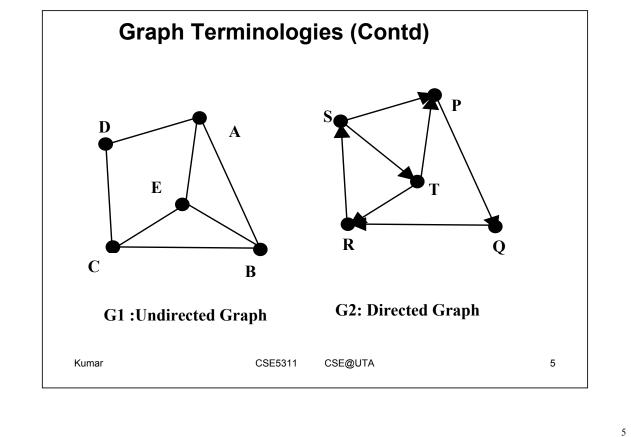


- A Graph consists of a set 'V' of vertices (or nodes) and a set 'E' of edges (or links).
- A graph can be directed or undirected.
- Edges in a directed graph are ordered pairs.
 - The order between the two vertices is important.
 - Example: (S,P) is an ordered pair because the edge starts at S and terminates at P.
 - The edge is unidirectional
 - Edges of an undirected graph form unordered pairs.
- A multigraph is a graph with possibly several edges between the same pair of vertices.
- Graphs that are not multigraphs are called simple graphs.

Kumar

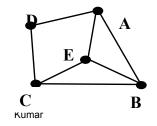


The degree d(v) of a vertex v is the number of edges incident to v.

d(A) = three, d(D) = two

In directed graphs, indegree is the number of incoming edges at the vertex and outdegree is the number of outgoing edges from the vertex.

The indegree of P is 2, its outdegree is 1. The indegree of Q is 1, its outdegree is 1.



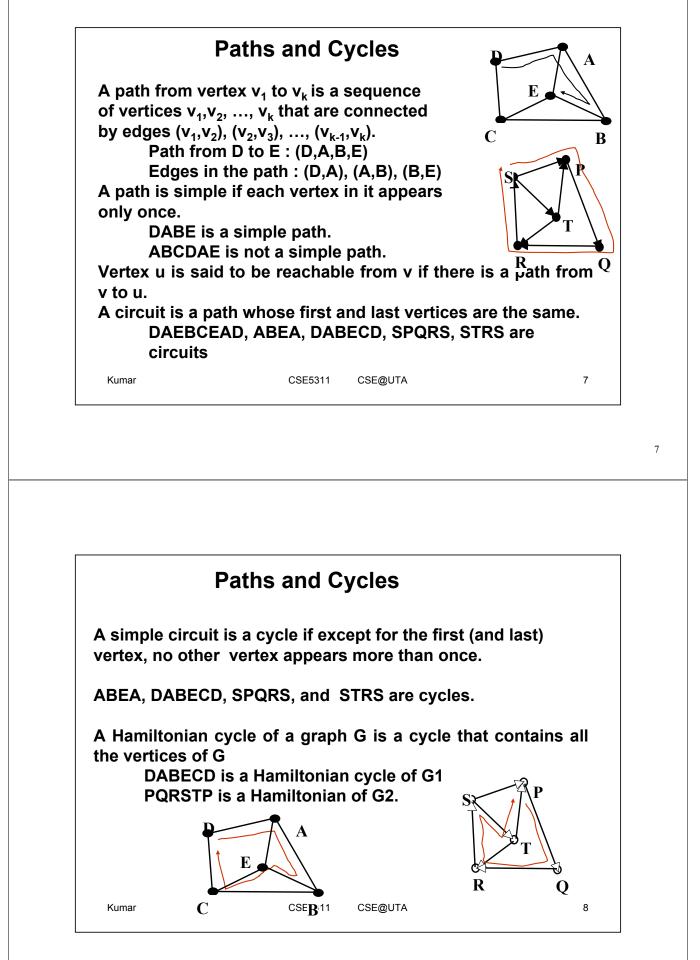
CSE5311 CSE@

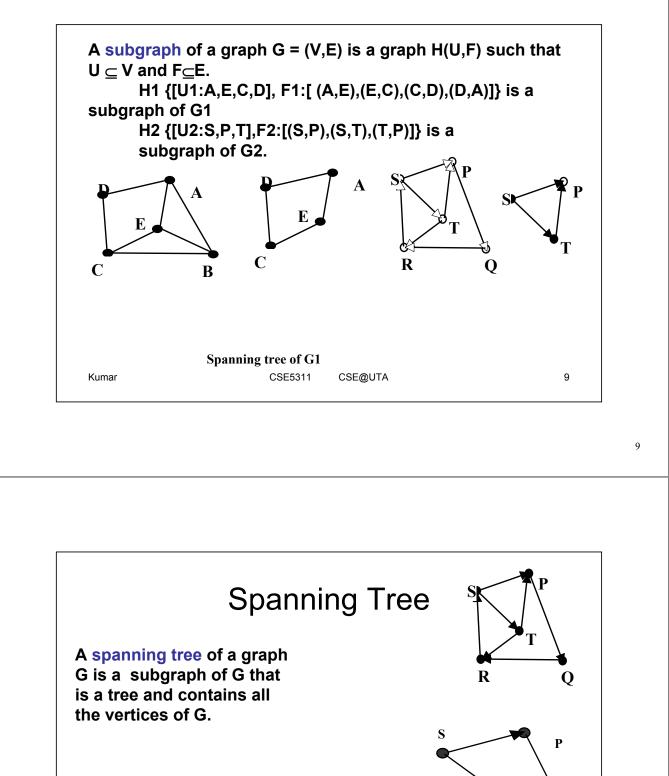
CSE@UTA

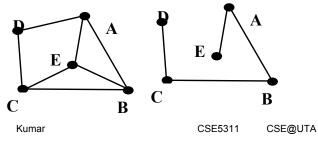
R

 \mathbf{Q}^{6}

U







Ā

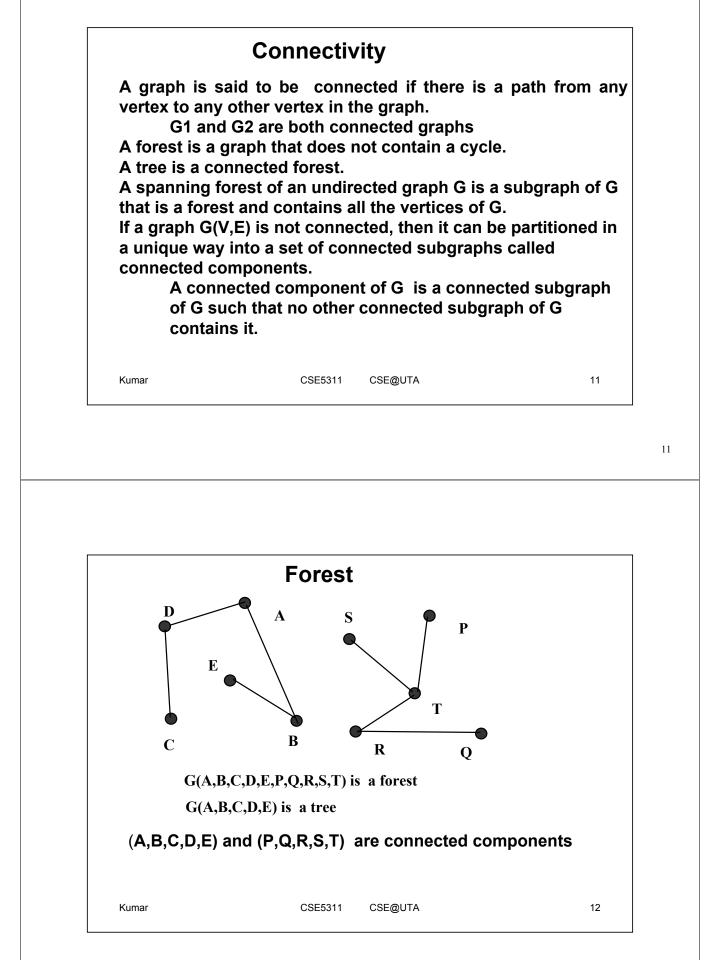
т

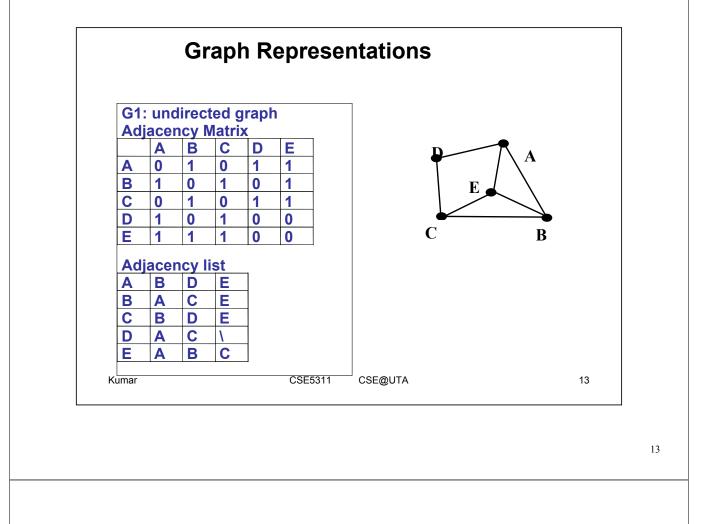
Spanning tree of G2

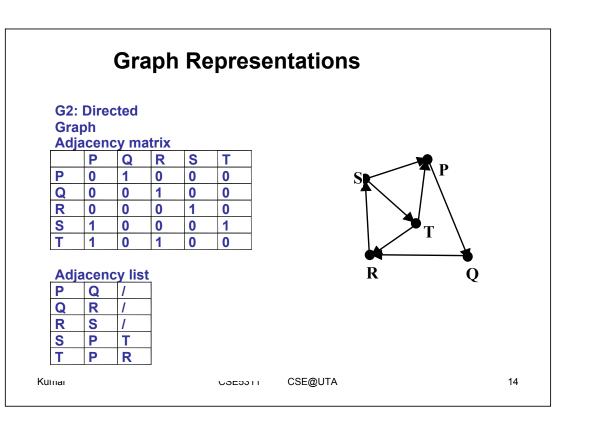
Q

10

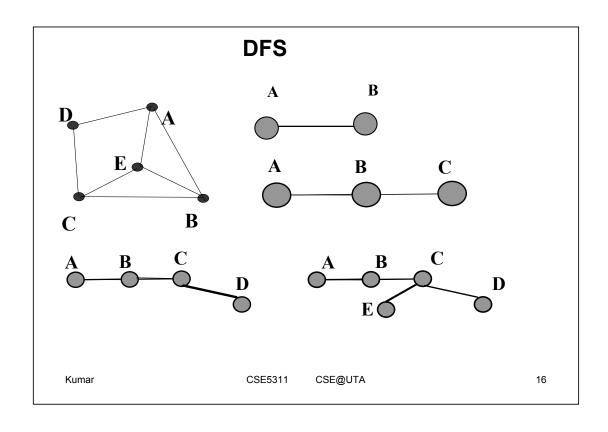
R

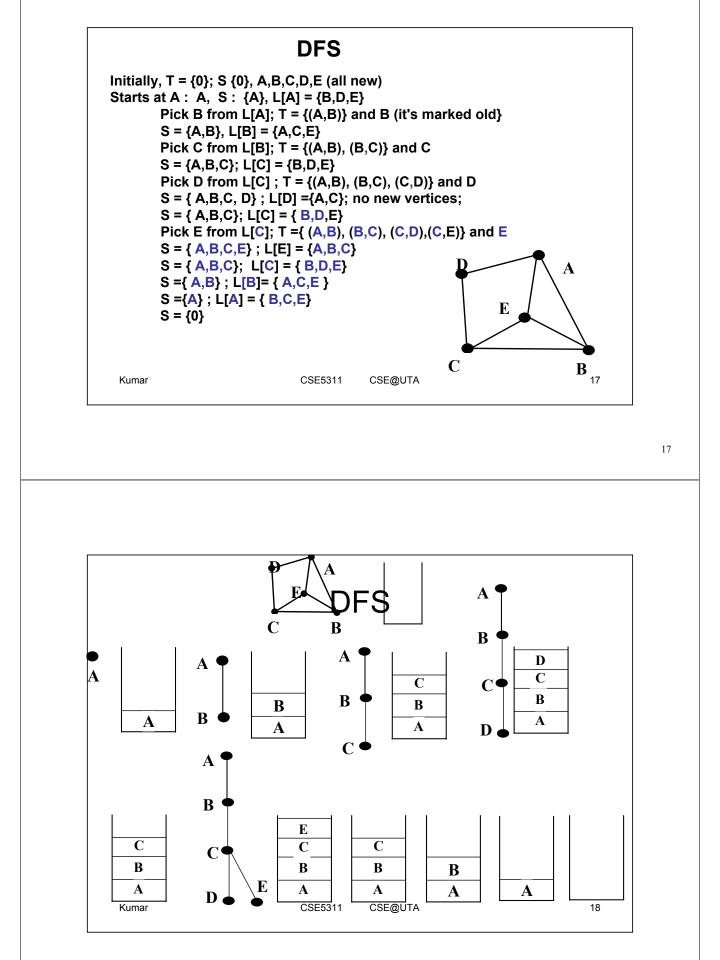


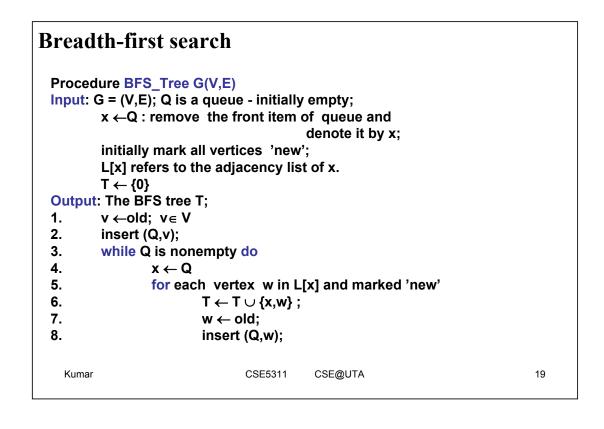


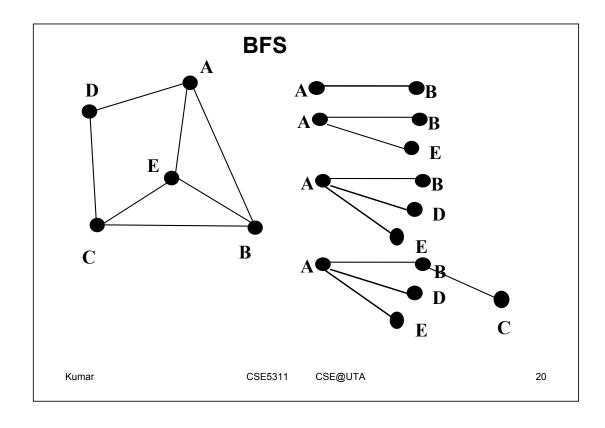


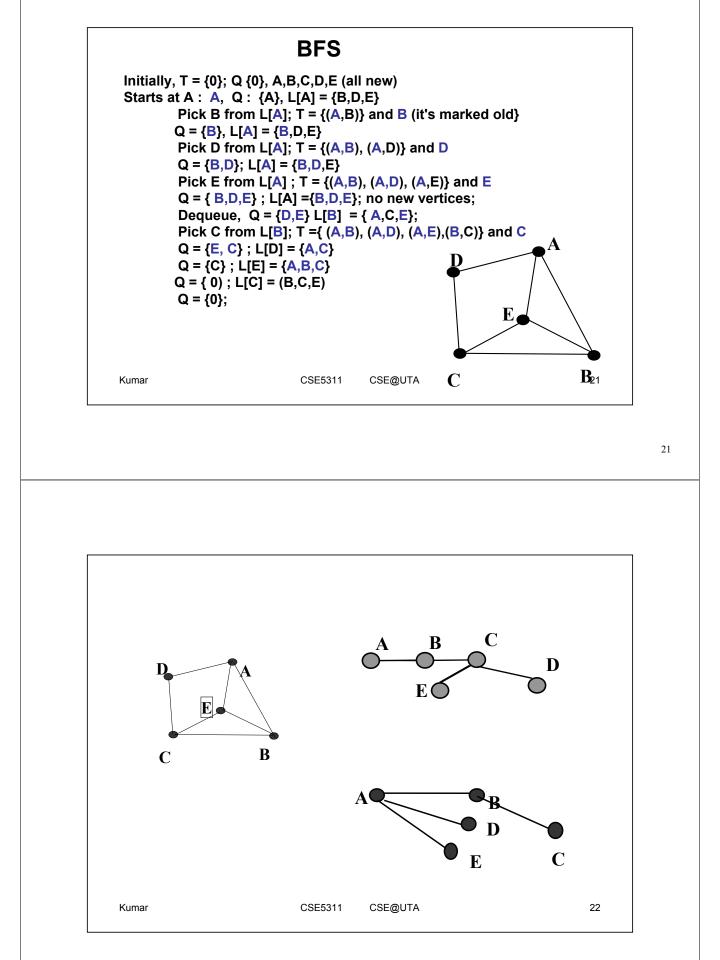
	Depth-first search
Input:	dure DFS_Tree G(V,E) G = (V,E); S is a stack - initially empty; O ($ V + E $) 'x' refers to the top of stack; initially mark all vertices 'new'; L[x] refers to the adjacency list of x. T \leftarrow {0}; t : The DFS tree T;
1. 2. 3. 4. 5. 6. 7. 8.	$\label{eq:stable} \begin{array}{l} v \leftarrow \text{old}; \ v \in V \\ \text{push} (S,v); \\ \text{while S is nonempty do} \\ \text{while there exists a vertex w in L[x] and marked new do} \\ T \leftarrow T \cup (x,w); \\ w \leftarrow \text{old}; \\ \text{push w onto S} \\ \text{pop S} \end{array}$











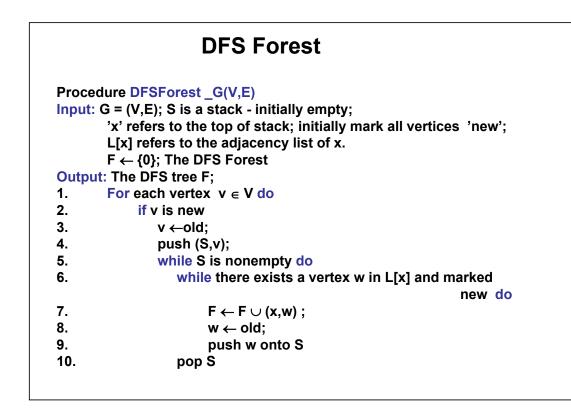
Connected Components of a Graph

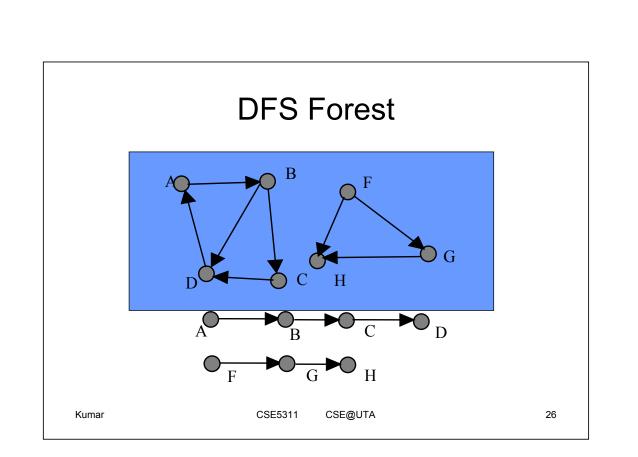
The connected component of a graph G = (V,E) is a maximal set of vertices $U \subseteq V$ such that for every pair of vertices u and v in U, we have both u and v reachable from each other. In the following we give an algorithm for finding the connected components of an undirected graph.

Procedure Connected_Components G(V,E) Input : G (V,E) Output : Number of Connected Components and G1, G2 etc, the connected components $V' \leftarrow V;$ 1. 2. c ← 0; 3. while $V' \neq 0$ do 4. choose $u \in V'$; $T \leftarrow all nodes reachable from u (by DFS_Tree)$ 5. 6. $V' \leftarrow V' - T;$ 7. $c \leftarrow c+1;$ $G_c \leftarrow T;$ 8. 9. **T** ← 0:

Suppose the DFS tree starts at A, we traverse from $A \rightarrow B \rightarrow C \rightarrow D$ and do not explore the vertices F, G, and H at all! The DFS_tree algorithm does not work with graphs having two or more connected parts. We have to modify the DFS_Tree algorithm to find a DFS forest of the given graph.

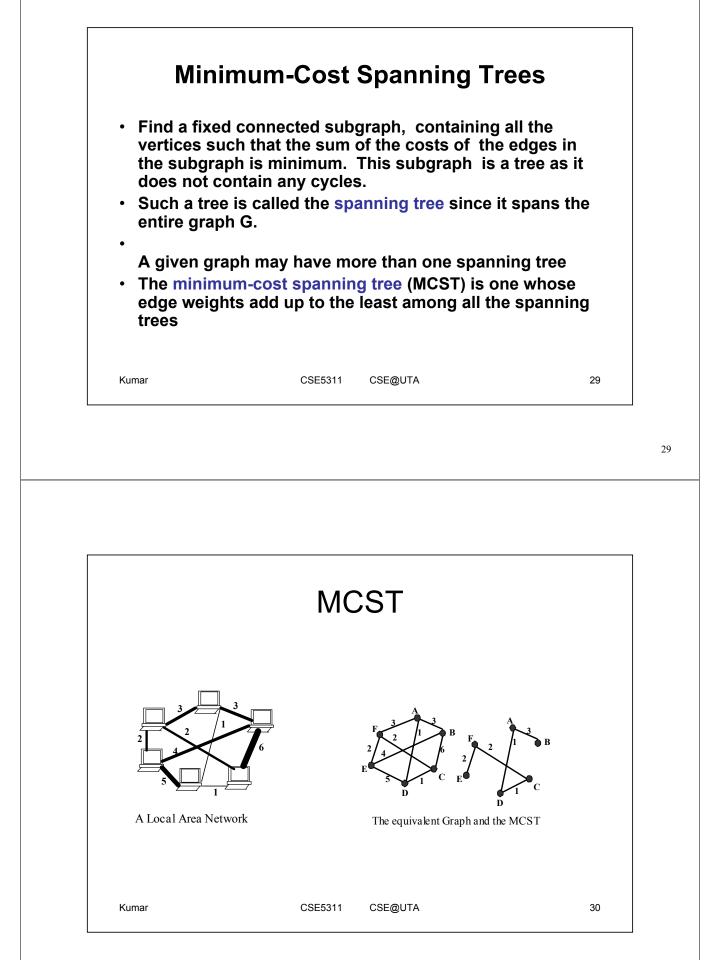
23



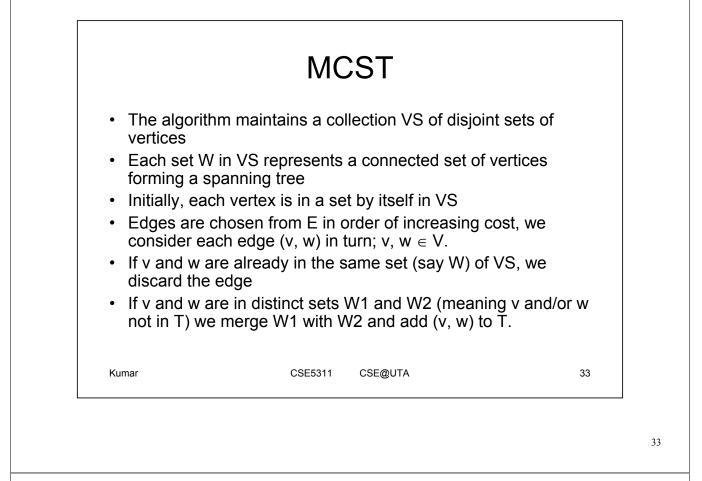


► Do you know multiple grap	the difference between a h?	simple graph and a
K What is an ad	djacency matrix ?	
K What is a Ha	miltonian path? What is ar	n Euler path?
K Given a grap paths?	h, can you find the Hamilto	onian and Eulerian
K Given a grap	h, can you perform DFS a	nd BFS traversals?
K What is the d	ifference between a cycle	and a path?
K What are the queues? Give	complexities of basic ope e proof.	erations on stacks and
Kumar	CSE5311 CSE@UTA	. 27
Minim	um-Cost Spar	nning Trees
Consider a ne	etwork of computers con al links. Each link is asso	nected through ociated with a positive
Consider a ne bidirection cost: the co This network	etwork of computers con	nected through ociated with a positive e on each link.
Consider a ne bidirection cost: the co This network with positiv In bidirection	etwork of computers con al links. Each link is asso ost of sending a message can be represented by a	inected through ociated with a positive e on each link. In undirected graph ime that the cost of
Consider a ne bidirection cost: the co This network with positiv In bidirection sending a n direction.	etwork of computers con al links. Each link is asso ost of sending a message can be represented by a /e costs on each edge. al networks we can assu	inected through ociated with a positive e on each link. In undirected graph the that the cost of ot depend on the sage to all the

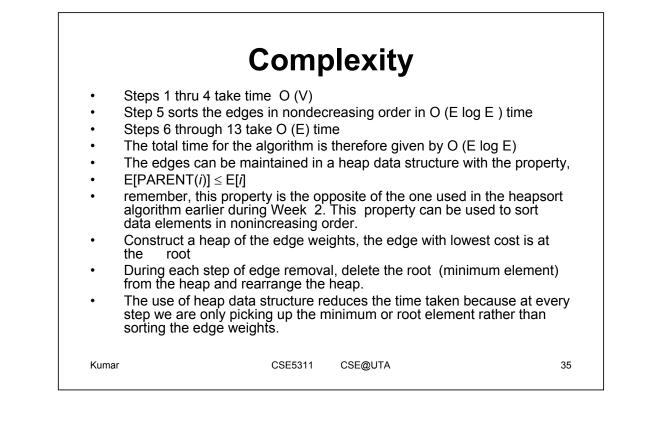
CSE5311 CSE@UTA



MCST	
 The Problem: Given an undirected connected weighter graph G =(V,E), find a spanning tree T of G of minimum 	
 Greedy Algorithm for finding the Minimum Spannin of a Graph G =(V,E) The algorithm is also called Kruskal's algorithm. 	ng Tree
 At each step of the algorithm , one of several possible must be made, 	
 The greedy strategy: make the choice that is the best a moment 	at the
Kumar CSE5311 CSE@UTA	3.
Kruskal's Algorithm	
 Kruskal's Algorithm) Input: An undirected graph G(V,E) with a cost function c on the edges Output: T the minimum cost spanning tree for G T ← 0; VS ← 0; for each vertex v ∈ V do 	
 Procedure MCST_G(V,E) (Kruskal's Algorithm) Input: An undirected graph G(V,E) with a cost function c on the edges Output: T the minimum cost spanning tree for G T ← 0; VS ← 0; for each vertex v ∈ V do VS = VS ∪ {v}; sort the edges of E in nondecreasing order of weight while VS > 1 do 	
 Procedure MCST_G(V,E) (Kruskal's Algorithm) Input: An undirected graph G(V,E) with a cost function c on the edges Output: T the minimum cost spanning tree for G T ← 0; VS ←0; for each vertex v ∈ V do VS = VS ∪ {v}; sort the edges of E in nondecreasing order of weight 	

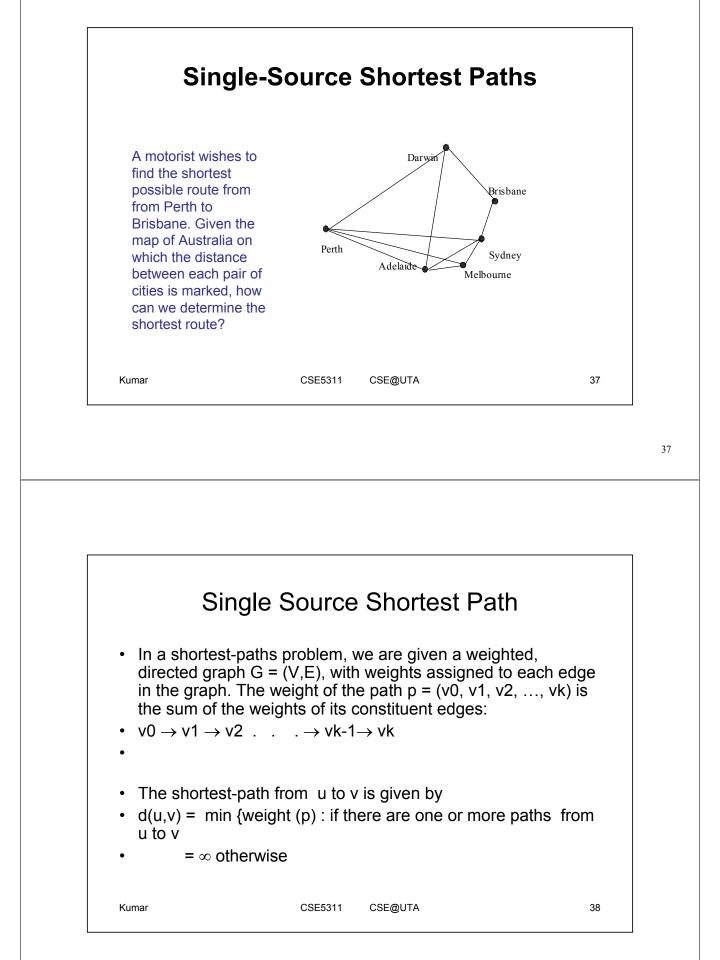


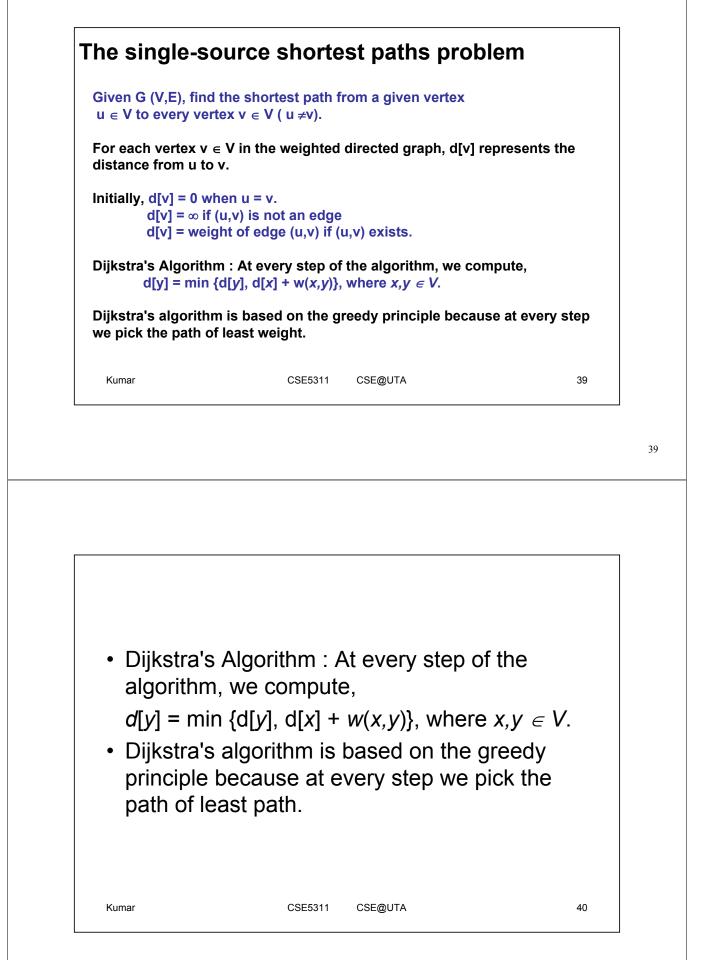
	MC	ST		
Consider the example grap	n shown earlie	r,		
The edges in nondecreasing	g order			
[(A,D),1],[(C,D),1],[(C,F),2],[(E,F),2],[(A,F),3],[(A,B),3],		
[(B,E),4],[(D,E),5],[(B,C),6]				
EdgeActionSets in VSSpan	ning Tree, T =[{A},{B},{C},{D},{E},{F}]{(0}(A,D)merge	
$[{A,D}, {B}, {C}, {E}, {F}] {(A, B)}$	D)} (C,D) merg	e		
[{A,C,D}, {B}, {E}, {F}] {(A,D)), (C,D)} (C,F) r	nerge		
[{A,C,D,F},{B},{E}]{(A,D),(C,	D), (C,F)} (E,F)	merge		
[{A,C,D,E,F},{B}]{(A,D),(C,D)), (C,F),(E,F)}(A	,F) reject		
[{A,C,D,E,F},{B}]{(A,D),(C,D)), (C,F), (E,F)}(A,B) merge		
[{A,B,C,D,E,F}]{(A,D),(A,B),(C,D), (C,F),(E,	⁻)}(B,E) reject		
(D,E) reject				
(B,C) reject				
Kumar	CSE5311	CSE@UTA		34

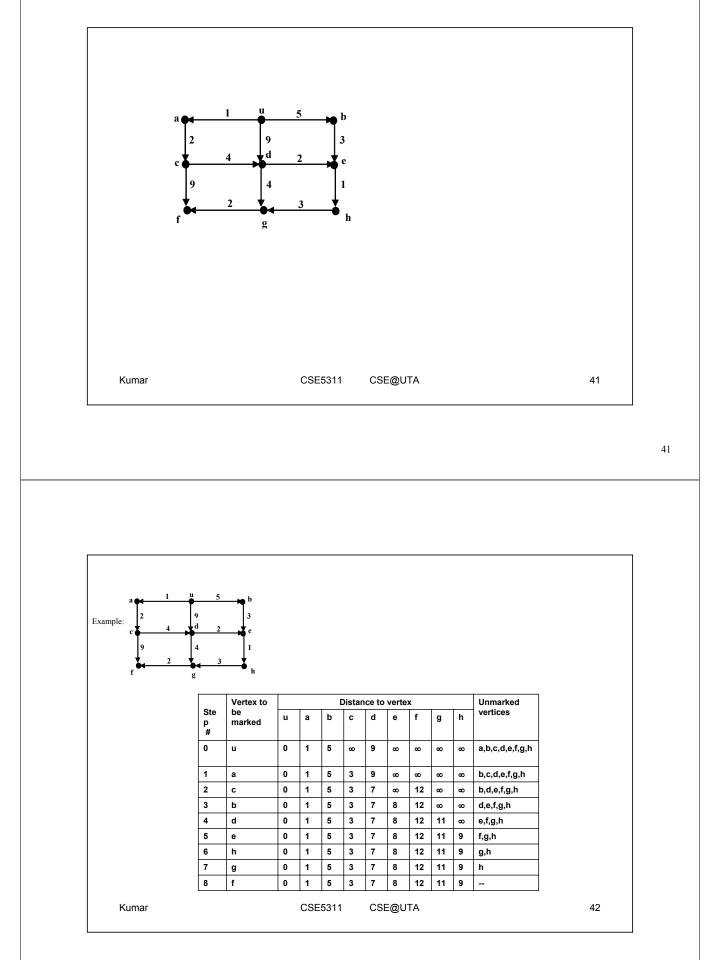


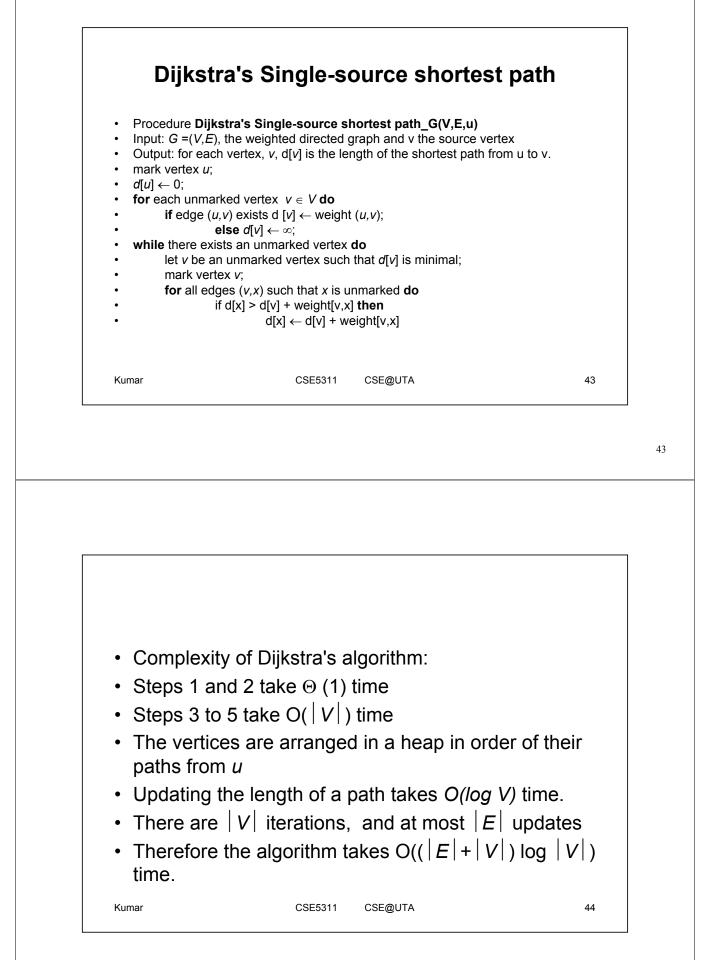
Week 4

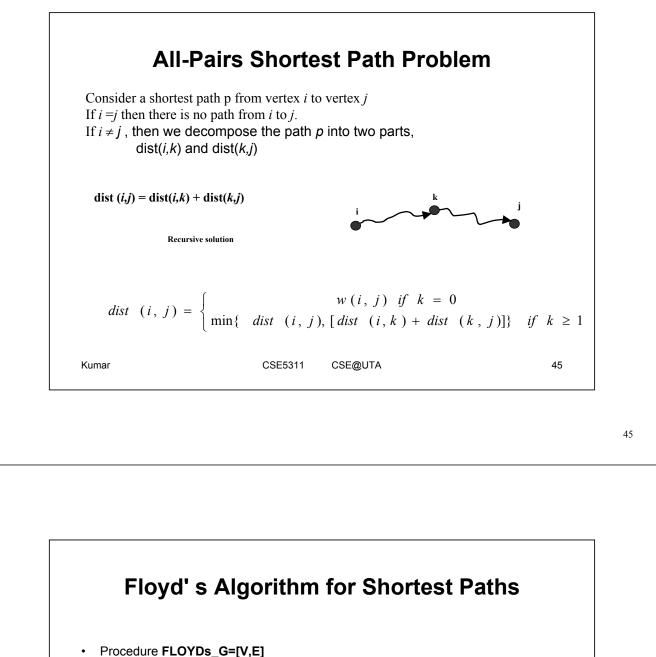
- Single Source Shortest Paths
- All Pairs Shortest Path Problem









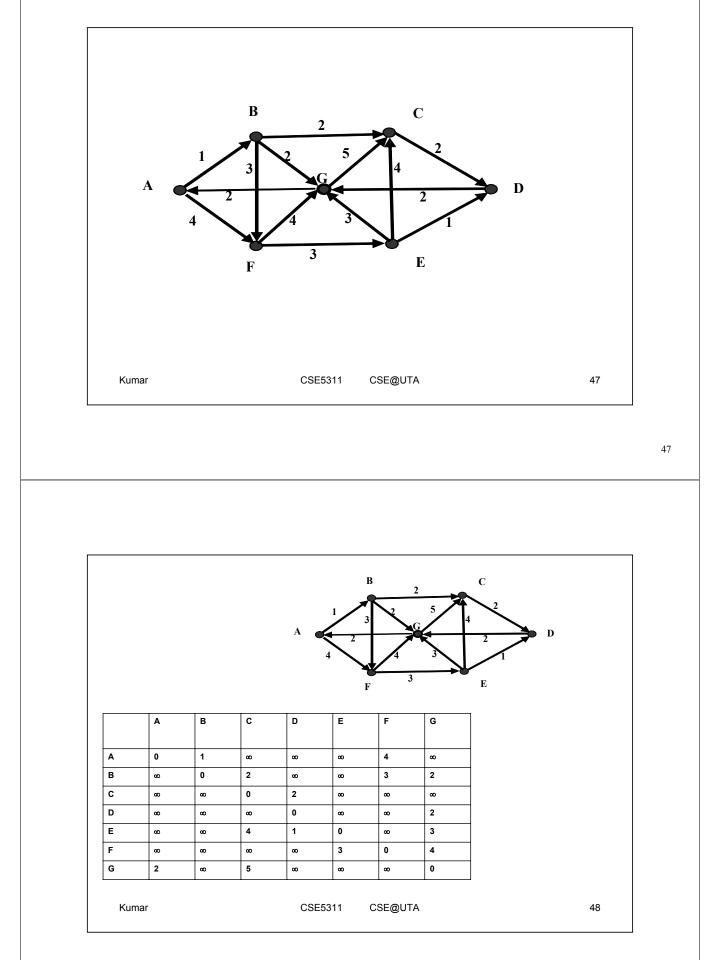


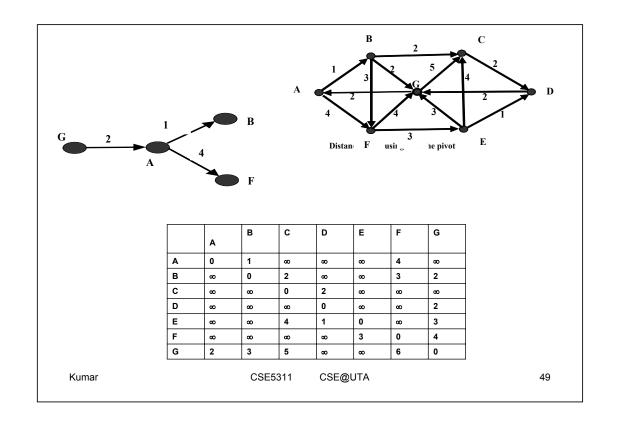
•

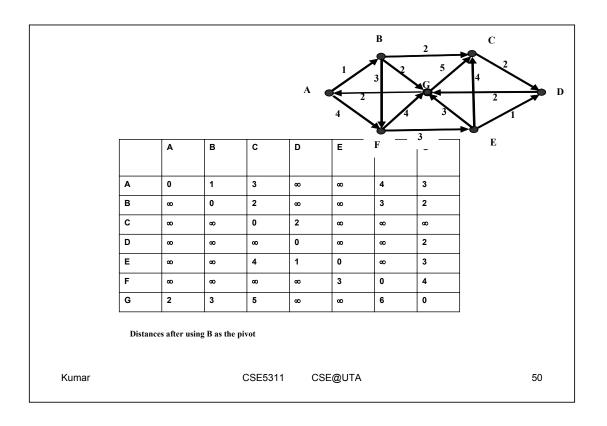
Input: $n \times n$ matrix *W* representing the edge weights of an n-vertex directed graph. That is W = w(i,j) where, (Negative weights are allowed)

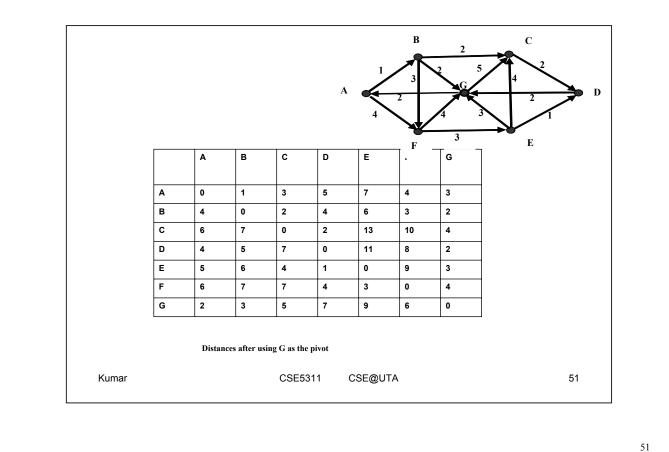
- **Output:** shortest path matrix, dist(*i*,*j*) is the shortest path between vertices *i* and *j*.
- **for** *v* ← 1 to *n* **do**
- **for** *w* ← 1 to *n* **do**
- dist[v,w] ←arc[v,w];
- **for** *u* ← 1 to *n* **do**
- **for** *v* ← 1 to *n* **do**
- **for** *w* ← 1 to *n* **do**
 - **if** dist[*v*,*u*] + dist[*u*,*w*] < dist[*v*,*w*] **then**
 - $dist[v,w] \leftarrow dist[v,u] + dist[u,w]$
- Complexity : $\Theta(n^3)$

Kumar
Numai





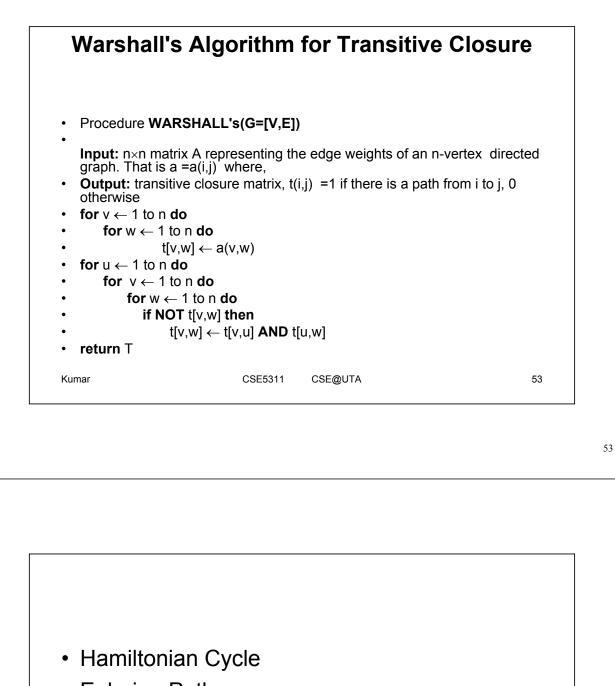




Transitive Closure

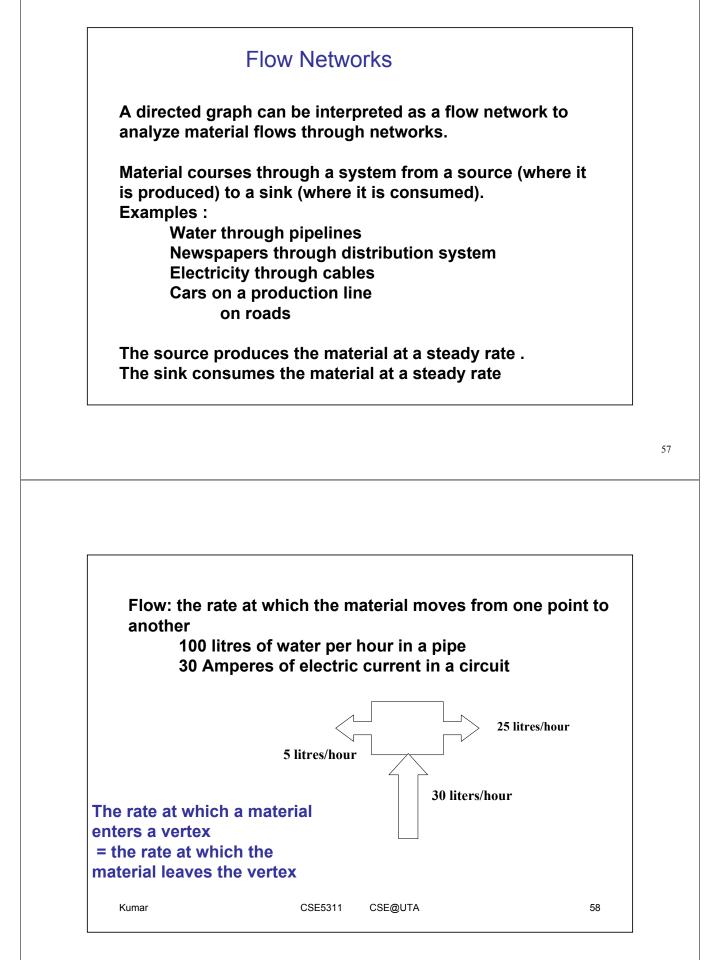
- Given a directed graph G=(V,E), the transitive closure C =(V,F) of G is a directed graph such that there is an edge (v,w) in C if and only if there is a directed path from v to w in G.
- Security Problem: the vertices correspond to the users and the edges correspond to permissions. The transitive closure identifies for each user all other users with permission (either directly or indirectly) to use his or her account. There are many more applications of transitive closure.
- The recursive definition for transitive closure is

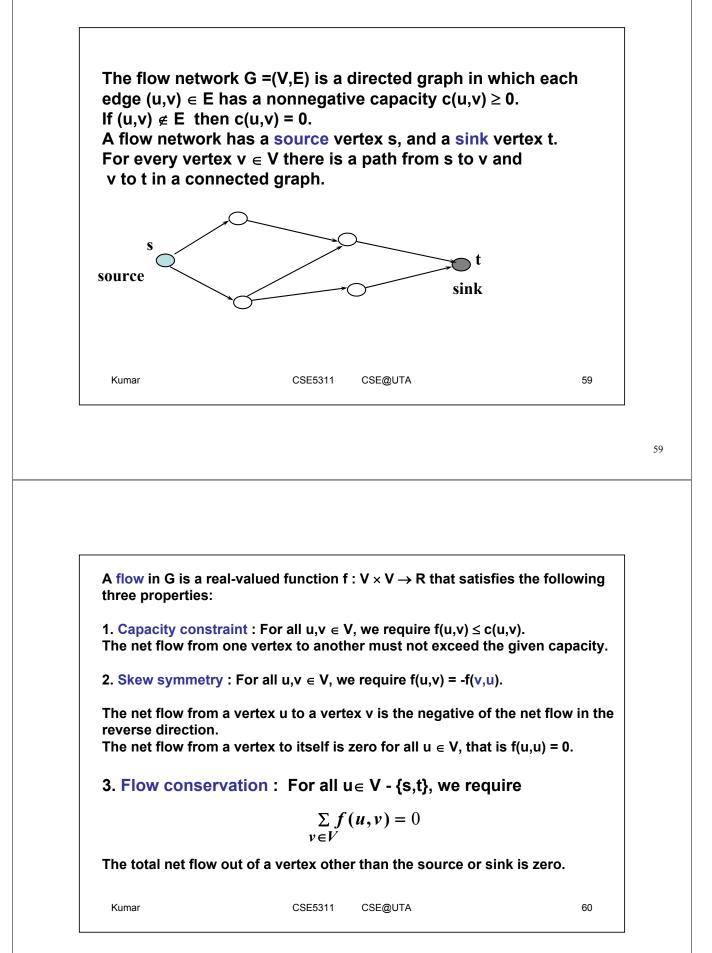
$$t(i,j) = \begin{cases} 0 & \text{if } i \neq j \text{ and } (i,j) \notin E \\ 1 & f \text{ ij and } (i,j) \in E \end{cases}$$

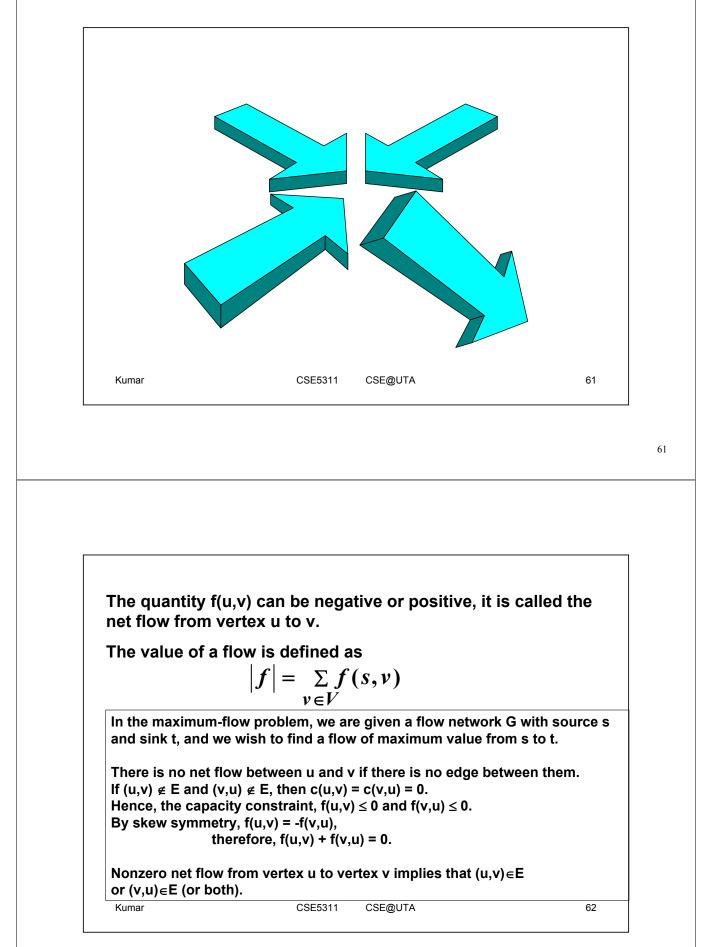


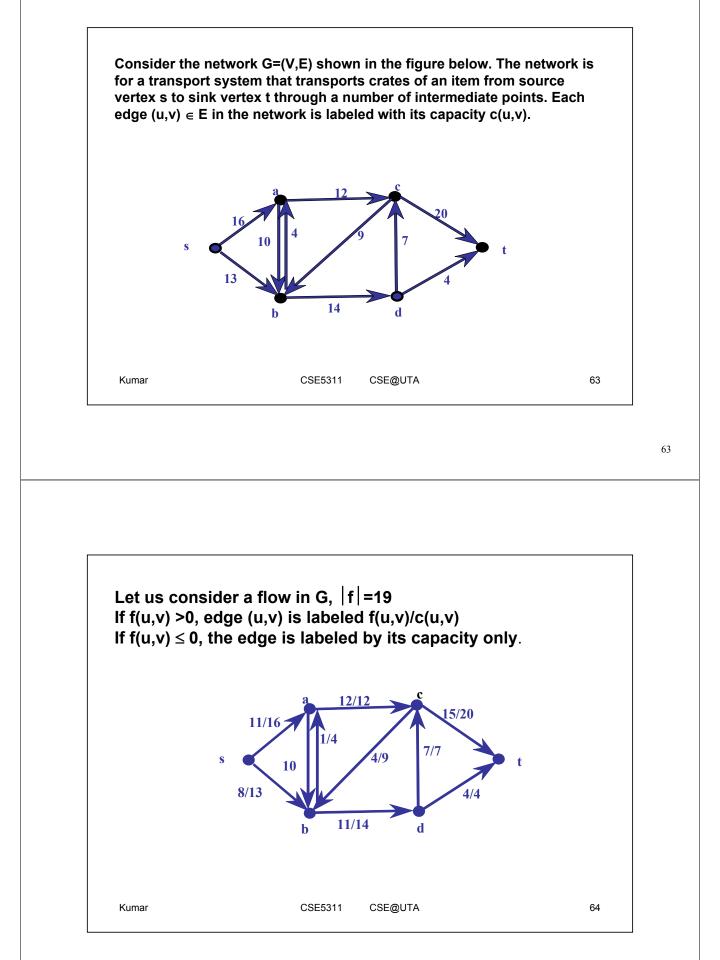
- Eulerian Path
- Biconnected Components
- Bipartite Graph Matching

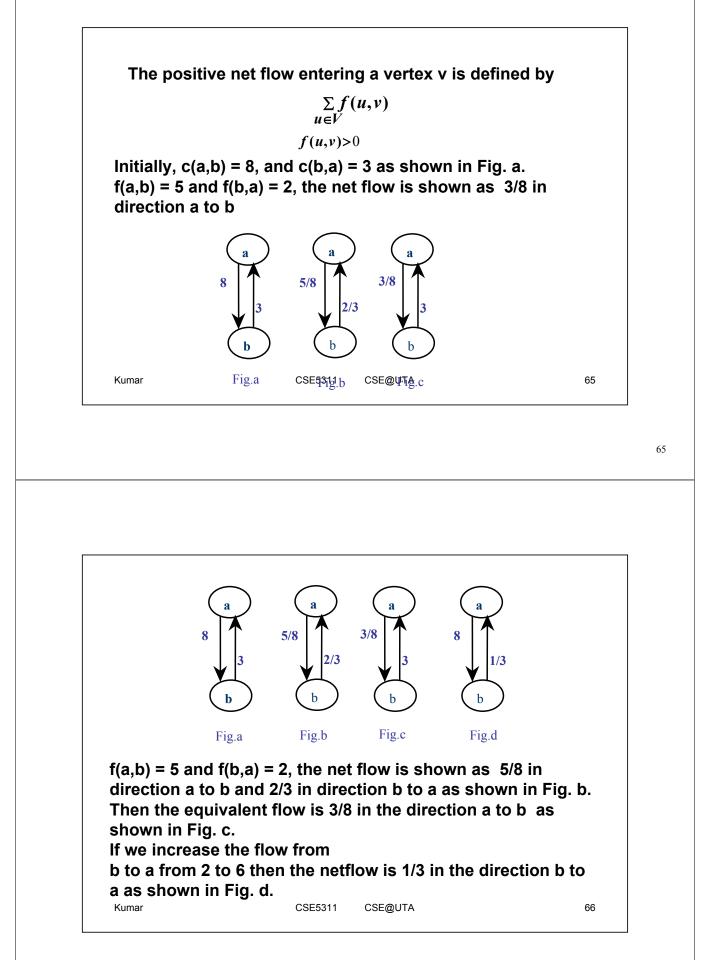
	Euler	Circui	t	
path con • Sho Eule deg • Let	G (V,E) be an und	ds at the s G exactly I, undirect if each no irected gra	ame node an once. ed graph has ode is of even aph with m ed	id an Iges
in w O(G.	rhich every node is V│) algorithm to c	of even de onstruct a	egree. Give a n Euler circuit	n for
Kumar	CSE5311	CSE@UTA		55
Maximu	um Flow Netwo	orks		
Topics Flow N Residu Ford-F	um Flow Netwo etworks al networks ulkerson's algorithm ulkerson's Algorithn		<u>Further Rea</u> Chapter 25 f Text book	
Topics Flow N Residu Ford-F	etworks al networks ulkerson's algorithm		Chapter 25 f	

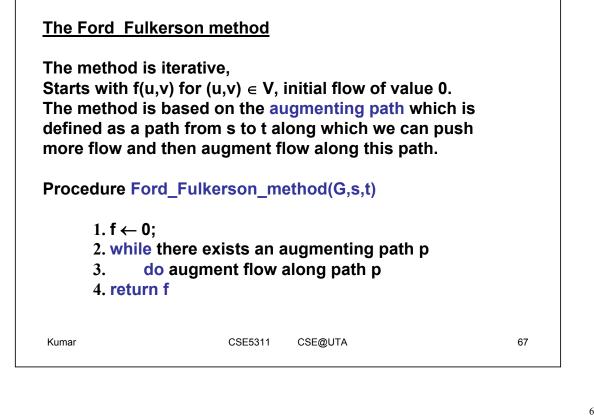












Residual Networks

Consider a flow network G(V,E) with source s and sink t and let f be a flow in G. Consider a pair of vertices u,v ∈ V. Residual capacity between u and v is given by r(u,v) = c(u,v) - f(u,v)

■the additional net flow we can push from u to v before exceeding the capacity.

For example, if c(u,v) = 25 and f(u,v) = 19, then r(u,v) = 6.

If f(u,v) < 0 then r(u,v) > c(u,v)

```
Given a flow network G=(V,E) and a flow f, the residual network of G induced by f is G_f=(V,E_f), where E_f = \{(u,v) \in V \times V : r(u,v) > 0\}
```

