
8/24/2004 CSE5311 Fall 2004 MKUMAR 1

CSE5311 Design and Analysis of

Algorithms

Administrivia

Introduction

Review of Basics

8/24/2004 CSE5311 Fall 2004 MKUMAR 2

IMPORTANT

• Americans With Disabilities Act

The University of Texas at Arlington is on
record as being committed to both the spirit
and letter of federal equal opportunity
legislation; reference Public Law 93112 --
The Rehabilitation Act of 1973 as amended.
With the passage of new federal legislation
entitled Americans With Disabilities Act -
(ADA), pursuant to section 504 of The
Rehabilitation Act, there is renewed focus on
providing this population with the same
opportunities enjoyed by all citizens.

As a faculty member, I am required by law to
provide "reasonable accommodation" to
students with disabilities, so as not to
discriminate on the basis of that disability.
Student responsibility primarily rests with
informing faculty at the beginning of the
semester and in providing authorized
documentation through designated
administrative channels.

Academic Dishonesty
It is the philosophy of The University of Texas at

Arlington that academic dishonesty is a
completely unacceptable mode of conduct
and will not be tolerated in any form. All
persons involved in academic dishonesty
will be disciplined in accordance with
University regulations and procedures.
Discipline may include suspension or
expulsion from the University.

"Scholastic dishonesty includes but is not
limited to cheating, plagiarism, collusion, the
submission for credit of any work or
materials that are attributable in whole or in
part to another person, taking an
examination for another person, any act
designed to give unfair advantage to a
student or the attempt to commit such acts."
(Regents’ Rules and Regulations, Part One,
Chapter VI, Section 3, Subsection 3.2,
Subdivision 3.22)

8/24/2004 CSE5311 Fall 2004 MKUMAR 3

• Student Support Services Available

The University of Texas at Arlington supports a variety of
student success programs to help you connect with the
University and achieve academic success. These
programs include learning assistance, developmental
education, advising and mentoring, admission and
transition, and federally funded programs. Students
requiring assistance academically, personally, or socially
should contact the Office of Student Success Programs
at 817-272-6107 for more information and appropriate
referrals.

8/24/2004 CSE5311 Fall 2004 MKUMAR 4

IMPORTANT DATES

• Quiz 1 – September 24

• Quiz 2 – 1st week of November

• Exam1 – October 7

• Exam 2 – December 7

• Lab Assignment 1 – Due on October 14 (September 2)

• Lab Assignment 2 – Due on November 18(October 5)

• Research Problem – November 23

8/24/2004 CSE5311 Fall 2004 MKUMAR 5

IMPORTANT

• Solve Problems ASAP

• Discuss with classmates, TA and Instructor

• Participate in the class

• Complete exercise problems

• Complete homework assignments

• Be creative

8/24/2004 CSE5311 Fall 2004 MKUMAR 6

What are Algorithms ?

• An algorithm is a precise and
unambiguous specification of
a sequence of steps that can
be carried out to solve a given
problem or to achieve a given
condition.

• An algorithm is a
computational procedure to
solve a well defined
computational problem.

• An algorithm accepts some
value or set of values as
input and produces a value
or set of values as output.

• An algorithm transforms the
input to the output.

• Algorithms are closely
intertwined with the nature of
the data structure of the
input and output values.

Data structures are methods for representing the data models on a
computer whereas data models are abstractions used to formulate
problems.

8/24/2004 CSE5311 Fall 2004 MKUMAR 7

What are these algorithms?
Input? Output? Complexity?

ALGO_IMPROVED (A[1,…,n],i,n)

•while i < n
• do small ← i;
• for j ← i+1 to n
• if A[j] < A[small] then
• small ← j;
• temp ← A[small];
• A[small] ← A[i];
• A[i] ← temp;
• ALGO_IMPROVED(A,i+1,n)
•End

ALGO_DO_SOMETHING (A [1,…,n],1,n))

•1.for i ← 1 to n-1
•2. small ← i;
•3. for j ← i+1 to n
•4. if A[j] < A[small] then
•5. small ← j;
•6. temp ← A[small];
•7. A[small] ← A[i];
•8. A[i] ← temp;
•9.end

8/24/2004 CSE5311 Fall 2004 MKUMAR 8

Examples
• Algorithms:

An algorithm to sort a sequence of numbers into

nondecreasing order.

Application : lexicographical ordering

An algorithm to find the shortest path from a source

node to a destination node in a graph

Application : To find the shortest path from one city to another.

• Data Models:

Lists, Trees, Sets, Relations, Graphs

• Data Structures :

Linked List is a data structure used to represent a List

Graph is a data structure used to represent various cities

in a map.

8/24/2004 CSE5311 Fall 2004 MKUMAR 9

SELECTION SORT Algorithm (Iterative method)

Procedure SELECTION_SORT (A [1,…,n])
Input : unsorted array A
Output : Sorted array A

1. for i ← 1 to n-1
2. small ← i;
3. for j ← i+1 to n
4. if A[j] < A[small] then
5. small ← j;
6. temp ← A[small];
7. A[small] ← A[i];
8. A[i] ← temp;
9. end

Example: Given sequence
5 2 4 6 1 3

i=1 1 2 4 6 5 3
i=2 1 2 4 6 5 3
i=3 1 2 3 6 5 4
i=4 1 2 3 4 5 6

8/24/2004 CSE5311 Fall 2004 MKUMAR 10

Complexity:
The statements 2,6,7,8, and 5 take O(1) or constant time.
The outerloop 1-9 is executed n-1 times and the inner loop
3-5 is executed (n-i) times.
The upper bound on the time taken by all iterations as
i ranges from 1 to n-1 is given by, O(n2)

1. for i ← 1 to n-1
2. small ← i;
3. for j ← i+1 to n
4. if A[j] < A[small] then
5. small ← j;
6. temp ← A[small];
7. A[small] ← A[i];
8. A[i] ← temp;
9. end

8/24/2004 CSE5311 Fall 2004 MKUMAR 11

• Study of algorithms involves,
designing algorithms

expressing algorithms

algorithm validation

algorithm analysis

Study of algorithmic techniques

8/24/2004 CSE5311 Fall 2004 MKUMAR 12

Algorithms and Design of Programs

• An algorithm is composed of a finite set of steps,
∗ each step may require one or more operations,

∗ each operation must be definite and effective

• An algorithm,

∗ is an abstraction of an actual program

∗ is a computational procedure that terminates

*A program is an expression of an algorithm in a programming
language.
*Choice of proper data models and hence data structures is
important for expressing algorithms and implementation.

8/24/2004 CSE5311 Fall 2004 MKUMAR 13

• We evaluate the performance

of algorithms based on time

(CPU-time) and space

(semiconductor memory)

required to implement these

algorithms. However, both

these are expensive and a

computer scientist should

endeavor to minimize time

taken and space required.

• The time taken to execute

an algorithm is dependent

on one or more of the

following,

• number of data
elements

• the degree of a
polynomial

• the size of a file to
be sorted

• the number of
nodes in a graph

8/24/2004 CSE5311 Fall 2004 MKUMAR 14

Asymptotic Notations

– O-notation

» Asymptotic upper bound

• A given function f(n), is O (g(n)) if there exist

positive constants c and n0 such that

0 ≤ f(n) ≤ c g(n) for all n≥ n0.

• O (g(n)) represents a set of functions, and

O (g(n)) = {f(n): there exist positive constants c and

n0 such that 0 ≤ f(n) ≤ c g(n) for all n≥ n0}.

8/24/2004 CSE5311 Fall 2004 MKUMAR 15

O Notation

0
5

10
15
20
25
30
35
40

1 2 3 4 5 6 7 8 9

f(n) = 2n+6
cg(n) = 4n

c = 4

n0 = 3.5

f(n), is O (g(n)) if there exist

positive constants c and n0

such that 0 ≤ f(n) ≤ c g(n)

for all n≥ n0.

8/24/2004 CSE5311 Fall 2004 MKUMAR 16

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

1 10 100 1000 10000

log n
n
n logn
n^2
2^n

8/24/2004 CSE5311 Fall 2004 MKUMAR 17

Ω-notation

Asymptotic lower bound

• A given function f(n), is Ω (g(n)) if there exist

positive constants c and n0 such that

0 ≤ c g(n) ≤ f(n) for all n≥ n0.

• Ω (g(n)) represents a set of functions, and

Ω(g(n)) = {f(n): there exist positive constants

c and n0 such that 0 ≤ c g(n) ≤ f(n) for all n≥ n0}

8/24/2004 CSE5311 Fall 2004 MKUMAR 18

Θ-notation
Asymptotic tight bound

• A given function f(n), is Θ (g(n)) if there exist positive

constants c1, c2,and n0 such that

0 ≤ c1g(n) ≤ f(n) ≤ c2 g(n) for all n≥ n0.

• Θ (g(n)) represents a set of functions, and

Θ (g(n)) = {f(n): there exist positive constants c1, c2, and

n0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2 g(n) for all n≥ n0.

O, Ω, and Θ correspond (loosely) to “≤”, “≥”, and “=”.

8/24/2004 CSE5311 Fall 2004 MKUMAR 19

Presenting algorithms
• Description : The algorithm will be described in English,

with the help of one or more examples

• Specification : The algorithm will be presented as
pseudocode

(We don't use any programming language)

• Validation : The algorithm will be proved to be correct for
all problem cases

• Analysis: The running time or time complexity of the
algorithm will be evaluated

8/24/2004 CSE5311 Fall 2004 MKUMAR 20

SELECTION SORT Algorithm (Iterative method)

Procedure SELECTION_SORT (A [1,…,n])
Input : unsorted array A
Output : Sorted array A

1. for i ← 1 to n-1
2. small ← i;
3. for j ← i+1 to n
4. if A[j] < A[small] then
5. small ← j;
6. temp ← A[small];
7. A[small] ← A[i];
8. A[i] ← temp;
9. end

8/24/2004 CSE5311 Fall 2004 MKUMAR 21

Recursive Selection Sort Algorithm

Given an array A[i, …,n], selection sort picks the smallest
element in the array and swaps it with A[i], then sorts the
remainder A[i+1, …, n] recursively.

Example :
Given A [26, 93, 36, 76, 85, 09, 42, 64]

Swap 09 with 23, A[1] = 09, A[2,…, 8] = [93,36,76,85,26,42,64]
Swap 26 with 93, A[1,2]= [09,26]; A[3,…,8] = [36,76,85,93,42,64]
No swapping A[1,2,3] = [09,26,36]; A[4,…,8] =[76,85,93,42,64]
Swap 42 with 76, A[1,…,4] =[09,26,36,42]; A[5,…,8] = [85,93,76,64]
Swap 64 with85, A[1,…,5] =[09,26,36,42,64]; A[6,7,8] = [93,76,85]
Swap 76 with 93, A[1,…,6]=[09,26,36,42,64,76]; A[7,8] = [93,85]
Swap 85 with 93, A[1,…,7]=[09,26,36,42,64,76,85]; A[8] = 93

Sorted list : A[1,…,8] = [09,26,36,42,64,76,85,93]

8/24/2004 CSE5311 Fall 2004 MKUMAR 22

Procedure RECURSIVE_SELECTION_SORT (A[1,…,n],i,n)
Input : Unsorted array A
Output : Sorted array A

while i < n
do small ← i;

for j ← i+1 to n
if A[j] < A[small] then

small ← j;
temp ← A[small];
A[small] ← A[i];
A[i] ← temp;
RECURSIVE_SELECTION_SORT(A,i+1,n)

End

8/24/2004 CSE5311 Fall 2004 MKUMAR 23

Analysis of Recursive selection sort algorithm
Basis: If i = n, then only the last element of the array
needs to be sorted, takes Θ (1) time.
Therefore, T(1) = a, a constant
Induction : if i < n, then,
1. we find the smallest element in A[i,…,n],
takes at most (n-1) steps

swap the smallest element with A[i], one step
recursively sort A[i+1, …, n], takes T(n-1) time

Therefore, T(n) is given by,
T(n) = T(n-1) + b. n (1)
It is required to solve the recursive equation,

T(1) = a; for n =1
T(n) = T(n-1) + b n; for n >1, where b is a constant

8/24/2004 CSE5311 Fall 2004 MKUMAR 24

T(n-1) = T(n-2) + (n-1)b (2)
T(n-2) = T(n-3) + (n-2) b (3)
. . .
T(n-i) = T(n-(i+1)) + (n-i)b (4)
Using (2) in (1)
T(n) = T(n-2) + b [n+(n-1)]

= T(n-3) + b [n+(n-1)+(n-2)
= T(n-(n-1)) + b[n+(n-1)+(n-2) + . . . +(n-(n-2))]

T(n) = O(n2)

8/24/2004 CSE5311 Fall 2004 MKUMAR 25

Questions:
What is an algorithm?
Why should we study algorithms?
Why should we evaluate running time of

algorithms?
What is a recursive function?
What are the basic differences among O, Ω, and

Θ notations?
Did you understand selection sort algorithm

and its running time evaluation?
Can you write pseudocode for selecting the

largest element in a given array?
Please write the algorithm now.

8/24/2004 CSE5311 Fall 2004 MKUMAR 26

Heaps and
Heapsort

This week
Priority Trees
Building Heaps
Maintaining heaps
Heapsort Algorithm
Analysis of Heapsort Algorithm

Further Reading
Chapters 6 from
Textbook

8/24/2004 CSE5311 Fall 2004 MKUMAR 27

Priority Queues

What is a priority queue?
A priority queue is an abstract data type which
consists of a set of elements. Each element of
the set has an associated priority or key
Priority is the value of the element or value of
some component of an element

Example :
S : {(Brown, 20), (Gray, 22), (Green, 21)} priority based on name

{(Brown, 20), (Green,21), (Gray, 22)} priority based on age

Each element could be a record and the priority could be based
on one of the fields of the record

8/24/2004 CSE5311 Fall 2004 MKUMAR 28

Example

A Student's record:

Attributes : Name Age Sex Student No. Marks
Values : John Brown 21 M 94XYZ23 75

Priority can be based on name, age, student number, or
marks

Operations performed on priority queues,
-inserting an element into the set
-finding and deleting from the set an element of

highest priority

8/24/2004 CSE5311 Fall 2004 MKUMAR 29

Priority Queues

Priority queues are implemented on partially ordered
trees (POTs)
• POTs are labeled binary trees
• the labels of the nodes are elements with a priority
• the element stored at a node has at least as large a

priority as the elements stored at the children of
that node

• the element with the highest priority is at the root of
the tree

8/24/2004 CSE5311 Fall 2004 MKUMAR 30

Example

24

21 19

13 14 03 10

72 11

8/24/2004 CSE5311 Fall 2004 MKUMAR 31

HEAPS

The heap is a data structure for implementing POT's
Each node of the heap tree corresponds to an
element of the array that stores the value in the
node
The tree is filled on all levels except possibly the
lowest, which are filled from left to right up to a
point.

An array A that represents a heap is an object with two
attributes

length[A], the number of elements in the array and
heap-size[A], the number of elements in the heap stored

within the array A
heap_size[A] ≤ length[A]

8/24/2004 CSE5311 Fall 2004 MKUMAR 32

HEAPS (Contd)

The heap comprises elements in locations up to heap-size[A] .
A[1] is the root of the tree.

Position 1 2 3 4 5 6 7 8 9 10

Value 24 21 19 13 14 3 10 2 7 11

Given node with index i,

PARENT(i) is the index of parent of i;PARENT(i) = i/2

LEFT_CHILD(i) is the index of left child of i ;
LEFT_CHILD(i) = 2×i;

RIGHT_CHILD(i) is the index of right child of i; and
RIGHT_CHILD(i) = 2×i +1

8/24/2004 CSE5311 Fall 2004 MKUMAR 33

Heap Property

THE HEAP PROPERTY
A[PARENT(i)] ≥ A[i]

The heap is based on a binary tree
The height of the heap (as a binary tree) is the
number of edges on the longest simple downward
path from the root to a leaf.

The height of a heap with n nodes is O (log n).

All basic operations on heaps run in O (log n) time.

8/24/2004 CSE5311 Fall 2004 MKUMAR 34

20

21

22

23

2h

n=20+21+22+23 + . . . + 2h = 2h+1-1

8/24/2004 CSE5311 Fall 2004 MKUMAR 35

Heap Algorithms

HEAPIFY
BUILD_HEAP
HEAPSORT
HEAP_EXTRACT_MAX
HEAP_INSERT

8/24/2004 CSE5311 Fall 2004 MKUMAR 36

HEAPIFY

The HEAPIFY algorithm checks the heap elements for violation of
the heap property and restores heap property.
Procedure HEAPIFY (A,i)
Input: An array A and index i to the array. i =1 if we want to heapify
the whole tree. Subtrees rooted at LEFT_CHILD(i) and
RIGHT_CHILD(i) are heaps
Output: The elements of array A forming subtree rooted at i satisfy
the heap property.

1. l ← LEFT_CHILD (i);
2. r ← RIGHT_CHILD (i);
3. if l ≤ heap_size[A] and A[l] > A[i]
4. then largest ← l;
5. else largest ← i;
6. if r ≤ heap_size[A] and A[r] > A[largest]
7. then largest ← r;
8. if largest ≠ i
9. then exchange A[i] ↔ A[largest]
10. HEAPIFY (A,largest)

8/24/2004 CSE5311 Fall 2004 MKUMAR 37

7

24 19

21 14 03 10

132 11

24

7 19

21 14 03 10

132 11

24

21 19

13 14 03 10

72 11

24

21 19

7 14 03 10

132 11

LST;
heap

RST,

heap

8/24/2004 CSE5311 Fall 2004 MKUMAR 38

7 24 19 21 14 03 10 02 13 11

24 7 19 21 14 03 10 02 13 11

24 21 19 07 14 03 10 02 13 11

24 21 19 13 14 03 10 02 07 11

Running time of HEAPIFY

Total running time = steps 1 … 9 + recursive call
T (n) = Θ (1) + T (n/2)
Solving the recurrence, we get T (n) = O (log n)

8/24/2004 CSE5311 Fall 2004 MKUMAR 39

BUILD_HEAP

Procedure BUILD_HEAP (A)
Input : An array A of size n = length [A],
heap_size[A]
Output : A heap of size n
1. heap_size[A] ← length[A]
2. for i ← length[A]/2 downto 1
3. HEAPIFY(A,i)

18 12 54 75 64 25 42 78 96
18 12 54 96 64 25 42 78 75
18 12 54 96 64 25 42 78 75
18 96 54 12 64 25 42 78 75
18 96 54 78 64 25 42 12 75
96 18 54 78 64 25 42 12 75
96 78 54 18 64 25 42 12 75
96 78 54 75 64 25 42 12 18

8/24/2004 CSE5311 Fall 2004 MKUMAR 40

18

12 54

96 64 25 42

7578

18

12 54

75 64 25 42

9678

18 12 54 75 64 25 42 78 96

18 12 54 96 64 25 42 78 75

8/24/2004 CSE5311 Fall 2004 MKUMAR 41

18

96 54

12 64 25 42

7578

18

12 54

96 64 25 42

7578

18 12 54 96 64 25 42 78 75

18 96 54 12 64 25 42 78 75

8/24/2004 CSE5311 Fall 2004 MKUMAR 42

18

96 54

78 64 25 42

7512

18 96 54 78 64 25 42 12 75

96 18 54 78 64 25 42 12 75

96

18 54

78 64 25 42

7512

8/24/2004 CSE5311 Fall 2004 MKUMAR 43

96 78 54 18 64 25 42 12 75

96

78 54

18 64 25 42

7512

96

78 54

75 64 25 42

1812

8/24/2004 CSE5311 Fall 2004 MKUMAR 44

n/21+1 n/2

n/22+11

Height of each node = 1, at most 1 comparison

Height of each node = i, at most i comparisons, 1≤i ≤ h

Height of each node = 2, at most 2 comparisons

Height of the root node = h, at most h comparisons

8/24/2004 CSE5311 Fall 2004 MKUMAR 45

Running time of Build_heap
1. Each call to HEAPIFY takes O (log n) time
2. There are O (n) such calls
3. Therefore the running time is at most O(n logn)

However the complexity of BUILD_HEAP is O(n)
Proof :
In an n element heap there are at most n/2h+1 nodes of height h
The time required to heapify a subtree whose root is at a height h is O(h)

(this was proved in the analysis for HEAPIFY)
So the total time taken for BUILD_HEAP is given by,

We know that

Thus the running time of BUILD_HEAP is given by, O(n)

 

 

)(
22

2
log

0

log

0
1

nO

hn

hn

n

h
h

n

h h

=

∑⋅≤

⋅∑ 



≤

=

=
+

2
20

=∑
∞

=h h
h

8/24/2004 CSE5311 Fall 2004 MKUMAR 46

The HEAPSORT Algorithm

Procedure HEAPSORT(A)
Input : Array A[1…n], n = length[A]
Output : Sorted array A[1…n]
1. BUILD_HEAP[A]
2. for i ← length[A] down to 2
3. Exchange A[1] ↔ A[i]
4. heap_size[A] ← heap_size[A]-1;
5. HEAPIFY(A,1)

Example : To be given in the lecture

8/24/2004 CSE5311 Fall 2004 MKUMAR 47

HEAPSORT

Running Time:
Step 1 BUILD_HEAP takes O(n) time,
Steps 2 to 5 : there are (n-1) calls to HEAPIFY
which takes O(log n) time
Therefore running time takes O (n log n)

8/24/2004 CSE5311 Fall 2004 MKUMAR 48

HEAP_EXTRACT_MAX

Procedure HEAP_EXTRACT_MAX(A[1…n])
Input : heap(A)
Output : The maximum element or root, heap (A[1…n-1])
1. if heap_size[A] ≥ 1
2. max ← A[1];
3. A[1] ← A[heap_size[A]];
4. heap_size[A] ← heap_size[A]-1;
5. HEAPIFY(A,1)
6. return max

Running Time : O (log n) time

8/24/2004 CSE5311 Fall 2004 MKUMAR 49

HEAP_INSERT

Procedure HEAP_INSERT(A, key)
Input : heap(A[1…n]), key - the new element
Output : heap(A[1…n+1]) with k in the heap
1. heap_size[A] ← heap_size[A]+1;
2. i ← heap_size[A];
3. while i > 1 and A[PARENT(i)] < key
4. A[i] ← A[PARENT(i)];
5. i ← PARENT(i);
6. A[i] ← key

Running Time : O (log n) time

8/24/2004 CSE5311 Fall 2004 MKUMAR 50

Questions:

What is a heap?
What are the running times for heap insertion

and deletion operations ?
Did you understand HEAPIFY AND and

HEAPSORT algorithms
Can you write a heapsort algorithm for

arranging an array of numbers in descending
order?

