclusively com-
prised of attributes that are categorical and partially ordered in na-
ture. A hierarchical categorical domain is possibly the most famil-
iar example of a partially ordered domain. Complex relationships
and hierarchal structure cannot be captured by a simple mapping of
categorical values to numbers and this immensely complicates the
skyline computation problem.

Recent work [5] considered the on-demand evaluation of skyline
queries on tuples with partially ordered categorical attributes, but
in an offline environment. As we will subsequently argue and ex-
perimentally demonstrate, the proposed techniques are inappropri-
ate for a highly dynamic data streaming environment where tuples
constantly flow into the system. In this setting, we require an effi-
cient solution to continuously maintain the skyline up to date for the
most recent tuples that arrived in the stream. This leaves a signifi-
cant gap in the array of available skyline techniques. The omission
becomes more important when one considers the wide applicability
of such an online skyline maintenance solution for partially ordered
data.

As an example, consider a service that aggregates and displays
news articles as they are published by news sources. News posts
streaming into the system are associated with categorical attributes
like the name of the news source, the subject of the event and the
geographical area associated with the event. An expert has defined
a partial order over the categorical domains expressing the service’s
preferences and defining its unique style. The system will then se-
lect for display, or more extensive filtering by an expert, the most
“interesting” news that comprise the skyline of the most recent ar-
ticles. For example, a skyline article is of interest because it was
published in a high quality news source and is related to a popular
geographical area, even though the subject itself might not be that
preferable.

In this paper, we identify and study the problem of maintain-
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ing the skyline of streaming data with partially ordered, categori-
cal attributes and realize two novel techniques that constitute the
building blocks of STARS (Streaming Arrangement Skyline), the
proposed efficient solution to the problem.

In particular, we assume a sliding window model of stream com-
putation and introduce a lightweight, grid-based data structure for
indexing the tuples in the system buffer. Our initial, basic index-
ing solution is progressively refined: we first identify and utilize a
property that is unique to the grid-oriented structure of the index
and subsequently develop techniques that offer flexibility in con-
trolling the granularity of the grid. The resulting indexing structure
can gracefully adapt to tuples with many attributes and partially
ordered domains of any size and structure in an optimal manner.

We subsequently study the dominance relation between two tu-
ples with partially ordered attributes in the dual space: tuples are
mapped to lines and the interaction of their corresponding lines
is used in order to infer their dominance relation. This mapping
allows us to utilize powerful tools from computational geometry,
known as geometric arrangements, in order to organize and query
the skyline efficiently. As we discuss, the arrangement-based orga-
nization of the skyline allows us to answer dominance queries by
considering only a small fraction of the skyline tuples.

The rest of the paper is organized as follows. In Section 2 we
survey related work. In Section 3 we introduce the basic defini-
tions and notations that we will use throughout this paper and of-
fer a high level discussion of the skyline maintenance task. The
core techniques comprising our solution are presented in Section
4. Section 5 presents our experimental evaluation of the proposed
solution, while Section 6 concludes the paper.

2. RELATED WORK
Since the inception of the skyline operator [4], researchers have

considered the efficient evaluation of skyline queries over numeri-
cal data in the absence [8, 12] or presence [24, 16, 23, 18] of sup-
porting indexing structures. More recent work has concentrated on
variations of the original query [7, 6, 20]. In this section we briefly
review the relevant literature. A more comprehensive review of the
area is available elsewhere [18].

The Block-nested-loops algorithm introduced in [4] reads data
sequentially from disk, while maintaining in memory the tempo-
rary skyline of the tuples that have been read so far. At the end of
the computation, when all data have been read, the temporary sky-
line is the true skyline of the data set. [8] observed that if the data
are first sorted in an order that is compatible with the dominance
relation, then the maintenance of the in-memory temporary skyline
becomes simpler and more efficient. The LESS algorithm of [12]
capitalizes on this idea and integrates skyline computation with the
external sorting procedure.

Skyline computation can greatly benefit by the presence of a sup-
porting indexing structure. The BBS algorithm of [23] utilizes an
R-tree to progressively construct the skyline. The R-tree is used to
prioritize access over nodes that are likely to contain skyline tuples
and to prune entire nodes whose tuples are definitely dominated by
the partially constructed skyline. The BBS algorithm was found
to be superior than the index-based solutions presented in [24, 16].
Recent work [18] introduced a B-tree variant that stores and clus-
ters the tuples based on their Z-order, which is compatible with the
dominance relation.

The size of the skyline can increase dramatically with data di-
mensionality. This is incompatible with the skyline’s role as an
exploratory tool. In order to compensate, [6] introduced the notion
of k-dominance: a tuple is declared dominant as long as it is better
than another tuple on a subset of its attributes. [20] adopted a dif-

ferent approach to the same problem and introduced algorithms for
computing the k most “representative” skyline tuples.

With respect to skyline maintenance, [26, 18] discuss the prob-
lem for non-streaming, numerical data. However, most relevant to
our work are existing solutions for performing skyline maintenance
for a stream of numerical data [25, 19, 21]. These techniques make
no provision for partially ordered categorical data. The work of
[5] is designed to handle such data, albeit in an offline environ-
ment. Because of the limitations of the techniques presented in [5]
when applied to streaming data, we initiate a study of the problem
of maintaining the skyline of streaming data with partially ordered
attributes and design a novel solution for performing this task.

3. BACKGROUND

3.1 Definitions
An unbounded stream of tuples arrives at the system at high

rates. We maintain a limited-capacity, sliding-window buffer B in
memory that only stores the n most recent tuples from the stream.
When a new tuple arrives from the stream, the oldest tuple in the
buffer is removed in order to free up space for the incoming tuple.

At any time instance, the contents of the buffer constitute a data
set denoted by D. The data set is comprised of n tuples t1, . . . , tn

with d categorical attributes X1, . . . , Xd. The domain Domi of
each of the attributes is partially ordered and constitutes a partially
ordered set, also referred to as a poset. Each domain Domi is
associated with a binary relation �i. Let a, b, c be three elements
of Domi. The partial order relation �i is transitive (a �i b and
b �i c implies a �i c) , reflexive (a �i a holds) and antisymmetric
(if a �i b and b �i a, then a = b). We further denote with ≺i

the strict ordering relation, i.e., a ≺i b implies that a �i b and
a �= b. We will also refer to the relation b ≺i a as a dominates b.
Additionally, we say that a and b are comparable if either a ≺i b
or b ≺i a and incomparable otherwise. Lastly, we will also denote
the relation a �i b as b �i a.

Posets are commonly represented as directed acyclic graphs. Each
domain value is mapped to a vertex and a directed edge is intro-
duced for each pair of comparable values whose relation cannot be
inferred by using the transitive property of the partial order relation.
The following example clarifies the aforementioned definitions.

EXAMPLE 1. Consider the poset of Figure 1. Values a and b
are comparable and a dominates b. On the contrary, values b and c
are incomparable. Furthermore, due to transitivity in the ordering
relation, a dominates d, but an edge on the graph between a and
d would be redundant, since their relation can be easily inferred.
One can notice that given a node, every other node in the poset that
is reachable by it, is also dominated by it.

a

b c

d

Figure 1: A simple poset.

The definitions can be easily extended to tuples comprised of
d categorical attributes. We will say that tuple t1 dominates tu-
ple t2 and write t2 ≺ t1 or t1 � t2, if for every attribute Xi,
t2.Xi �i t1.Xi and there is at least one attribute Xj such that
t2.Xj ≺ t1.Xj . When two tuples t1 and t2 do not dominate one
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another, we will say that they are tied and write t1 ∼ t2. Then, the
skyline of data set D is the subset of all tuples that are not domi-
nated by any other tuple.

Notice that the dominance relation for tuples is transitive and not
symmetric. This implies that given a data set D, its skyline S and
a tuple t �∈ D, in order to find out if t belongs to the skyline of
D ∪ {t} we only need to check if t is dominated by tuples in S. If
it is dominated by a tuple in S, then of course it cannot be part of
the skyline. However, if it is not dominated by any tuple in S, then
it is not dominated by any tuple in D and should therefore become
part of the skyline of D ∪ {t}

EXAMPLE 2. Consider three tuples t1, t2 and t3 with two cate-
gorical attributes. The domain of both attributes is the poset of Fig-
ure 1. Let us assume that t1 = (a, b), t2 = (b, d) and t3 = (b, c).
Then, both t1 and t3 dominate t2, but t1 and t2 are tied (values b
and c are incomparable). Therefore, the skyline of this small data
set consists of tuples t1 and t3.

3.2 Skyline maintenance
At the core of existing solutions that maintain the skyline of

streaming tuples with numerical attributes [19, 21, 25] is a sim-
ple framework that can also be utilized for streaming tuples with
categorical attributes. As a matter of fact, the framework is inde-
pendent of the definition of tuple dominance. The definition only
becomes relevant in the realization of the abstract framework that
we describe. At any given time, the buffer B contains the n most
recent tuples from the stream. Let S be the skyline of the tuples in
the buffer. A buffer update, i.e., the insertion of a new tuple in the
buffer and the expiration of the oldest one, can affect the skyline in
a limited number of ways.

In particular, the incoming tuple can either be dominated by at
least one tuple in the skyline and therefore fails to affect the skyline,
or is not dominated by any tuple in the skyline and should therefore
become part of the skyline itself (as we argued in Section 3.1). In
that case, the incoming tuple might also dominate tuples currently
in the skyline which must of course be removed. Respectively, if
the outgoing tuple does not belong in the skyline, then its expiration
has not effect. However, if the tuple is part of the skyline, then all
tuples in the buffer dominated exclusively by the outgoing tuple
(i.e., dominated by the outgoing tuple, but no other tuple in the
skyline) must be inserted in the skyline.

Therefore, a skyline maintenance solution must efficiently sup-
port two operations: (i) checking whether a tuple is dominated by
the current skyline and (ii) retrieving the tuples in the buffer that are
dominated by the outgoing skyline tuple, since only these tuples are
candidates for entering the skyline. The ability of any technique to
perform this second task efficiently can be augmented by utilizing
the following observation.

LEMMA 1. Let t1, t2 ∈ B be two tuples so that t1 ≺ t2. Then,
if t2 arrived after t1 in the stream, t1 will never be in the skyline of
B.

PROOF. Since t1 arrived before t2, it will also leave the buffer
before t2. Therefore, while t1 is in the buffer, there will be at least
one tuple, namely t2, that dominates it and consequently cannot
become part of the skyline.

The lemma implies that a significant number of tuples in the
buffer is irrelevant for the skyline maintenance task, since they can
never become part of the skyline. We will refer to the relevant part
of the buffer as the skybuffer. Thus, when we need to mend the sky-
line after the expiration of a skyline tuple, we only need to consider

tuples in the skybuffer instead of the entire buffer. The incremental
maintenance of the skybuffer is simple. When a new tuple arrives
from the stream, it is inserted in the skybuffer, while all the sky-
buffer tuples dominated by it are removed. When a tuple expires, it
is simply removed from the skybuffer.

Algorithm 1 summarizes the high level strategy that is employed
in order keep the skyline of the buffer up to date. Notice that the
skyline S is a subset of the skybuffer SB. After a buffer update,
any changes to the composition of the skyline can be optionally
reported.

Algorithm 1 Skyline maintenance framework
Input: skybuffer SB, skyline S ⊆ SB, incoming tuple in, outgoing
tuple out

if in not dominated by S then
Insert in in S and remove any dominated tuples from S;

end if
Insert in in SB and remove any dominated tuples from SB;
if out is in S then

Find tuples in SB dominated by out and use them to mend S;
end if
Remove out from SB;

4. EFFICIENT SKYLINE MAINTENANCE
FOR CATEGORICAL TUPLES

In this section we present two novel techniques for realizing the
building blocks of the skyline maintenance framework: indexing
the skybuffer so that we can efficiently identify the skybuffer tuples
dominated by a query tuple and organizing the skyline in order to
be able to rapidly answer whether a query tuple is dominated by the
skyline.

We initiate the presentation of the proposed techniques by briefly
reviewing the notion of the topological sort of a single poset and
discussing the extension of this idea to tuples comprised of multiple
partially ordered attributes.

Based on these results, we introduce our baseline grid-based so-
lution for indexing the skybuffer and discuss the advantages of this
approach over potential alternatives. This basic solution is progres-
sively refined. The first enhancement exploits the unique structure
of the grid index to optimize query evaluation by focusing on spe-
cific, relevant cells instead of an entire region of cells, many of
which can be irrelevant. The index is further refined by developing
a domain partitioning technique that offers absolute control over
the granularity of the grid. Part of the technique is an algorithm for
constructing an optimal poset partition that minimizes the expected
query evaluation cost.

We then focus our attention on designing an efficient skyline or-
ganization. This is accomplished by identifying the connection be-
tween the dominance relation of two tuples and the interaction of
their dual space representation as lines. The mapping of tuples to
lines allows us to utilize powerful tools from computational geom-
etry, known as geometric arrangements, in order to organize and
query the skyline efficiently. As we discuss, the arrangement-based
organization allows us to answer dominance queries by considering
only a small fraction of the skyline tuples.

4.1 Topological sorting
A topological sort [2] is a numbering of the vertices of a DAG

such that every edge from a vertex numbered i to a vertex numbered
j satisfies i < j. Figure 2 presents a poset and two possible topo-
logical sorts. A poset can have a large number of valid topological
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sorts, although for our purposes any one of them will be equally
appropriate. Finding a topological sort for a poset is a linear cost
operation [2].

a b

c d e

f g h

a b c d e f g h

a c f b d e h g

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

(i)

(ii)

Figure 2: Topological sorting.

Informally, a topological sort of a poset is a linear ordering of
its values which is compatible with its partial-ordering relation. In
other words, if for two values a, b we have a � b, then a will ap-
pear before b in the ordering. Therefore, the guarantee we obtain is
the following: for a given value x, all values dominated by x will
appear after it in the linear order, while x can never dominate any
value that precedes it in the ordering. Conversely, no value appear-
ing after x can ever dominate it, while all values that dominate x
appear before it. This intuition is captured by the following lemma.

DEFINITION 1. Let v be a value of a partially-ordered domain.
We denote by r(v) the integer corresponding to v’s position in a
certain topological sort of the domain.

LEMMA 2. Let v1, . . . , vm be the m values of a partially-ordered
domain Dom. Then vi � vj only if r(vi) < r(vj).

Consider for example value d and the topological sort (ii) in Fig-
ure 2. d does not dominate any of the values that appear before it
and all values that dominate it appear before it (a, b in that case).
Furthermore, all values dominated by d (only g in this case) appear
after it in the order.

These observations and reasoning concerning a single domain,
can be extended to multiple attribute domains. Consider a set of
tuples with d partially-ordered categorical attributes. For a tuple
t1 to dominate another tuple t2, it needs to dominate t2 in every
attribute1. In order for this to be possible, all d attributes of t1 must
be located before t2’s attributes in the corresponding topological
sorts. As before, this is not an if and only if relation. The guarantee
we have is that for t1 to dominate t2, its attributes must be located
before t2’s attributes in the corresponding linear orders. Formally:

LEMMA 3. Let t1, t2 be two tuples with d partially-ordered cat-
egorical attributes X1, . . . , Xd. Then t1 � t2 only if r(t1.Xi) <
r(t2.Xi), 1 ≤ i ≤ d.

This relation has another very useful implication: given two tu-
ples t1 and t2, if there is a disagreement in the ordering of the val-
ues for two of their attributes, then one cannot dominate the other
and are therefore tied.

LEMMA 4. Let t1, t2 be two tuples with d partially-ordered
categorical attributes X1, . . . , Xd. If ∃i, j such that r(t1.Xi) <
r(t2.Xi) and r(t1.Xj) > r(t2.Xj), then t1 ∼ t2.

4.2 Organizing the skybuffer tuples in a grid
One of our goals in developing an efficient skyline maintenance

solution is indexing the skybuffer so that we can efficiently insert
1To simplify the discussion, we ignore the case of equal attribute
values.

and delete tuples, as well as identify the tuples dominated by a
query tuple. The linearization of poset values that we introduced
will allow us to do so.

A tuple t(X1, . . . , Xd) in the skybuffer can be mapped to a point
(r(t.X1), . . . , r(t.Xd)). Then, in order to identify the skybuffer
tuples that are dominated by a query tuple q(X1, . . . , Xd), we only
need to consider tuples/points t with q(X1) ≤ t(X1), . . . , q(Xd) ≤
t(Xd). All these tuples will be checked for dominance against q in
order to identify the ones dominated. Notice however that this is
precisely a rectangular range query that can be efficiently supported
by a variety of spatial data structures, like a grid or an R-tree.

We chose to build our skybuffer indexing solution around a sim-
ple grid. The reason for doing so is twofold. Firstly, previous re-
search argues [9, 17, 22] that in a streaming environment, the po-
tential query performance gains by using a more sophisticated data
structure are offset by the heavy maintenance costs induced by the
data volatility, which is inherent in a streaming application. Sec-
ondly, the unique structure of the grid interacts favorably with the
properties of our problem. This interaction will allow us to subse-
quently introduce optimizations and refinements whose applicabil-
ity is exclusive to our grid-based index.

Let us discuss a concrete example that will help clarify how a
grid can be used to index the skybuffer and identify the skybuffer
tuples dominated by a query tuple.

EXAMPLE 3. Consider a set of tuples with two categorical at-
tributes, the domain of both attributes being the poset of Figure 2.
Suppose that the poset values have been mapped to integers accord-
ing to topological sort (i) of Figure 2. Then, we create the grid by
using this topological sort as the grid scales and place the skybuffer
tuples in its cells. Figure 3 illustrates. Each grid cell corresponds
to a unique combination of attribute values and only contains tu-
ples with these exact values. As an example, the cell corresponding
to tuples with attribute values (d, e) has been marked with an “×”
in the figure.

● X

● ●

● ●

abcdefgh
a

b

c

d

e

f

g

h

Figure 3: Organizing the skybuffer as a grid.

In our 2-dimensional example, all tuples dominated by a certain
tuple t must have values in both attributes that appear after the cor-
responding values of t in the linear order. However, tuples with
this property are placed in cells lying in a single rectangular area
of the grid. In our running example of Figure 3, all tuples that are
dominated by tuple (d, e) are located in the rectangular area whose
upper-right corner is cell (d, e). Notice that this does not imply that
all tuples in that area are dominated. It merely means that the tu-
ples that are dominated by (d, e) must lie in that area. As a matter
of fact, only tuples located in the cells marked with • in Figure 3
are dominated.

Summarizing our progress so far, we demonstrated how a grid
can be used to index the skybuffer tuples. The scales of the grid
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for each dimension is the linearization of the corresponding poset.
Then, in order to identify the skybuffer tuples that are dominated
by a query tuple, we need to issue a rectangular range query, which
the grid can efficiently support, and only consider the tuples lying
in the query area. Insertions and deletions can also be carried out
extremely efficiently.

4.3 Improving the skybuffer organization

4.3.1 Visiting only relevant cells
An additional advantage of the grid-based index is that instead

of issuing a rectangular range query in order to visit the cells that
potentially contain dominated tuples, we can directly identify and
process precisely the cells that contain dominated tuples. We will
refer to this unique capability of the grid-based index as the ability
to perform focused search.

Let us revisit the example of Figure 3. We claim that we can
directly visit the cells marked with • instead of every cell in the
rectangular region. The query tuple is (d, e). The domain val-
ues dominated by d (and including d) are {d, g}. Respectively,
the domain values dominated by e are {e, g, h}. Then, due to the
definition of dominance (Section 3.1), only tuples with values in
{d, g} × {e, g, h} are dominated by (d, e). This is captured by the
following lemma.

LEMMA 5. (Focused Search) Let t be a tuple with d partially-
ordered categorical attributes X1 ∈ Domi, . . . , Xd ∈ Domd. Let
dom(t.Xi) be the values in Domi such that t.Xi � v, v ∈ Domi.
Then, t dominates a tuple s if and only if s ∈ dom(t.X1) × · · · ×
dom(t.Xd).

The lemma allows us to identify and focus on the cells in the grid
containing tuples dominated by the query tuple, which is clearly
much more efficient than issuing a rectangular range query and con-
sidering tuples that are irrelevant to the query.

4.3.2 Controlling the grid granularity
A problem with the grid-based index - as presented so far - is

the lack of control over the granularity of the grid. The scales of
the grid for each dimension are directly derived from a topological
sort of the corresponding domain and introduce as many buckets
per scale as values in the domain. While this fine granularity might
be acceptable for tuples with few attributes and domains with a
handful of values, it is obvious that the solution does not scale. The
number of cells in the grid for tuples with d attributes is |Dom1| ×
· · · × |Domd|. As an example, if the tuples have 4 attributes and
each domain size is about 500, then the grid would be comprised
of 62.5 billion cells, which is clearly infeasible.

In general, the grid granularity has significant impact on the per-
formance of any grid-based indexing solution. Since pruning at
query time occurs at the cell level, coarser granularity and therefore
bigger cells result in less effective pruning. On the other hand, set-
ting a finer granularity produces a greater number of smaller cells.
Besides increased memory requirements, such an arrangement re-
sults in increased query time, since accessing a cell is associated
with an overhead. There is always a well-performing granularity
range where these competing trends do not dominate query time.
This range is certainly application specific, but can also be data de-
pendent, so it is paramount to provide flexibility in controlling grid
granularity.

We begin the introduction of our granularity control mechanism
by conducting a few simple observations. First, let us formally
define the depth of a domain value.

a b

c d e

f g h

Depth 0

Depth 1

Depth 2

● X

● ●

a,bc,d,ef,g,h

a,b

c,d,e

f,g,h

(a) (b)

Figure 4: Depth-based value grouping.

DEFINITION 2. Consider a DAG and its vertices. A vertex is a
source if it has no incoming edges. Then, the depth of a vertex in a
DAG is the length of the longest path from a source to the vertex.

Figure 4(a) depicts an example poset and the associated depth
of its domain values. In the figure we can observe that a value
only dominates other values that are located “deeper” in the poset.
This implies that sorting the vertices in increasing depth values (and
breaking ties arbitrarily) produces a perfectly valid topological sort.
Using this insight, we can restate Lemma 2 as follows.

LEMMA 6. Let v1, . . . , vm be the m values of a partially-ordered
domain Dom. Then vi � vj only if depth(vi) < depth(vj).

The lemma guarantees that given a poset value, all values that it
dominates have to be located deeper in the poset, but this doesn’t
imply that all values located deeper are dominated. Lemmata 3 and
4 can also be restated in terms of depth, but we do not do so in the
interest of space. The implication of these results is that we can
create and use the grid using scales at the granularity of a depth
level. Let us discuss a concrete example.

EXAMPLE 4. Consider a data set consisting of tuples with 2
partially-ordered categorical attributes, the domain of both of them
being the poset of Figure 4(a). Then, we can group domain values
that lie on the same depth and create the grid of Figure 4(b). In
Section 4.2, every cell would contain tuples with the same attribute
values. Now, tuples with corresponding attributes that lie at the
same depth level are placed in the same cell. For example, tuple
(d, e) lies in the cell marked with “×” in Figure 4(b), along with
other tuples with values in {c, d, e} × {c, d, e}.

This reduction of the grid granularity does not come without a
price. When querying the grid to retrieve the tuples dominated by
the query tuple, we can no longer perform focused search and only
access cells that exclusively contain tuples dominated by the query
tuple. Instead, we must access all cells containing tuples with at-
tribute values located deeper in their corresponding posets. This is
equivalent to a full rectangular range query (Figure 4(b)). Further-
more, the cells can contain tuples both dominated and not domi-
nated by the query tuple and therefore a dominance check against
all the tuples in the cells is required to identify the dominated tu-
ples.

4.3.3 Poset partitioning
The proposed depth-based grouping of poset values improves the

initial solution, but does not allow to explicitly set the desired grid
granularity and is tied to the structure of the posets - a constraint
that can introduce problems. As an example, consider a poset with
only two depth levels, but many values spread evenly between the
levels. The solution of Section 4.3.2 would produce oversized grid
cells and therefore reduced pruning efficiency at query time.
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In Section 4.3.2, we grouped all the values of a poset having
the same depth. We can further refine this partition of values into
groups by creating more than one group per depth level. Let us see
the potential advantages of such an approach with the following
example.

EXAMPLE 5. Suppose that our data set contains tuples with
two partially-ordered categorical attributes, the domain of both be-
ing the poset of Figure 5(a). The values of the domain have been
grouped as illustrated in the figure. If we order the groups in as-
cending order of their depth value, breaking ties arbitrarily, we
again come up with a valid topological sort for the poset. We can
therefore use the same rationale as before to create and query the
grid.

a b

c d e

f g h

Depth 0

Depth 1

Depth 2

abc

X●

●●

d,eg,h f
a

b

c

d,e

f

g,h

(a) (b)

Figure 5: Refined depth-based value grouping.

Figure 5(b) presents the resulting grid by using as scales the
grouping of Figure 5(a). As an example, tuple (d, e) lies in the cell
marked with “×”. As before, all cells that can potentially contain
tuples that are dominated by (d, e) are located in the rectangular
area highlighted in Figure 5(b).

However, unlike the example we studied in Section 4.3.2, not all
cells in the rectangular area contain tuples that can be dominated by
the query tuple. The cells that contain candidates are marked with
•. This allows us to use focused search in order to directly access
relevant cells instead of issuing a range query. Note that cells will
contain tuples that are both dominated and not dominated by the
query tuple, but we can completely ignore cells that exclusively
contain not dominated tuples.

Formally, let Dom be a partially ordered domain with values
v1, . . . , vm that has been partitioned into k groups, g1, . . . , gk. We
say that group gi dominates another group gj if there exists one
value in vi ∈ gi and another value vj ∈ gj such that vi dominates
vj . Let dom(g) be the union of the groups dominated by g, in-
cluding g itself. Furthermore, let g(v), v ∈ Dom be the group that
value v belongs to. Then, in order to locate the tuples dominated
by a query tuple q(X1, . . . , Xd) we only need to visit the grid cells
that contain groups dom(g(q.X1)) × · · · × dom(g(q.Xd)). The
intuition is that we only need to check tuples in the groups where
the values dominated by vi lie. To ease notation we will denote
the values in dom(g(vi)) as domg(vi) and say that the values are
group-dominated by vi.

A natural question that arises is that given a budget of B buckets
for a poset, how should the poset be partitioned into groups. Not
all groupings will offer equally good pruning opportunities that the
focused search procedure can exploit. In the worst case, we can
come up with a scenario where even though we have used more
buckets than depth levels, we still end up visiting as many cells
as we would visit by issuing a range query on the grid. This case
would be equivalent in cost to the simpler depth-based grouping.

Let us concentrate on a single attribute with values v1, . . . , vm

and a grouping g1, . . . , gk. Had we created the grid at the finest

granularity possible, then, given a query tuple with value vi for
the attribute, we would only examine (check for dominance) tuples
with values in dom(vi). However, because of the grouping of do-
main values we also need to examine all tuples with values that are
group-dominated by vi, i.e., tuples with values in domg(vi).

Let us assume that the domain values are uniformly distributed.
Then, the number of tuples that must be checked for dominance is
n
m
|domg(vi)|, i.e., n

m
tuples, where n is total number of tuples in

the skybuffer, for every value in domg(vi). Furthermore, the prob-
ability that the query tuple has attribute value vi is 1

m
. Therefore,

the expected number of tuples that must be checked for dominance
in every query is E =

∑m
i

1
m

n
m
|domg(vi)|. Since n and m are

constants, in order to minimize E we need to come up with a group-
ing that minimizes

∑
i |domg(vi)|, which is the sum of the number

of group-dominated values, from every value in the domain. Un-
fortunately, we can demonstrate that even for simple instances, the
problem is NP -complete.

THEOREM 1. Given a partially ordered domain Dom with val-
ues v1, . . . , vm, the problem of identifying a partition of the domain
into k groups g1, . . . , gk, so that

∑m
i |domg(vi)| is minimized, is

NP-complete.

PROOF. A simple instance, involving a domain with only two
levels, can be reduced from the “maximum k-set packing” problem,
which is NP-Complete [3].

To compensate, we developed a partitioning heuristic that we
found to work extremely well in practice, as we experimentally
demonstrate in Section 5. The heuristic has two main steps: it first
allocates a fraction of the buckets available to each level and then
performs a greedy, bottom-up partition of the poset, i.e., it starts
from the deepest level and partitions it, then partitions the level
above and so on, until the uppermost level is partitioned. In order
to partition a level, the heuristic leverages local information coming
from the already partitioned level below and the level above.

The bucket allocation strategy that we selected is the follow-
ing: each level is initially assigned one bucket and the remaining
buckets are distributed among the depth levels proportionally to the
number of nodes that they contain. The outline of this partition
framework is illustrated in Algorithm 2.

Algorithm 2 Partitioning heuristic framework
Input: Poset with values v1, . . . , vm, number of buckets B
Output: Disjoint value groups G1, . . . , GB

Variables: Maximum depth level of the poset h, set of groups at depth i,
{G}i

Group together values according to their depth into groups D1, . . . , Dh;

Allocate to level i, bi = 1 + � |Di|
m

(B − h)� buckets;

for i = h down to 1 do
Utilize information from domain values in Di−1 (level above) and
groups in {G}i+1 (level below);

Partition values in Di into bi groups Gi,1, . . . , Gi,bi
and place them

in {G}i;
end for

Let us now concentrate on how a depth level is partitioned given
a budget of k buckets for that level. The partitioning is based on
local information, coming from the level above and the level below
that has already been partitioned. For each pair of nodes we define
a notion of benefit that we can expect by placing these nodes into
different groups.
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Figure 6: Poset partitioning heuristic.

EXAMPLE 6. Consider the example of Figure 6. Suppose that
we want to measure the benefit of separating nodes b1 and b2 (Fig-
ure 6(a)). Remember that we need to minimize the number of poset
values that each value group-dominates. Then, if we place them in
the same group (Figure 6(b)):

• Node b1 will not be affected, since it already group-dominates
nodes c1 to c4 in the lower level. Therefore the benefit by
separating b1 and b2 is 0.

• Node b2 however, will now group-dominate nodes c1 and c2.
This would increase the cost function by at least 2. Therefore,
the benefit for separating b1 and b2 is +2.

• Node a1 already group dominates nodes b1 and b2. There-
fore no benefit is derived be separating them.

• If b1 and b2 are grouped together, node a2 will group-dominate
node b1, besides node b2. Therefore, by separating b1 and
b2 we derive a benefit of +1 for a2.

• The total benefit for separating b1 and b2 is now 0+2+0+1=3.

Therefore, for each pair of nodes in a level, we can connect them
with an undirected edge weighted by the benefit we can derive by
separating the nodes. Then, a good partitioning for this level can be
done by considering the maximum k-cut of the nodes. The maxi-
mum k-cut will partition the nodes of the level into k groups so that
the total weight of edges spanning two groups is maximized. Ef-
fectively, this procedure maximizes the sum of the pairwise benefits
for this level.

Generating a maximum k-cut of a graph with n nodes is an NP-
complete problem. [11] introduced a semi-definite programming
(SDP) relaxation algorithm that provides a 1 − 1/k + 2 ln k/k2

approximation to the optimal solution. However, a much simpler
greedy heuristic can identify a 1 − 1/k approximation to the op-
timal solution, a guarantee that is only marginally worse than the
one offered by the SDP relaxation. The greedy algorithm consid-
ers the nodes in arbitrary order and places them in one of the k
groups g1, . . . , gk. A node v is placed in the group whose nodes vg

minimize the sum
∑

vg∈g w(v, vg), where w(v, vg) is the weight
(benefit) of the edge between v and vg , thus maximizing the weight
of the “cut” edges . The procedure for partitioning the poset values
of a depth level is illustrated in Algorithm 3.

THEOREM 2. The weight of the k-cut produced by Algorithm 3
is greater than (1 − 1/k)OPT .

PROOF. The weight C of the k-cut is the sum of the edges that
span different groups. Let G(V, E) be the graph and v1, . . . , vj ,
. . . , vl the order in which its nodes are processed. We define a
disjoint partition of edges E into groups Ej = {vivj |i < j}. Then,
the placement of node vj in a group contributes by Cj ≥ (1 −

1/k)w(Ej) to the weight of the cut, where w(Ej) is the sum of
edge weights in Ej . This is a direct consequence of our placement
strategy. Then C =

∑l
j=1 Cj ≥ (1 − 1/k)

∑l
j=1 w(Ej) = (1 −

1/k)w(E), where w(E) is the sum of all edge weights in the graph.
However, w(E) ≥ OPT , therefore, C ≥ (1 − 1/k)OPT .

Algorithm 3 Level partitioning algorithm
Input: Poset values v1, . . . , vl, number of buckets k
Output: Disjoint value groups g1, . . . , gk

For every pair of nodes vi, vj , calculate benefit w(vi, vj);

Initialize groups to be empty;

for i = 1 up to l do
Place vi in group gj such that

∑
vj∈gj

w(vi, vj) is minimum;

end for

Our partitioning heuristic assumes that attribute values are uni-
formly distributed. Nevertheless, potential knowledge about the
value distribution could be incorporated in the partitioning process
by modifying in an appropriate manner the benefit values between
the nodes.

Lastly, we have assumed that the number of buckets that are allo-
cated for partitioning a poset is greater than the poset’s maximum
depth, so that at least one bucket is available per depth level. In
the rare case that fewer buckets than levels are available, we can
merge into a single group consecutive depth levels. A natural strat-
egy that can utilize this observation would be to merge consecutive
levels into groups, so that every group contains approximately the
same number of poset values. This is identical to the process of
producing an equi-depth histogram [15].

4.4 Arrangement representation of the skyline
The second building block of the maintenance framework is an

efficient skyline organization. The employed indexing structure
must be able to determine whether a query tuple is dominated by
the skyline, checking as few skyline tuples as possible. This oper-
ation is essential for good performance as it is conducted for each
incoming stream tuple, as well as during the skyline mending pro-
cedure that occurs after a skyline tuple expiration. To achieve this
goal, we study the dominance relation in the dual space and design
an efficient solution that utilizes geometric arrangements [1, 13].

4.4.1 Arrangements of lines
The arrangement A(L) of a finite collection of lines L, is the

partition of the plane induced by the lines in L [1, 13]. The lines de-
compose the 2-dimensional plane into 0-dimensional vertices (in-
tersections of lines), 1-dimensional edges (line segments between
vertices) and 2-dimensional faces (the convex tiles of the plane
bounded by the intersecting lines). Figure 7(a) presents an arrange-
ment of three lines, with faces highlighted in grey. Arrangements
are well studied structures and there exists a wealth of combina-
torial results that reason about their complexity, as well as a fair
number of main memory data structures for storing and operating
on them.

An arrangement of s lines is composed of O(s2) vertices, O(s2)
edges and O(s2) faces. An interesting substructure of an arrange-
ment is the zone of a line not present in the arrangement. The zone
is comprised of the faces stabbed by the line, and the celebrated
Zone Theorem states that these faces are in turn comprised of only
O(s) edges [1, 13]. It is partly because of the favorable combina-
torial bound promised by the Zone Theorem, that arrangements are
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Figure 7: Arrangements of lines.

of great practical, besides theoretical interest: insertions and dele-
tions of lines, and many interesting queries on the arrangement can
be performed in linear O(s) time.

Although a variety of data structures is available for represent-
ing an arrangement, the one most suitable for our purposes is the
doubly-connected-edge-list (DCEL) data structure [10] (Figure 7(b)).
At its core, the arrangement is a planar graph consisting of vertices
and undirected edges connecting these vertices. The DCEL uses
a pair of twin directed half-edges, moving in opposite directions,
to represent each edge connecting two vertices. Furthermore, the
DCEL maintains additional incidence and connectivity information
in order to offer great flexibility in traversing the arrangement. For
example, all the half-edges comprising the internal boundary of a
face are linked in a circular list (edges e1, e2 and e3 in Figure 7(b))
and each half-edge maintains a link to its twin (edges ei and e′i in
Figure 7(b)). This information suffices to enable the traversal of the
zone of an external line and consequently the identification of all
lines in the arrangement intersected by the external line.

To summarize, the DCEL can store the arrangement of s lines us-
ing O(s2) space and can perform insertions, deletions in O(s) time.
Furthermore, it can identify all lines intersected by a query line in
O(s) time. Although the combinatorial bounds associated with the
arrangements might not seem attractive, arrangements have been
successfully utilized in a demanding streaming environment in or-
der to perform operations similar to the ones required in the current
problem [9]. Given that in our scenario s will be equal to the size of
the skyline, which should be normally small, we can expect the ar-
rangement based skyline organization to perform well, in addition
to the advantages that we subsequently present.

4.4.2 Dominance checking in the dual space
In the context of computational geometry and related disciplines,

the dual space is a symmetrical version of the original (or primal)
problem space, where each point in the primal is mapped to a line
in the dual and vice versa. Primal/dual transformations are used
widely as they offer fresh insight into the problem and point to
solutions that are not easy to conceive in the primal space.

We have already discussed in Sections 4.1 and 4.2 how tuples
with d partially-ordered categorical attributes can be mapped to d-
dimensional points by utilizing a topological sort of the attributes
and representing each attribute value with its position in the corre-
sponding linear order. Lemmata 3 and 4 utilized this representation
to reason about the possible dominance relation between two tu-
ples, given their point representation.

Let us initially concentrate on tuples with two attributes. Re-
member that we denote with r(v) the position of value v in a topo-
logical sort of its corresponding domain. We define the following
mapping: each tuple t(a, b) is mapped to a line y = r(a) ·x− r(b)
in the dual cartesian plane (x, y). Then, we can prove that two tu-
ples are comparable (one dominates the other) if the intersection of

their corresponding lines lies in the positive half of the x axis in
the dual plane. As with all our results, this is not an iff relation.
However, we can be sure that if the intersection point lies on the
negative half of the axis, then the tuples are definitely tied.

LEMMA 7. Consider two tuples t1, t2 with two categorical at-
tributes X1, X2. Then, t1, t2 are comparable only if the inter-
section point (xI , yI) of lines y = r(t1.X1) · x − r(t1.X2) and
y = r(t1.X1) · x − r(t1.X2) has xI > 0.

PROOF. Using simple algebra, we can find that the xI coordi-

nate of the intersection point is xI =
r(t1.X2) − r(t2.X2)

r(t1.X1) − r(t2.X1)
. No-

tice that if xI < 0, then r(t1.X2) < r(t2.X2) and r(t1.X1) >
r(t2.X1) or r(t1.X2) > r(t2.X2) and r(t1.X1) < (t2.X1). In
either case, Lemma 4 states that tuple t1 and t2 are tied.

If xI > 0, then r(t1.X2) < r(t2.X2) and r(t1.X1) < r(t2.X1)
or r(t1.X2) > r(t2.X2) and r(t1.X1) > (t2.X1). Again, in either
case, Lemma 3 states that the tuples can be comparable.

Lemma 7 points to a technique that allows us to prune a signifi-
cant fraction of the skyline tuples when checking a query tuple t for
dominance: we can map the skyline tuples to lines and store in the
arrangement only the part of the lines that lies on the positive half of
the x-axis. Then, in order to answer whether t is dominated by the
skyline, we map t to a line and query the arrangement to retrieve the
lines/tuples intersected by t. Their intersection point is guaranteed
to have xI > 0, since only the positive part of the lines is stored
in the arrangement. Consequently, tuples not intersected by t in the
arrangement, and which are definitely tied with t, are pruned. An
additional advantage is that the query on the arrangement returns
the intersected tuples progressively, therefore the computation can
stop as soon as a tuple that dominated t is found.

EXAMPLE 7. Consider a skyline consisting of three tuples t1,
t2, t3. The tuples are mapped to lines in the dual plane and their
positive half is stored in an arrangement (Figure 8). The vertices
of the arrangement are emphasized using solid bullets. In order to
determine whether a query tuple q is dominated by a skyline tuple,
q is also mapped to a line and the arrangement is queried. Us-
ing the connectivity information provided by the DCEL structure to
traverse the arrangement, we progressively retrieve the tuples in-
tersected by q, i.e., t2 and t3 in our example. The intersection of q
with t3 is encountered first, therefore q will initially be checked for
dominance against t3. If q is dominated, the query is answered and
the traversal stops of the arrangement stops. Otherwise, the traver-
sal continues and intersected tuple t2 is recovered and checked for
dominance. Notice that q does not intersect t1 and therefore we do
not need to check for dominance against it.

x

y

t1

t2

t3

t3 t2

t1

q
1 2

Figure 8: Utilizing an arrangement for pruning.

The technique can be directly applied to tuples with d attributes
X1, . . . , Xd. In that case, we need to arbitrarily select two at-
tributes Xi and Xj and use them consistently to map tuples t to
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lines y = r(t.Xi) · x − r(t.Xj) and store them in an arrange-
ment. The query tuple is also mapped to a line using the same
two attributes Xi and Xj and the aforementioned transformation.
Then, as in the 2-dimensional case, the query tuple will be tied
with the skyline tuples that it does not intersect in the arrangement
and therefore we only need to progressively check for dominance
against intersected tuples. This holds since if there is an order-
ing mismatch in the corresponding topological sorts for any two of
their attributes, then the tuples are tied (Lemma 4). Formally:

LEMMA 8. Consider two tuples t1, t2 with d categorical at-
tributes X1 . . . , Xd. Let Xi, Xj be any two of the attributes. Then,
t1, t2 are comparable only if the intersection point (xI , yI) of lines
y = r(t1.Xi) ·x− r(t1.Xj) and y = r(t1.Xi) ·x− r(t1.Xj) has
xI > 0.

For tuples with more than two attributes, we also considered
more complex skyline organizations that utilized multiple low di-
mensional arrangements, but the improved pruning efficiency and
query performance failed to compensate for the additional mainte-
nance overhead.

4.5 Numerical attributes
So far in our discussion, we have only considered tuples com-

prised exclusively of partially-ordered categorical attributes. Nev-
ertheless, the proposed solutions can handle tuples with mixed cat-
egorical and numerical attributes without requiring any additional
modification. This is possible since partial-ordered domains are a
generalization of fully-ordered numerical domains. The DAG rep-
resenting a numerical domain is simply a linear chain of values and,
as it is evident, the proposed techniques can handle posets of any
size and shape.

More specifically, for the arrangement organization of the sky-
line, when a numerical attribute is used in the tuple to line map-
ping, we can directly use the numerical values instead of their po-
sition in the (unique) topological sort and our analysis remains per-
fectly valid. On the other hand, when constructing and using the
grid-based skybuffer index, the scales of the numerical attributes
will consist of buckets corresponding to disjoint ranges of numer-
ical values, i.e., as in normal numerical grids. Then, each bucket
group-dominates all the other buckets that contain smaller numeri-
cal values.

5. EXPERIMENTAL EVALUATION

5.1 Adapting existing work
In lack of techniques dealing directly with the problem of main-

taining the skyline of streaming categorical data, we adapted the
offline, categorical skyline evaluation technique of [5] for use in a
streaming environment.

Previous work on maintaining the skyline of numerical tuples
[25] has utilized R-trees to index the skybuffer and the skyline. In
the numerical domain, identifying the tuples of a data set that ei-
ther dominate or are dominated by a query tuple is equivalent to a
rectangular range search operation that can be efficiently supported
by an R-tree, or any other data structure offering similar query ca-
pabilities.

Chan et al. [5] study the problem of evaluating external (i.e.,
disk-based) skyline queries against tuples with categorical attributes.
In their solution, every categorical attribute is mapped to two nu-
merical attributes, Domi 
→ R

2
+. Therefore, a tuple with d cate-

gorical attributes is mapped to a tuple with 2d numerical attributes.
In the suggested solution, the tuples of the data set are indexed in
the numerical domain.

The mapping that [5] employs has the following property. Con-
sider two categorical values a, b ∈ Domi that are mapped to two
2-dimensional points p(a) and p(b). If p(a) dominates p(b), then
conclusively a � b. However, if p(a) and p(b) are tied, we can
make no inference about the relation of a and b: we could have
a � b, a ≺ b or a ∼ b. This is illustrated in Figure 9. Categorical
value a is mapped to point p(a) in the numerical domain and par-
titions the plane into four quadrants. Any value that is mapped to
area (I) dominates a, values mapped to area (II) are dominated by
a, while we cannot draw any conclusions if the value is mapped to
quadrants (III) or (IV).

p(a)

(I) 
dominates a

(II) 
dominated by a

(III) 
?

(IV) 
?

Figure 9: Categorical to numerical domain mapping in [5].

Due to the properties of the mapping, if the skyline itself is or-
ganized in the transformed numerical domain, false positive tuples
will creep into the skyline. In order to compensate, the authors sug-
gest a solution that organizes the skyline in the original categorical
domain. The tuples are partitioned into four disjoint groups that
have the following property: some tuple groups can never domi-
nate some of the other tuple groups. This reduces the number of
tuples that need to be considered when checking if a tuple is domi-
nated by the skyline or not.

The main components of the solution presented in [5] can be
adapted to the skyline maintenance framework. The skyline can
be organized as suggested by the authors. The skybuffer can be in-
dexed with an R-tree or a grid. When a tuple needs to be inserted in
the skybuffer, a range query identifies and removes tuples lying in
the high-dimensional equivalent of area (II). However, this implies
that tuple in areas (III) and (IV) that are dominated by the inserted
tuple will remain in the skybuffer, increasing its size. When a tu-
ple is removed from the skyline, we must use all tuples that lie in
areas (II), (III) and (IV) in order to retrieve all the tuples in the
skybuffer that are dominated by the expiring tuple. However, in
a high dimensional space, these three areas comprise almost the
entire search space.

Although the techniques of [5] are efficient for evaluating sky-
line queries on disk-based categorical data, they do not provide an
attractive streaming solution. As we subsequently demonstrate in
Section 5.4, the increase in the data dimensionality incurred by the
mapping, as well as the complexities of maintaining and querying
the skybuffer, result in reduced performance.

5.2 Data generation
We performed our experimental evaluation utilizing both real

and synthetic data. Our real data set will be described later in the
section. For synthetic data, we generated partially-ordered domains
with different structures and shape to cover a wide range of possi-
ble settings. Figure 10 illustrates two classes we used. The poset of
Figure 10(a) has a “tree” structure. Every depth level has twice the
number of values from the level above. On the other hand, the poset
of Figure 10(b) has a “wall” structure and all depth levels have the
same number of values. A poset is defined by its structure, i.e., tree
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or wall, and a triplet (m,h, c), where m is the number of domain
values, h the height (number of depth levels) of the poset and c is
the internal connectivity of the poset. This parameter lies in inter-
val (0, 1] and is the fraction of values in the immediate deeper level
that a value dominates. Having fixed the number of attributes and
their domains for the tuples, values were generated uniformly and
independently.

We restrict our synthetic data experiments to tuples whose at-
tribute values were generated independently. To compensate, we
experiment with real data that exhibit a high degree of non-uniformity
and negative attribute correlation.

(a) (b)

Figure 10: Poset structure.

5.3 Experimental setting
We will refer to the adapted solution of [5] as SDC (Stratification

by Dominance Classification). For fairness, we used a lightweight
grid to index the skybuffer instead of heavyweight R-tree, as was
initially suggested in the numerical skyline maintenance solution
of [25]. This is supported by recent work that argues that a grid is a
more appropriate index than an R-tree in the context of streaming
applications [9, 17, 22].

A stream of tuples arrives continuously at the system which main-
tains a sliding window buffer. The buffer stores the n most recent
tuples that have arrived from the stream. When a new tuple arrives,
the oldest tuple in the buffer is removed to free up space for the
incoming tuple. After each buffer update, the skyline as well as all
supporting indices are brought up to date.

The experimental setting parameters that can potentially affect
performance are the size of the buffer n, the dimensionality of
the data d and the structure of the categorical domains. As was
described in Section 5.2, domains are characterized by their type
(tree, wall) and a triplet (m,h, c). Therefore, we designed a set of
experiments to evaluate the impact of these parameters on the per-
formance of the two techniques. We also designed experiments that
offer us insight into the inner workings of the techniques and help
us understand how different experimental and method parameters
affect performance. A detailed analysis of memory requirements
is omitted due to space constraints. We comment that the memory
overhead of our techniques is reasonable and within the capabilities
of modern commodity hardware.

The techniques were implemented in Java and all experiments
were carried out in 2.4GHz Opteron 850 processor with 4GB of
memory, using the 32-bit Java 1.6 Server VM.

5.4 Experimental results

5.4.1 Performance evaluation of STARS and SDC
The goal of our first set of experiments is to identify the impact

of the buffer size, data dimensionality and domain structure on per-
formance, as measured by the average time required to process a
buffer update, i.e., a combined tuple arrival and expiration. This
includes the time required to update the skyline (if necessary) and
all supporting indexing structures.

Figures 11(a)-(c) present the average time required per buffer up-
date in milliseconds, for buffer sizes ranging from 10 thousand to 1

million tuples and tuples with 2, 3 and 4 attributes. For all these ex-
periments, the domain of the attributes were trees with parameters
(500, 8, 0.3).

Both SDC and STARS employ a grid to index the skybuffer.
Therefore, the performance of both techniques is affected by our
choice of the skybuffer grid granularity. This is especially true for
the case of SDC. As we elaborated in Section 5.1, SDC maps d-
dimensional categorical tuples to 2d-dimensional numerical tuples.
Given the high dimensionality of the SDC grid, small changes in
granularity can have huge impact on performance, as the number
and size of cells is affected in an exponential manner. Neverthe-
less, for each individual experiment we used for SDC the granu-
larity values that resulted in the best performance. Instead, for the
STARS technique we kept the grid granularity at 10 buckets per
dimension. Later in the section, we vary the grid granularity for
STARS and observe performance trends.
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Figure 11: Effect of buffer size and dimensionality on perfor-
mance.

As it is obvious in Figures 11(a)-(c), STARS outperforms SDC
by an order of magnitude. In Figure 11(c) we completely omitted
the SDC technique, since its performance for tuples with four at-
tributes deteriorated. Furthermore, the time required by STARS in
order to handle a buffer update is in the order of a millisecond or
less, thus rendering its use in real life applications entirely realistic.
We will provide further evidence that support this claim when we
subsequently present our real data experiments.

Note that the performance trends in Figures 11(a)-(c) can be
non-monotone with respect to the size of the buffer. This is to be
expected, as there exist two competing trends that depend on the
buffer size and affect performance. For example, as the buffer size
increases, we can expect both the size of the skybuffer and the size
of the skyline to increase. On the other hand, as the buffer size
increases, the probability that the expiration of a tuple will affect
the skyline decreases and so does the probability that an expensive
skyline mending operation will have to be triggered. Remember
that when a tuple belonging to the skyline expires, we need to iden-
tify all the tuples that it exclusively dominated and insert them in
the skyline. The converse is true when the buffer size decreases:
the skyline size decreases while the invocations of reconstruction
operations increase.

We performed additional experiments involving tree and wall
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domains with a wide range of parameters values (m, h, c). How-
ever, we omit these experimental results as we observed similar
trends and performance differences between the two techniques.
The shape and size of the attribute domains influence performance
mostly indirectly, by affecting the average size of the skyline: do-
mains that produce larger skylines are associated with higher buffer
update cost. Keeping two of the poset parameters (m, h, c) fixed,
decreasing c (internal poset connectivity) increases the skyline size,
and so does increasing m (number of poset values) and decreasing
h (the number of depth levels).

10K 20K 50K 100K 200K
0

0.5

1

1.5

2

2.5

3
DMV data set

Buffer Size

T
im

e 
pe

r 
up

da
te

 (
m

s)

STARS

Figure 12: Performance on skewed real data.

Besides synthetic data, we also employed a stream of real, skewed
and correlated data for our performance experiments. We used the
DMV data set [14] and three categorical attributes of the “cars” ta-
ble: Maker/Model (38 possible values), Color (504 possible values)
and Year (74 possible values). The resulting 3-dimensional tuples
are skewed and correlated, e.g., few of the 38 car models are pop-
ular, while Ferraris are almost exclusively red. The degree of skew
and correlation in this real data set is fixed. Also, since the categor-
ical attributes are not associated with a partial-order, we manually
organized their values in tree-structured posets (Figure 10(a)).

Figure 12 depicts the results of the experiment. For buffer sizes
between 10K and 200K, the time required by STARS to process a
buffer update is in the order of a millisecond - an entirely realistic
figure. SDC’s results are omitted from the figure as it fared poorly:
the update time ranged from 6ms for a 10K buffer to more than
100ms for a large, 200K buffer. The figure demonstrates a clear
upward trend in the update time for larger buffer sizes. This can be
attributed to the presence of skew and correlation in the data that
leads to considerably larger skylines as the buffer size increases.

Our next experiment utilizes synthetic data in order to offer in-
sight on the performance differential between SDC and STARS.
Figure 13 depicts the size of the skybuffer maintained by the tech-
niques , for tuples with two (Figure 13(a)) and three (Figure 13(b))
attributes. The domains were trees with parameters (500, 8, 0.3).
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Figure 13: Size of the skybuffer as a function of the buffer size.

SDC employs a mapping of d-dimensional categorical tuples to

2d-dimensional numerical tuples. However, the mapping is not ex-
act in the sense that dominance in the categorical space does not
imply dominance in the numerical space (Figure 9). The implica-
tion of this relation is that when a tuple is inserted in the skybuffer,
a rectangular range search fails to identify all the skybuffer tuples
that are dominated by the inserted tuple. Therefore, the skybuffer
of SDC can contain many more tuples that the skybuffer of STARS,
since tuples that could have been removed, still reside in the sky-
buffer. This has a big impact when SDC attempts to repair the
skyline after a tuple expiration. Then, the additional tuples in the
skybuffer that need to be examined become a huge burden.

Notice that both axes are in logarithmic scale. In the case of
tuples with two attributes, the skybuffer size for SDC is greater than
STARS’s, yet it is still manageable. However, for tuples with three
attributes, SDC’s skybuffer size explodes: as the dimensionality
increases, the number of categorical dominance relations that the
mapping to the numerical domain fails to capture, increases.

5.4.2 Further evaluation of STARS
We also designed and performed experiments to further study

the STARS technique and its two components. In particular, we
performed experiments to quantify the pruning efficiency of the
arrangement-based skyline organization, as well as the gains that
can be achieved by utilizing the proposed granularity setting mech-
anism in conjunction with the poset partitioning technique.

2d 3d 4d
0

0.05

0.1

0.15

0.2
Tree Poset

Data dimensionality

P
ru

ni
ng

 E
ff

ic
ie

nc
y

2d 3d 4d
0

0.05

0.1

0.15

0.2
Wall Poset

Data dimensionality

P
ru

ni
ng

 E
ff

ic
ie

nc
y

(a) (b)

Figure 14: Pruning efficiency of arrangement skyline organiza-
tion.

Figures 14(a) and 14(b) present results demonstrating the prun-
ing efficiency of the arrangement-based skyline organization. A
dominance query against the skyline determines whether a query
tuple is dominated by the skyline. The objective is to do so by
checking as few skyline tuples as possible. Therefore, pruning effi-
ciency is measured as the fraction of skyline tuples that need to be
examined on average in order to answer a dominance query.

As it is evident in Figures 14(a) and 14(b), the arrangement orga-
nization is able to answer a dominance query by considering on av-
erage about 10% of the skyline tuples. This is true for both tree and
wall structured domains. For this experiment, we materialized the
tree structured domains with parameters (500, 8, 0.3) and the wall
domains with parameters (250, 10, 0.3). Notice, that the pruning
efficiency decreases as the dimensionality increases, although not
considerably. This is reasonable to expect, since the pruning tech-
nique utilizes information from only two of the tuple’s attributes,
therefore failing to exploit some pruning opportunities as the di-
mensionality increases.

Our next experiment demonstrates the potential performance ben-
efits by utilizing the techniques of Section 4.3, that allow us to set
the skybuffer grid granularity. This involves partitioning the at-
tribute domains in disjoint value groups so that the desired grid
granularity is matched and the expected query time is minimized.
For this experiment, we measured the average time in milliseconds
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required to perform a skybuffer update, i.e., identify all the tuples
in the skybuffer dominated by an incoming tuple, remove them and
insert the incoming tuple in the skybuffer.
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Figure 15: Effect of grid granularity on performance.

Figure 15 depicts the time required to perform a skybuffer up-
date versus the grid granularity, for tuples with three attributes.
The grid granularity is measured as the number of allocated buck-
ets per dimension. More specifically, Figure 15(a) presents the re-
sults when the domains are tree structured posets with parameters
(200, 4, 0.1), while Figure 15(b) the results when the domains are
wall structure posets with parameters (200, 4, 0.1).

The leftmost values in the plots correspond to a partitioning that
allocates a single bucket per depth level. By increasing the gran-
ularity we can achieve better performance. This performance in-
crease would not be possible without our poset partitioning heuris-
tic: a bad partitioning strategy would result in performance inferior
to the bucket-per-depth-level, partitioning scheme. However, the
poset partitioning technique allows us to translate an increase in
the grid granularity to increase in performance. The benefit of in-
creasing the grid granularity is eventually offset by the overhead of
visiting many sparse cells. This additional overhead explains the
knee in the curves of Figure 15. Notice that even though perfor-
mance can be poor for extreme granularity values, there is a wide
range of values that offer near optimal performance.

5.4.3 Summary
To summarize, our experimental evaluation demonstrated the ap-

plicability of the proposed solution to a wide range of buffer sizes
and data dimensionality, for both synthetic (Figures 11(a)-(c)) and
real (Figure 12) data. We also verified our claim that the skybuffer
indexing technique can adapt to posets of any shape and size by
offering flexibility in controlling the granularity of the grid-based
indexing structure (Figure 15). The second claim that we verified
was the pruning efficiency of the skyline organization, which was
also found to be resilient to increases in data dimensionality (Fig-
ure 14). Lastly, we demonstrated the inapplicability of the existing
offline skyline evaluation techniques of [5] in a streaming environ-
ment (Figures 11(a)-(c)) and identified the inherent reasons behind
this poor performance (Figure 13).

6. CONCLUSIONS
In this paper, we identified and motivated the problem of main-

taining the skyline of streaming data with partially ordered, cate-
gorical attributes and realized two novel techniques that constitute
the building blocks of an efficient solution to the problem.

We introduced a lightweight data structure for indexing the tu-
ples in the streaming buffer, that can gracefully adapt to tuples with
many attributes and partially ordered domains of any size and com-
plexity. We subsequently studied the dominance relation in the dual
space and utilized geometric arrangements in order to index the cat-
egorical skyline and efficiently evaluate dominance queries. Lastly,

we performed a thorough experimental study to evaluate the effi-
ciency of the proposed techniques.
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