
1

Kumar CSE5311 CSE@UTA 1

Weeks 3, 4, and 5
Graph Algorithms
and Maximum Flow Networks

Further Reading

Chapter 22 .. 26 from
Textbook

This week
Graph terminology
Stacks and Queues
Breadth-first-search
Depth-first-search
Connected Components
Analysis of BFS and DFS

Algorithms

2

Kumar CSE5311 CSE@UTA 2

Graph Preliminaries

Examples of modeling by Graphs

Darwin

Adelaide

Brisbane

Sydney

Melbourne

Perth

Module 1

Module3

Module 2

Module 4 Module 5

Module 6 Module 7

3

Kumar CSE5311 CSE@UTA 3

Konigsberg bridges

A

B

C D

Konigsberg bridges

B

A

C
D

The town of Konigsberg (now Kaliningrad) lay on the banks and on two
islands of the Pregel river. The city was connected by 7 bridges.
The puzzle (as encountered by Leonhard Euler in 1736) :
Whether it was possible to start walking from anywhere in town and return
to the starting point by crossing all bridges exactly once.

4

Kumar CSE5311 CSE@UTA 4

Graph Terminologies

• A Graph consists of a set 'V' of vertices (or nodes) and a set
'E' of edges (or links).

• A graph can be directed or undirected.

• Edges in a directed graph are ordered pairs.

• The order between the two vertices is important.

– Example: (S,P) is an ordered pair because the edge
starts at S and terminates at P.

– The edge is unidirectional
– Edges of an undirected graph form unordered pairs.

• A multigraph is a graph with possibly several edges
between the same pair of vertices.

• Graphs that are not multigraphs are called simple graphs.

5

Kumar CSE5311 CSE@UTA 5

Graph Terminologies (Contd)

G1 :Undirected Graph

QR

T

P
S

G2: Directed Graph

D

B

A

E

C

6

Kumar CSE5311 CSE@UTA 6

Graph Terminologies

The degree d(v) of a vertex v is the number of edges incident
to v.

d (A) = three, d (D) = two
In directed graphs, indegree is the number of incoming edges
at the vertex and outdegree is the number of outgoing edges
from the vertex.

The indegree of P is 2, its outdegree is 1.
The indegree of Q is 1, its outdegree is 1.

D

B

A

E

C
QR

T

P
S

7

Kumar CSE5311 CSE@UTA 7

Paths and Cycles

A path from vertex v1 to vk is a sequence
of vertices v1,v2, …, vk that are connected
by edges (v1,v2), (v2,v3), …, (vk-1,vk).

Path from D to E : (D,A,B,E)
Edges in the path : (D,A), (A,B), (B,E)

A path is simple if each vertex in it appears
only once.

DABE is a simple path.
ABCDAE is not a simple path.

Vertex u is said to be reachable from v if there is a path from
v to u.
A circuit is a path whose first and last vertices are the same.

DAEBCEAD, ABEA, DABECD, SPQRS, STRS are
circuits

QR

T

PS

D

B

A

E

C

8

Kumar CSE5311 CSE@UTA 8

Paths and Cycles

A simple circuit is a cycle if except for the first (and last)
vertex, no other vertex appears more than once.

ABEA, DABECD, SPQRS, and STRS are cycles.

A Hamiltonian cycle of a graph G is a cycle that contains all
the vertices of G

DABECD is a Hamiltonian cycle of G1
PQRSTP is a Hamiltonian of G2.

D

B

A

E

C
QR

T

PS

9

Kumar CSE5311 CSE@UTA 9

A subgraph of a graph G = (V,E) is a graph H(U,F) such that
U ⊆ V and F⊆E.

H1 {[U1:A,E,C,D], F1:[(A,E),(E,C),(C,D),(D,A)]} is a
subgraph of G1

H2 {[U2:S,P,T],F2:[(S,P),(S,T),(T,P)]} is a
subgraph of G2.

Spanning tree of G1

D

B

A

E

C

D A

E

C QR

T

PS

T

PS

10

Kumar CSE5311 CSE@UTA 10

Spanning Tree

A spanning tree of a graph
G is a subgraph of G that
is a tree and contains all
the vertices of G.

D

B

A

E

C

D

B

A

E

C
QR

T

P
S

Spanning tree of G2

QR

T

PS

11

Kumar CSE5311 CSE@UTA 11

Connectivity

A graph is said to be connected if there is a path from any
vertex to any other vertex in the graph.

G1 and G2 are both connected graphs
A forest is a graph that does not contain a cycle.
A tree is a connected forest.
A spanning forest of an undirected graph G is a subgraph of G
that is a forest and contains all the vertices of G.
If a graph G(V,E) is not connected, then it can be partitioned in
a unique way into a set of connected subgraphs called
connected components.

A connected component of G is a connected subgraph
of G such that no other connected subgraph of G
contains it.

12

Kumar CSE5311 CSE@UTA 12

Forest

QR

T

C

D

B

A

E

P
S

G(A,B,C,D,E,P,Q,R,S,T) is a forest

G(A,B,C,D,E) is a tree

(A,B,C,D,E) and (P,Q,R,S,T) are connected components

13

Kumar CSE5311 CSE@UTA 13

Graph Representations

D

B

A

E

C

G1: undirected graph
Adjacency Matrix

A B C D E
A 0 1 0 1 1
B 1 0 1 0 1
C 0 1 0 1 1
D 1 0 1 0 0
E 1 1 1 0 0

Adjacency list
A B D E
B A C E
C B D E
D A C \
E A B C

14

Kumar CSE5311 CSE@UTA 14

Graph Representations

QR

T

PS

G2: Directed
Graph
Adjacency matrix

P Q R S T
P 0 1 0 0 0
Q 0 0 1 0 0
R 0 0 0 1 0
S 1 0 0 0 1
T 1 0 1 0 0

Adjacency list
P Q /
Q R /
R S /
S P T
T P R

15

Kumar CSE5311 CSE@UTA 15

Depth-first search

Procedure DFS_Tree G(V,E)
Input: G = (V,E); S is a stack - initially empty;

’x’ refers to the top of stack;
initially mark all vertices ’new’;
L[x] refers to the adjacency list of x.
T ← {0};

Output : The DFS tree T;

1. v ←old; v∈ V
2. push (S,v);
3. while S is nonempty do
4. while there exists a vertex w in L[x] and marked new do
5. T ← T ∪ (x,w) ;
6. w ← old;
7. push w onto S
8. pop S

O (V  +  E )

16

Kumar CSE5311 CSE@UTA 16

DFS

E

A

C

D

B

A B

A B C

E

A B C
D

A B C
D

17

Kumar CSE5311 CSE@UTA 17

DFS
Initially, T = {0}; S {0}, A,B,C,D,E (all new)
Starts at A : A, S : {A}, L[A] = {B,D,E}

Pick B from L[A]; T = {(A,B)} and B (it's marked old}
S = {A,B}, L[B] = {A,C,E}
Pick C from L[B]; T = {(A,B), (B,C)} and C
S = {A,B,C}; L[C] = {B,D,E}
Pick D from L[C] ; T = {(A,B), (B,C), (C,D)} and D
S = { A,B,C, D} ; L[D] ={A,C}; no new vertices;
S = { A,B,C}; L[C] = { B,D,E}
Pick E from L[C]; T ={ (A,B), (B,C), (C,D),(C,E)} and E
S = { A,B,C,E} ; L[E] = {A,B,C}
S = { A,B,C}; L[C] = { B,D,E}
S ={ A,B} ; L[B]= { A,C,E }
S ={A} ; L[A] = { B,C,E}
S = {0}

D

B

A

E

C

18

Kumar CSE5311 CSE@UTA 18

DFS
D

B

A

E

C

A

A
A

B A
B

A

B

C

A

B

C
A

B

C

A

B

C

D A

B

C
E

E A

B

C

A
B

A

A

B

C
D

A

B

C

D

19

Kumar CSE5311 CSE@UTA 19

Procedure BFS_Tree G(V,E)
Input: G = (V,E); Q is a queue - initially empty;

x ←Q : remove the front item of queue and
denote it by x;

initially mark all vertices ’new’;
L[x] refers to the adjacency list of x.
T ← {0}

Output: The BFS tree T;
1. v ←old; v∈ V
2. insert (Q,v);
3. while Q is nonempty do
4. x ← Q
5. for each vertex w in L[x] and marked ’new’
6. T ← T ∪ {x,w} ;
7. w ← old;
8. insert (Q,w);

Breadth-first search

20

Kumar CSE5311 CSE@UTA 20

BFS

A B

E

A B

C

D

A B

E

D

A B

E

A

C

D

B

E

21

Kumar CSE5311 CSE@UTA 21

BFS
Initially, T = {0}; Q {0}, A,B,C,D,E (all new)
Starts at A : A, Q : {A}, L[A] = {B,D,E}

Pick B from L[A]; T = {(A,B)} and B (it's marked old}
Q = {B}, L[A] = {B,D,E}
Pick D from L[A]; T = {(A,B), (A,D)} and D
Q = {B,D}; L[A] = {B,D,E}
Pick E from L[A] ; T = {(A,B), (A,D), (A,E)} and E
Q = { B,D,E} ; L[A] ={B,D,E}; no new vertices;
Dequeue, Q = {D,E} L[B] = { A,C,E};
Pick C from L[B]; T ={ (A,B), (A,D), (A,E),(B,C)} and C
Q = {E, C} ; L[D] = {A,C}
Q = {C} ; L[E] = {A,B,C}
Q = { 0) ; L[C] = (B,C,E)
Q = {0};

A

C

D

B

E

22

Kumar CSE5311 CSE@UTA 22

C

D

A B

E

E

A B C
D

E

A

C

D

B

23

Kumar CSE5311 CSE@UTA 23

Connected Components of a Graph

The connected component of a graph G = (V,E) is a maximal set of vertices
U ⊆ V such that for every pair of vertices u and v in U, we have both u and
v reachable from each other. In the following we give an algorithm for
finding the connected components of an undirected graph.

Procedure Connected_Components G(V,E)
Input : G (V,E)
Output : Number of Connected Components and G1, G2 etc, the
connected components
1. V' ← V;
2. c ← 0;
3. while V' ≠ 0 do
4. choose u ∈ V' ;
5. T ← all nodes reachable from u (by DFS_Tree)
6. V' ←V' - T;
7. c ← c+1;
8. Gc ← T;
9. T ← 0;

24

Kumar CSE5311 CSE@UTA 24

Suppose the DFS tree starts at A, we traverse from
A → B → C → D and do not explore the vertices F, G, and H at
all! The DFS_tree algorithm does not work with graphs
having two or more connected parts.

We have to modify the DFS_Tree algorithm to find a DFS
forest of the given graph.

25

Kumar CSE5311 CSE@UTA 25

DFS Forest

Procedure DFSForest _G(V,E)
Input: G = (V,E); S is a stack - initially empty;

’x’ refers to the top of stack; initially mark all vertices ’new’;
L[x] refers to the adjacency list of x.
F ← {0}; The DFS Forest

Output: The DFS tree F;
1. For each vertex v ∈ V do
2. if v is new
3. v ←old;
4. push (S,v);
5. while S is nonempty do
6. while there exists a vertex w in L[x] and marked

new do
7. F ← F ∪ (x,w) ;
8. w ← old;
9. push w onto S
10. pop S

26

Kumar CSE5311 CSE@UTA 26

DFS Forest

HGF

DCBA

D C

BA

H

G

F

27

Kumar CSE5311 CSE@UTA 27

Questions
Do you know the difference between a simple graph and a
multiple graph?

What is an adjacency matrix ?

What is a Hamiltonian path? What is an Euler path?

Given a graph, can you find the Hamiltonian and Eulerian
paths?

Given a graph, can you perform DFS and BFS traversals?

What is the difference between a cycle and a path?

What are the complexities of basic operations on stacks and
queues? Give proof.

28

Kumar CSE5311 CSE@UTA 28

Minimum-Cost Spanning Trees

Consider a network of computers connected through
bidirectional links. Each link is associated with a positive
cost: the cost of sending a message on each link.

This network can be represented by an undirected graph
with positive costs on each edge.

In bidirectional networks we can assume that the cost of
sending a message on link does not depend on the
direction.

Suppose we want to broadcast a message to all the
computers from an arbitrary computer.

The cost of the broadcast is the sum of the costs of links
used to forward the message.

29

Kumar CSE5311 CSE@UTA 29

Minimum-Cost Spanning Trees

• Find a fixed connected subgraph, containing all the
vertices such that the sum of the costs of the edges in
the subgraph is minimum. This subgraph is a tree as it
does not contain any cycles.

• Such a tree is called the spanning tree since it spans the
entire graph G.

•
A given graph may have more than one spanning tree

• The minimum-cost spanning tree (MCST) is one whose
edge weights add up to the least among all the spanning
trees

30

Kumar CSE5311 CSE@UTA 30

MCST

1

2
1

4

5

2
6

3 3

A Local Area Network

F

E

D

C

B

A

1

2 1

4

5

2 6

3 3

F

E

D

C

B

A

1

2 1

2

3

The equivalent Graph and the MCST

31

Kumar CSE5311 CSE@UTA 31

MCST

• The Problem: Given an undirected connected weighted
graph G =(V,E), find a spanning tree T of G of minimum cost.

• Greedy Algorithm for finding the Minimum Spanning Tree
of a Graph G =(V,E)

The algorithm is also called Kruskal's algorithm.

• At each step of the algorithm , one of several possible choices
must be made,

• The greedy strategy: make the choice that is the best at the
moment

32

Kumar CSE5311 CSE@UTA 32

Kruskal's Algorithm

• Procedure MCST_G(V,E)
• (Kruskal's Algorithm)
• Input: An undirected graph G(V,E) with a cost function c on the edges
• Output: T the minimum cost spanning tree for G
• T ← 0;
• VS ←0;
• for each vertex v ∈ V do
• VS = VS ∪ {v};
• sort the edges of E in nondecreasing order of weight
• while |VS| > 1 do
• choose (v,w) an edge E of lowest cost;
• delete (v,w) from E;
• if v and w are in different sets W1 and W2 in VS do
• W1 = W1 ∪ W2;
• VS = VS - W2;
• T ← T∪ (v,w);
• return T

33

Kumar CSE5311 CSE@UTA 33

MCST

• The algorithm maintains a collection VS of disjoint sets of
vertices

• Each set W in VS represents a connected set of vertices
forming a spanning tree

• Initially, each vertex is in a set by itself in VS
• Edges are chosen from E in order of increasing cost, we

consider each edge (v, w) in turn; v, w ∈ V.
• If v and w are already in the same set (say W) of VS, we

discard the edge
• If v and w are in distinct sets W1 and W2 (meaning v and/or w

not in T) we merge W1 with W2 and add (v, w) to T.

34

Kumar CSE5311 CSE@UTA 34

MCST
Consider the example graph shown earlier,

The edges in nondecreasing order

[(A,D),1],[(C,D),1],[(C,F),2],[(E,F),2],[(A,F),3],[(A,B),3],

[(B,E),4],[(D,E),5],[(B,C),6]

EdgeActionSets in VSSpanning Tree, T =[{A},{B},{C},{D},{E},{F}]{0}(A,D)merge

[{A,D}, {B},{C}, {E}, {F}] {(A,D)} (C,D) merge

[{A,C,D}, {B}, {E}, {F}] {(A,D), (C,D)} (C,F) merge

[{A,C,D,F},{B},{E}]{(A,D),(C,D), (C,F)} (E,F) merge

[{A,C,D,E,F},{B}]{(A,D),(C,D), (C,F),(E,F)}(A,F) reject

[{A,C,D,E,F},{B}]{(A,D),(C,D), (C,F), (E,F)}(A,B) merge

[{A,B,C,D,E,F}]{(A,D),(A,B),(C,D), (C,F),(E,F)}(B,E) reject

(D,E) reject

(B,C) reject

35

Kumar CSE5311 CSE@UTA 35

Complexity
• Steps 1 thru 4 take time O (V)
• Step 5 sorts the edges in nondecreasing order in O (E log E) time
• Steps 6 through 13 take O (E) time
• The total time for the algorithm is therefore given by O (E log E)
• The edges can be maintained in a heap data structure with the property,
• E[PARENT(i)] ≤ E[i]
• remember, this property is the opposite of the one used in the heapsort

algorithm earlier during Week 2. This property can be used to sort
data elements in nonincreasing order.

• Construct a heap of the edge weights, the edge with lowest cost is at
the root

• During each step of edge removal, delete the root (minimum element)
from the heap and rearrange the heap.

• The use of heap data structure reduces the time taken because at every
step we are only picking up the minimum or root element rather than
sorting the edge weights.

36

Kumar CSE5311 CSE@UTA 36

Week 4

• Single Source Shortest Paths

• All Pairs Shortest Path Problem

37

Kumar CSE5311 CSE@UTA 37

Single-Source Shortest Paths

Darwin

Adelaide

Brisbane

Sydney

Melbourne

Perth

A motorist wishes to
find the shortest
possible route from
from Perth to
Brisbane. Given the
map of Australia on
which the distance
between each pair of
cities is marked, how
can we determine the
shortest route?

38

Kumar CSE5311 CSE@UTA 38

Single Source Shortest Path

• In a shortest-paths problem, we are given a weighted,
directed graph G = (V,E), with weights assigned to each edge
in the graph. The weight of the path p = (v0, v1, v2, …, vk) is
the sum of the weights of its constituent edges:

• v0 → v1 → v2 . . . → vk-1→ vk
•

• The shortest-path from u to v is given by
• d(u,v) = min {weight (p) : if there are one or more paths from

u to v
• = ∞ otherwise

39

Kumar CSE5311 CSE@UTA 39

The single-source shortest paths problem

Given G (V,E), find the shortest path from a given vertex
u ∈ V to every vertex v ∈ V (u ≠v).

For each vertex v ∈ V in the weighted directed graph, d[v] represents the
distance from u to v.

Initially, d[v] = 0 when u = v.
d[v] = ∞ if (u,v) is not an edge
d[v] = weight of edge (u,v) if (u,v) exists.

Dijkstra's Algorithm : At every step of the algorithm, we compute,
d[y] = min {d[y], d[x] + w(x,y)}, where x,y ∈ V.

Dijkstra's algorithm is based on the greedy principle because at every step
we pick the path of least weight.

40

Kumar CSE5311 CSE@UTA 40

• Dijkstra's Algorithm : At every step of the
algorithm, we compute,

d[y] = min {d[y], d[x] + w(x,y)}, where x,y ∈ V.

• Dijkstra's algorithm is based on the greedy
principle because at every step we pick the
path of least path.

41

Kumar CSE5311 CSE@UTA 41

39 2

5 1 u
ba

1 4 9

24 d
e c

32

g hf

42

Kumar CSE5311 CSE@UTA 42

3 92

5 1 u
b a

14 9

2 4 d
e c

3 2

g h f

Example:

--91112873510f8

h91112873510g7

g,h91112873510h6

f,g,h91112873510e5

e,f,g,h∞1112873510d4

d,e,f,g,h∞∞12873510b3

b,d,e,f,g,h∞∞12∞73510c2

b,c,d,e,f,g,h∞∞∞∞93510a1

a,b,c,d,e,f,g,h∞∞∞∞9∞510u0

hgfedcbau

Unmarked
vertices

Distance to vertexVertex to
be
marked

Ste
p
#

43

Kumar CSE5311 CSE@UTA 43

Dijkstra's Single-source shortest path

• Procedure Dijkstra's Single-source shortest path_G(V,E,u)
• Input: G =(V,E), the weighted directed graph and v the source vertex
• Output: for each vertex, v, d[v] is the length of the shortest path from u to v.
• mark vertex u;
• d[u] ← 0;
• for each unmarked vertex v ∈ V do
• if edge (u,v) exists d [v] ← weight (u,v);
• else d[v] ← ∞;
• while there exists an unmarked vertex do
• let v be an unmarked vertex such that d[v] is minimal;
• mark vertex v;
• for all edges (v,x) such that x is unmarked do
• if d[x] > d[v] + weight[v,x] then
• d[x] ← d[v] + weight[v,x]

44

Kumar CSE5311 CSE@UTA 44

• Complexity of Dijkstra's algorithm:

• Steps 1 and 2 take Θ (1) time

• Steps 3 to 5 take O(V) time

• The vertices are arranged in a heap in order of their
paths from u

• Updating the length of a path takes O(log V) time.

• There are V iterations, and at most E updates

• Therefore the algorithm takes O((E+V) log V)
time.

45

Kumar CSE5311 CSE@UTA 45

All-Pairs Shortest Path Problem





≥+
=

=
1)]},(),([),,(min{

0),(
),(

kifjkdistkidistjidist
kifjiw

jidist

k

i
j

Consider a shortest path p from vertex i to vertex j
If i =j then there is no path from i to j.
If i ≠ j , then we decompose the path p into two parts,

dist(i,k) and dist(k,j)

dist (i,j) = dist(i,k) + dist(k,j)

Recursive solution

46

Kumar CSE5311 CSE@UTA 46

Floyd' s Algorithm for Shortest Paths

• Procedure FLOYDs_G=[V,E]
•

Input: n×n matrix W representing the edge weights of an n-vertex directed graph.
That is W =w(i,j) where, (Negative weights are allowed)

• Output: shortest path matrix, dist(i,j) is the shortest path between vertices i and j.
•
• for v ← 1 to n do
• for w ← 1 to n do
• dist[v,w] ←arc[v,w];
• for u ← 1 to n do
• for v ← 1 to n do
• for w ← 1 to n do
• if dist[v,u] + dist[u,w] < dist[v,w] then
• dist[v,w] ← dist[v,u] + dist[u,w]
• Complexity : Θ(n3)

47

Kumar CSE5311 CSE@UTA 47

2 5

4 3

3 4

2 2

2

2

3

4

1

1

G A

B C

D

E F

48

Kumar CSE5311 CSE@UTA 48

0∞∞∞5∞2G

403∞∞∞∞F

3∞014∞∞E

2∞∞0∞∞∞D

∞∞∞20∞∞C

23∞∞20∞B

∞4∞∞∞10A

GFEDCBA

2 5

4 3

3 4

22

2

2

3

4

1

1

G A

B C

D

E F

49

Kumar CSE5311 CSE@UTA 49

A

G

F

B

2
4

1

06∞∞532G

403∞∞∞∞F

3∞014∞∞E

2∞∞0∞∞∞D

∞∞∞20∞∞C

23∞∞20∞B

∞4∞∞∞10A

GFEDCB
A

Distances after using A as the pivot

2 5

4 3

3 4

22

2

2

3

4

1

1

G A

B C

D

E F

50

Kumar CSE5311 CSE@UTA 50

06∞∞532G

403∞∞∞∞F

3∞014∞∞E

2∞∞0∞∞∞D

∞∞∞20∞∞C

23∞∞20∞B

34∞∞310A

GFEDCBA

Distances after using B as the pivot

2 5

4 3

3 4

22

2

2

3

4

1

1

G A

B C

D

E F

51

Kumar CSE5311 CSE@UTA 51

0697532G

4034776F

3901465E

28110754D

410132076C

2364204B

3475310A

GFEDCBA

Distances after using G as the pivot

2 5

4 3

3 4

2 2

2

2

3

4

1

1

G A

B C

D

E F

52

Kumar CSE5311 CSE@UTA 52

Transitive Closure

• Given a directed graph G=(V,E), the transitive closure C =(V,F) of G is a
directed graph such that there is an edge (v,w) in C if and only if there is a
directed path from v to w in G.

• Security Problem: the vertices correspond to the users and the edges
correspond to permissions. The transitive closure identifies for each user
all other users with permission (either directly or indirectly) to use his or
her account. There are many more applications of transitive closure.

• The recursive definition for transitive closure is





∈
∉≠

=
Ejiandijf
Ejiandjiif

jit
),(1

),(0
),(

53

Kumar CSE5311 CSE@UTA 53

Warshall's Algorithm for Transitive Closure

• Procedure WARSHALL's(G=[V,E])
•

Input: n×n matrix A representing the edge weights of an n-vertex directed
graph. That is a =a(i,j) where,

• Output: transitive closure matrix, t(i,j) =1 if there is a path from i to j, 0
otherwise

• for v ← 1 to n do
• for w ← 1 to n do
• t[v,w] ← a(v,w)
• for u ← 1 to n do
• for v ← 1 to n do
• for w ← 1 to n do
• if NOT t[v,w] then
• t[v,w] ← t[v,u] AND t[u,w]
• return T

54

Kumar CSE5311 CSE@UTA 54

• Hamiltonian Cycle

• Eulerian Path

• Biconnected Components

• Bipartite Graph Matching

55

Kumar CSE5311 CSE@UTA 55

Euler Circuit

• An Euler circuit of an undirected graph G(V,E) is a
path that starts and ends at the same node and
contains each edge of G exactly once.

• Show that a connected, undirected graph has an
Euler circuit if and only if each node is of even
degree.

• Let G (V,E) be an undirected graph with m edges
in which every node is of even degree. Give an
O(V) algorithm to construct an Euler circuit for
G.

56

Kumar CSE5311 CSE@UTA 56

Maximum Flow Networks

Topics

Flow Networks
Residual networks
Ford-Fulkerson’s algorithm
Ford-Fulkerson's Algorithm

Further Reading

Chapter 25 from
Text book

57

Kumar CSE5311 CSE@UTA 57

Flow Networks

A directed graph can be interpreted as a flow network to
analyze material flows through networks.

Material courses through a system from a source (where it
is produced) to a sink (where it is consumed).
Examples :

Water through pipelines
Newspapers through distribution system
Electricity through cables
Cars on a production line

on roads

The source produces the material at a steady rate .
The sink consumes the material at a steady rate

58

Kumar CSE5311 CSE@UTA 58

Flow: the rate at which the material moves from one point to
another

100 litres of water per hour in a pipe
30 Amperes of electric current in a circuit

5 litres/hour

30 liters/hour

25 litres/hour

The rate at which a material
enters a vertex
= the rate at which the

material leaves the vertex

59

Kumar CSE5311 CSE@UTA 59

The flow network G =(V,E) is a directed graph in which each
edge (u,v) ∈ E has a nonnegative capacity c(u,v) ≥ 0.
If (u,v) ∉ E then c(u,v) = 0.
A flow network has a source vertex s, and a sink vertex t.
For every vertex v ∈ V there is a path from s to v and
v to t in a connected graph.

source
sink

s
t

60

Kumar CSE5311 CSE@UTA 60

A flow in G is a real-valued function f : V × V → R that satisfies the following
three properties:

1. Capacity constraint : For all u,v ∈ V, we require f(u,v) ≤ c(u,v).
The net flow from one vertex to another must not exceed the given capacity.

2. Skew symmetry : For all u,v ∈ V, we require f(u,v) = -f(v,u).

The net flow from a vertex u to a vertex v is the negative of the net flow in the
reverse direction.
The net flow from a vertex to itself is zero for all u ∈ V, that is f(u,u) = 0.

3. Flow conservation : For all u∈ V - {s,t}, we require

The total net flow out of a vertex other than the source or sink is zero.

∑
∈

=
Vv

vuf 0),(

61

Kumar CSE5311 CSE@UTA 61

62

Kumar CSE5311 CSE@UTA 62

The quantity f(u,v) can be negative or positive, it is called the
net flow from vertex u to v.

The value of a flow is defined as

∑
∈

=
Vv

vsff),(

In the maximum-flow problem, we are given a flow network G with source s
and sink t, and we wish to find a flow of maximum value from s to t.

There is no net flow between u and v if there is no edge between them.
If (u,v) ∉ E and (v,u) ∉ E, then c(u,v) = c(v,u) = 0.
Hence, the capacity constraint, f(u,v) ≤ 0 and f(v,u) ≤ 0.
By skew symmetry, f(u,v) = -f(v,u),

therefore, f(u,v) + f(v,u) = 0.

Nonzero net flow from vertex u to vertex v implies that (u,v)∈E
or (v,u)∈E (or both).

63

Kumar CSE5311 CSE@UTA 63

Consider the network G=(V,E) shown in the figure below. The network is
for a transport system that transports crates of an item from source
vertex s to sink vertex t through a number of intermediate points. Each
edge (u,v) ∈ E in the network is labeled with its capacity c(u,v).

db

ca

4
10 9 7

12

20

14

13

16

4

s t

64

Kumar CSE5311 CSE@UTA 64

Let us consider a flow in G, f=19
If f(u,v) >0, edge (u,v) is labeled f(u,v)/c(u,v)
If f(u,v) ≤ 0, the edge is labeled by its capacity only.

db

ca

1/4

10
4/9 7/7

12/12
15/20

11/14

8/13

11/16

4/4

s t

65

Kumar CSE5311 CSE@UTA 65

The positive net flow entering a vertex v is defined by

∑

>
∈

0),(

),(

vuf
Vu

vuf

Initially, c(a,b) = 8, and c(b,a) = 3 as shown in Fig. a.
f(a,b) = 5 and f(b,a) = 2, the net flow is shown as 3/8 in
direction a to b

3

8

a

b

2/3

5/8

a

b

3

3/8

a

b

Fig.a Fig.b Fig.c

66

Kumar CSE5311 CSE@UTA 66

f(a,b) = 5 and f(b,a) = 2, the net flow is shown as 5/8 in
direction a to b and 2/3 in direction b to a as shown in Fig. b.
Then the equivalent flow is 3/8 in the direction a to b as
shown in Fig. c.
If we increase the flow from
b to a from 2 to 6 then the netflow is 1/3 in the direction b to
a as shown in Fig. d.

3

8

a

b

2/3

5/8

a

b

3

3/8

a

b

1/3

8

a

b

Fig.a Fig.b Fig.c Fig.d

67

Kumar CSE5311 CSE@UTA 67

The Ford_Fulkerson method

The method is iterative,
Starts with f(u,v) for (u,v) ∈ V, initial flow of value 0.
The method is based on the augmenting path which is
defined as a path from s to t along which we can push
more flow and then augment flow along this path.

Procedure Ford_Fulkerson_method(G,s,t)

1. f ← 0;
2. while there exists an augmenting path p
3. do augment flow along path p
4. return f

68

Kumar CSE5311 CSE@UTA 68

Residual Networks

Consider a flow network G(V,E) with source s and sink t and
let f be a flow in G.
Consider a pair of vertices u,v ∈ V.
Residual capacity between u and v is given by

r(u,v) = c(u,v) - f(u,v)

the additional net flow we can push from u to v before
exceeding the capacity.
For example, if c(u,v) = 25 and f(u,v) = 19, then r(u,v) = 6.

If f(u,v) < 0 then r(u,v) > c(u,v)

Given a flow network G=(V,E) and a flow f, the residual
network of G induced by f is Gf=(V,Ef),

where Ef ={(u,v) ∈V× V : r(u,v) > 0}

69

Kumar CSE5311 CSE@UTA 69

db

ca

1/4

10
4/9 7/7

12/12
15/20

11/14

8/13

11/16

4/4

s t

5

8

11

3
4

15

5

7
4

5
3

11

12

11

5

t

db

ca

s

Each edge in the residual network can admit positive net flow only.
The residual network may include several edges that are not in the
original network, (u,v) ∈ Ef and (u,v) ∉ E is possible (Ef is not a subset
of E). However, (u,v) appears in Gf only if (v,u) ∈ E and there is a
positive flow from v to u. Because the net flow f(u,v) is negative,

r(u,v) = c(u,v)-f(u,v) > 0 and (u,v) ∈ Ef

4

70

Kumar CSE5311 CSE@UTA 70

An edge (u,v) can appear in a residual network only if at least
one of (u,v) and (v,u) appears in the original network.

Ef≤ 2E

Augmenting Paths

It is a simple path from s to t in Gf. Each edge (u,v) on an
augmenting path admits some additional positive net
flow from u to v without violating the capacity constraint
on the edge. The residual capacity of a path p is given
by,

r(p) = min { r(u,v) : (u,v) is in p }

71

Kumar CSE5311 CSE@UTA 71









−=
otherwise

ponisuvifpr
ponisvuifpr

f p
0

),()(

,),()(

Let's define a flow function fp,

fp is a flow in Gf with value fp= r(p) >0.
If we add fp to f, we get another flow in G whose
value is closer to the maximum.

72

Kumar CSE5311 CSE@UTA 72

Algorithm

Procedure Ford-Fulkerson(G,s,t)
Input : Flow Network G(V,E)
Output : Maximum flow for the given network

1.for each edge (u,v) ∈ E
2. do f[u,v] ← 0;
3. f[v,u] ← 0;
4.while there exists a path p from s to t in the

residual network Gf

5. do r(p) ← min{r(u,v) : (u,v) is in p};
6. for each edge (u,v) in p
7. do f[v,u] ← - f[u,v];
8. f[u,v] ← f[u,v] + r(p);
9.return

73

Kumar CSE5311 CSE@UTA 73

db

ca

4
10 9 7

12

20

14

13

16

4

s t

db

ca

4

10
4/9 7

4/12
20

4/14

13

4/16

4/4

s t

74

Kumar CSE5311 CSE@UTA 74

5

4

4

4

b d

ca

4

10

4 7

8

20

10
13

12

4

s t

db

ca

4

7/10
4/9 7/7

4/12
7/20

11/14

13

11/16

4/4

s t

db

ca

4

10
4/9 7

4/12
20

4/14

13

4/16

4/4

s t

75

Kumar CSE5311 CSE@UTA 75

75

11

4

11

b d

ca

11

3

4 7

8

13

3
13

5

4

s t

db

ca

1/4

10
4/9 7/7

12/12
15/20

11/14

8/13

11/16

4/4

s t

db

ca

4

7/10
4/9 7/7

4/12
7/20

11/14

13

11/16

4/4

s t

76

Kumar CSE5311 CSE@UTA 76

db

ca

1/4

10
4/9 7/7

12/12
19/20

11/14

12/13

11/16

4/4

s t

5

155

11

12

11

b d

ca

11

3

4 7

5

3

8

5

4

s t

db

ca

1/4

10
4/9 7/7

12/12
15/20

11/14

8/13

11/16

4/4

s t

77

Kumar CSE5311 CSE@UTA 77

11

3

1

199

11

12

b d

ca

11
7

1

3

12

5

4

s t

db

ca

1/4

10
4/9 7/7

12/12
19/20

11/14

12/13

11/16

4/4

s t

