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Weeks 3, 4, and 5 
Graph Algorithms
and Maximum Flow Networks

Further  Reading

Chapter 22 .. 26 from 
Textbook 

This week
Graph terminology
Stacks and Queues
Breadth-first-search
Depth-first-search
Connected Components
Analysis of BFS and DFS 

Algorithms
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Graph Preliminaries

Examples of modeling by Graphs

Darwin

Adelaide

Brisbane

Sydney

Melbourne

Perth

Module 1

Module3

Module 2

Module 4 Module 5

Module 6 Module 7
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Konigsberg bridges
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C D

Konigsberg bridges
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The town of Konigsberg (now Kaliningrad) lay on the banks and on two 
islands of the Pregel river. The city was connected by 7 bridges. 
The puzzle  (as encountered by Leonhard Euler in 1736) :  
Whether it was possible to start walking from anywhere in town and return 
to the starting point by crossing all bridges exactly once. 
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Graph Terminologies

• A Graph consists of a set 'V' of vertices (or nodes) and a set 
'E' of edges (or links).  

• A graph can be directed or undirected. 

• Edges in a directed graph are ordered pairs. 

• The order between the two vertices is important.

– Example: (S,P) is an ordered pair because the edge 
starts at S and terminates at P.

– The edge is unidirectional
– Edges of an undirected graph form unordered pairs.

• A multigraph is a graph with possibly several edges 
between the same pair of vertices.

• Graphs that are not multigraphs are called simple graphs.
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Graph Terminologies (Contd)

G1 :Undirected Graph 

QR

T

P
S

G2: Directed Graph 

D

B

A

E

C
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Graph Terminologies

The degree d(v) of a vertex v is the number of edges incident 
to v.

d (A) = three, d (D) = two
In directed graphs,  indegree is  the number of incoming edges 
at the vertex and outdegree is the number of outgoing edges 
from the vertex.

The indegree of P is 2, its outdegree is 1.
The indegree of Q is 1, its outdegree is 1.
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Paths and Cycles

A path from vertex v1 to vk is a sequence 
of vertices v1,v2, …, vk that are connected 
by edges (v1,v2), (v2,v3), …, (vk-1,vk).

Path from D to E : (D,A,B,E)
Edges in the path : (D,A), (A,B), (B,E)

A path is simple if each vertex in it appears 
only once.

DABE is a simple path.
ABCDAE is not a simple path.

Vertex u is said to be reachable from v if there is a path from 
v to u.
A circuit is a path whose first and last vertices are the same.

DAEBCEAD, ABEA, DABECD, SPQRS, STRS are 
circuits
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Paths and Cycles

A simple circuit is a cycle if except for the first (and last) 
vertex, no other vertex appears more than once. 

ABEA, DABECD, SPQRS, and  STRS are cycles.

A Hamiltonian cycle of a graph G is a cycle that contains all 
the vertices of G

DABECD is a Hamiltonian cycle of G1
PQRSTP is a Hamiltonian of G2. 
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A subgraph of a graph G = (V,E) is a graph H(U,F) such that 
U ⊆ V and F⊆E. 

H1 {[U1:A,E,C,D], F1:[ (A,E),(E,C),(C,D),(D,A)]} is a 
subgraph of G1

H2 {[U2:S,P,T],F2:[(S,P),(S,T),(T,P)]} is a 
subgraph of G2.

Spanning tree of G1
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Spanning Tree

A spanning tree of a graph 
G is a  subgraph of G that 
is a tree and contains all 
the vertices of G.
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Connectivity

A graph is said to be  connected if there is a path from any 
vertex to any other vertex in the graph.

G1 and G2 are both connected graphs
A forest is a graph that does not contain a cycle.
A tree is a connected forest.
A spanning forest of an undirected graph G is a subgraph of G 
that is a forest and contains all the vertices of G.
If a graph G(V,E) is not connected, then it can be partitioned in 
a unique way into a set of connected subgraphs called 
connected components.

A connected component of G  is a connected subgraph 
of G such that no other connected subgraph of G 
contains it.
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Forest

QR
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G(A,B,C,D,E,P,Q,R,S,T) is  a forest  

G(A,B,C,D,E) is  a tree 

(A,B,C,D,E) and (P,Q,R,S,T)  are connected components
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Graph Representations

D

B

A

E

C

G1: undirected graph
Adjacency Matrix

A B C D E
A 0 1 0 1 1
B 1 0 1 0 1
C 0 1 0 1 1
D 1 0 1 0 0
E 1 1 1 0 0

Adjacency list
A B D E
B A C E
C B D E
D A C \
E A B C
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Graph Representations

QR

T

PS

G2: Directed
Graph
Adjacency matrix

P Q R S T
P 0 1 0 0 0
Q 0 0 1 0 0
R 0 0 0 1 0
S 1 0 0 0 1
T 1 0 1 0 0

Adjacency list
P Q /
Q R /
R S /
S P T
T P R
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Depth-first search

Procedure DFS_Tree G(V,E)
Input: G = (V,E); S is a stack - initially empty;

’x’ refers to the top of stack;
initially mark all vertices  ’new’;
L[x] refers to the adjacency list of x.
T ← {0};

Output : The DFS tree T;

1. v ←old;  v∈ V
2. push (S,v);
3. while S is nonempty do 
4. while there exists a vertex w in L[x] and marked new  do
5. T ← T ∪ (x,w) ;
6. w ← old;
7. push w onto S
8. pop S

O (V  +  E )
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DFS
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DFS
Initially, T = {0}; S {0}, A,B,C,D,E (all new)
Starts at A :  A,  S :  {A}, L[A] = {B,D,E}

Pick B from L[A]; T = {(A,B)} and B (it's marked old}
S = {A,B}, L[B] = {A,C,E}
Pick C from L[B]; T = {(A,B), (B,C)} and C
S = {A,B,C}; L[C] = {B,D,E}
Pick D from L[C] ; T = {(A,B), (B,C), (C,D)} and D
S = { A,B,C, D} ; L[D] ={A,C}; no new vertices;
S = { A,B,C}; L[C] = { B,D,E}
Pick E from L[C]; T ={ (A,B), (B,C), (C,D),(C,E)} and E
S = { A,B,C,E} ; L[E] = {A,B,C}
S = { A,B,C};  L[C] = { B,D,E}
S ={ A,B} ; L[B]= { A,C,E }
S ={A} ; L[A] = { B,C,E}
S = {0}
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DFS
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Procedure BFS_Tree G(V,E)
Input: G = (V,E); Q is a queue - initially empty;

x ←Q : remove  the front item of  queue and 
denote it by x;

initially mark all vertices  ’new’;
L[x] refers to the adjacency list of x. 
T ← {0}

Output: The BFS tree T; 
1. v ←old;  v∈ V
2. insert (Q,v); 
3. while Q is nonempty do
4. x ← Q
5.  for each  vertex  w in L[x] and marked ’new’
6. T ← T ∪ {x,w} ;
7. w ← old;
8. insert (Q,w);

Breadth-first search
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BFS

A B

E

A B

C

D

A B

E

D

A B

E

A

C

D

B

E



21

Kumar CSE5311          CSE@UTA 21

BFS
Initially, T = {0}; Q {0}, A,B,C,D,E (all new)
Starts at A :  A,  Q :  {A}, L[A] = {B,D,E}

Pick B from L[A]; T = {(A,B)} and B (it's marked old}
Q = {B}, L[A] = {B,D,E}
Pick D from L[A]; T = {(A,B), (A,D)} and D
Q = {B,D}; L[A] = {B,D,E}
Pick E from L[A] ; T = {(A,B), (A,D), (A,E)} and E
Q = { B,D,E} ; L[A] ={B,D,E}; no new vertices;
Dequeue,  Q = {D,E} L[B]  = { A,C,E};
Pick C from L[B]; T ={ (A,B), (A,D), (A,E),(B,C)} and C
Q = {E, C} ; L[D] = {A,C}
Q = {C} ; L[E] = {A,B,C}
Q = { 0) ; L[C] = (B,C,E)
Q = {0};
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B

E
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Connected Components of a Graph

The connected component of a graph G = (V,E) is a maximal set of vertices 
U ⊆ V such that for every pair of vertices u and v in U, we have both u and 
v reachable from each other.  In the following we give an algorithm for 
finding the connected components of an undirected graph.

Procedure Connected_Components G(V,E)
Input : G (V,E) 
Output : Number of Connected Components and G1, G2 etc, the 
connected components
1. V' ← V;
2. c ← 0;
3. while V' ≠ 0 do
4. choose  u ∈ V' ;
5. T ← all nodes reachable from u (by DFS_Tree)
6. V' ←V' - T;
7. c ← c+1;
8. Gc ← T;
9. T ← 0; 
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Suppose the DFS tree starts at A, we traverse from 
A → B → C → D and do not explore the vertices F, G, and H at 
all! The DFS_tree algorithm does not  work with graphs 
having two or more connected parts.

We have to modify the DFS_Tree algorithm to find a DFS 
forest of the given graph. 
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DFS Forest

Procedure DFSForest _G(V,E)
Input: G = (V,E); S is a stack - initially empty;

’x’ refers to the top of stack; initially mark all vertices  ’new’;
L[x] refers to the adjacency list of x.
F ← {0}; The DFS Forest

Output: The DFS tree F;
1. For each vertex  v ∈ V do
2. if v is new
3. v ←old;  
4. push (S,v);
5. while S is nonempty do
6. while there exists a vertex w in L[x] and marked 

new  do
7. F ← F ∪ (x,w) ;
8. w ← old;
9. push w onto S
10. pop S
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DFS Forest
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Questions
Do you know the difference between a simple graph and a 
multiple graph?

What is an adjacency matrix ?

What is a Hamiltonian path? What is an Euler path?

Given a graph, can you find the Hamiltonian and Eulerian 
paths?

Given a graph, can you perform DFS and BFS traversals?

What is the difference between a cycle and a path?

What are the complexities  of basic operations on stacks and 
queues? Give proof. 
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Minimum-Cost Spanning Trees

Consider a network of computers connected through 
bidirectional links. Each link is associated with a positive 
cost: the cost of sending a message on each link. 

This network can be represented by an undirected graph 
with positive costs on each edge. 

In bidirectional networks we can assume that the cost of 
sending a message on link does not depend on the 
direction.  

Suppose we want to broadcast a message to all the 
computers from an arbitrary computer. 

The cost of the broadcast is the sum of the costs of links 
used to forward the message. 
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Minimum-Cost Spanning Trees

• Find a fixed connected subgraph,  containing all the 
vertices such that the sum of the costs of  the edges in 
the subgraph is minimum.  This subgraph is a tree as it 
does not contain any cycles.  

• Such a tree is called the spanning tree since it spans the 
entire graph G. 

•
A given graph may have more than one spanning tree

• The minimum-cost spanning tree (MCST) is one whose 
edge weights add up to the least among all the spanning 
trees
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MCST
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MCST

• The Problem: Given an undirected connected weighted 
graph G =(V,E), find a spanning tree T of G of minimum cost.

• Greedy Algorithm for finding the Minimum Spanning Tree 
of a Graph G =(V,E)

The algorithm is also called Kruskal's algorithm.

• At each step of the algorithm , one of several possible choices 
must be made,

• The greedy strategy: make the choice that is the best at the 
moment
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Kruskal's Algorithm

• Procedure MCST_G(V,E) 
• (Kruskal's Algorithm)
• Input: An undirected graph G(V,E) with a cost function c on the edges
• Output: T the minimum cost spanning tree for G
• T ← 0;
• VS ←0;
• for each vertex v ∈ V do
• VS = VS ∪ {v};
• sort the edges of E in nondecreasing order of weight 
• while |VS| > 1  do
• choose (v,w) an edge E of lowest cost;
• delete (v,w) from E;
• if v and w are in different sets W1 and W2 in VS do
• W1 = W1 ∪ W2;
• VS = VS - W2;
• T ← T∪ (v,w);
• return T
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MCST

• The algorithm maintains a collection VS of disjoint sets of 
vertices 

• Each set W in VS represents a connected set of vertices 
forming a spanning tree

• Initially, each vertex is in a set by itself in VS
• Edges are chosen from E in order of increasing cost, we 

consider each edge (v, w) in turn; v, w ∈ V.
• If v and w are already in the same set (say W) of VS, we 

discard the edge
• If v and w are in distinct sets W1 and W2 (meaning v and/or w  

not in T) we merge W1 with W2 and add (v, w) to T.
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MCST
Consider the example graph shown earlier, 

The edges in nondecreasing order

[(A,D),1],[(C,D),1],[(C,F),2],[(E,F),2],[(A,F),3],[(A,B),3],

[(B,E),4],[(D,E),5],[(B,C),6]

EdgeActionSets in VSSpanning Tree, T =[{A},{B},{C},{D},{E},{F}]{0}(A,D)merge

[{A,D}, {B},{C}, {E}, {F}] {(A,D)} (C,D) merge

[{A,C,D}, {B}, {E}, {F}] {(A,D), (C,D)} (C,F) merge

[{A,C,D,F},{B},{E}]{(A,D),(C,D), (C,F)} (E,F) merge

[{A,C,D,E,F},{B}]{(A,D),(C,D), (C,F),(E,F)}(A,F) reject

[{A,C,D,E,F},{B}]{(A,D),(C,D), (C,F), (E,F)}(A,B) merge

[{A,B,C,D,E,F}]{(A,D),(A,B),(C,D), (C,F),(E,F)}(B,E) reject

(D,E) reject

(B,C) reject
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Complexity
• Steps 1 thru 4 take time  O (V)
• Step 5 sorts the edges in nondecreasing order in O (E log E ) time
• Steps 6 through 13 take O (E) time
• The total time for the algorithm is therefore given by O (E log E)
• The edges can be maintained in a heap data structure with the property, 
• E[PARENT(i)] ≤ E[i]
• remember, this property is the opposite of the one used in the heapsort

algorithm earlier during Week  2. This  property can be used to sort  
data elements in nonincreasing order. 

• Construct a heap of the edge weights, the edge with lowest cost is at 
the      root

• During each step of edge removal, delete the root  (minimum element) 
from the heap and rearrange the heap.

• The use of heap data structure reduces the time taken because at every 
step we are only picking up the minimum or root element rather than 
sorting the edge weights.
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Week 4

• Single Source Shortest Paths

• All Pairs Shortest Path Problem
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Single-Source Shortest Paths

 
Darwin 

Adelaide 

Brisbane 

Sydney 

Melbourne 

Perth

A motorist wishes to 
find the shortest  
possible route from 
from Perth to  
Brisbane. Given the 
map of Australia on 
which the distance 
between each pair of 
cities is marked, how 
can we determine the 
shortest route? 
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Single Source Shortest Path

• In a shortest-paths problem, we are given a weighted, 
directed graph G = (V,E), with weights assigned to each edge 
in the graph. The weight of the path p = (v0, v1, v2, …, vk) is 
the sum of the weights of its constituent edges:

• v0 → v1 → v2  .   .    . → vk-1→ vk
•

• The shortest-path from  u to v is given by
• d(u,v) =  min {weight (p) : if there are one or more paths  from 

u to v
• = ∞ otherwise
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The single-source shortest paths problem

Given G (V,E), find the shortest path from a given vertex 
u ∈ V to every vertex v ∈ V ( u ≠v). 

For each vertex v ∈ V in the weighted directed graph, d[v] represents the 
distance from u to v.

Initially, d[v] = 0 when u = v.
d[v] = ∞ if (u,v) is not an edge
d[v] = weight of edge (u,v) if (u,v) exists.

Dijkstra's Algorithm : At every step of the algorithm, we compute,
d[y] = min {d[y], d[x] + w(x,y)}, where x,y ∈ V.

Dijkstra's algorithm is based on the greedy principle because at every step 
we pick the path of least weight. 
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• Dijkstra's Algorithm : At every step of the 
algorithm, we compute,

d[y] = min {d[y], d[x] + w(x,y)}, where x,y ∈ V.

• Dijkstra's algorithm is based on the greedy 
principle because at every step we pick the 
path of least path. 
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Example:

--91112873510f8

h91112873510g7

g,h91112873510h6

f,g,h91112873510e5

e,f,g,h∞1112873510d4

d,e,f,g,h∞∞12873510b3

b,d,e,f,g,h∞∞12∞73510c2

b,c,d,e,f,g,h∞∞∞∞93510a1

a,b,c,d,e,f,g,h∞∞∞∞9∞510u0

hgfedcbau

Unmarked 
vertices

Distance to vertexVertex to
be 
marked

Ste
p
#
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Dijkstra's Single-source shortest path

• Procedure Dijkstra's Single-source shortest path_G(V,E,u)
• Input: G =(V,E), the weighted directed graph and v the source vertex
• Output: for each vertex, v, d[v] is the length of the shortest path from u to v.
• mark vertex u;
• d[u] ← 0; 
• for each unmarked vertex  v ∈ V do
• if edge (u,v) exists d [v] ← weight (u,v);
• else d[v] ← ∞;
• while there exists an unmarked vertex do
• let v be an unmarked vertex such that d[v] is minimal;
• mark vertex v;
• for all edges (v,x) such that x is unmarked do
• if d[x] > d[v] + weight[v,x] then
• d[x] ← d[v] + weight[v,x]
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• Complexity of Dijkstra's algorithm:

• Steps 1 and 2 take Θ (1) time

• Steps 3 to 5 take O(V) time

• The vertices are arranged in a heap in order of their 
paths from u

• Updating the length of a path takes O(log V) time.

• There are V iterations,  and at most E updates

• Therefore the algorithm takes O((E+V) log V) 
time.
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All-Pairs Shortest Path Problem



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Consider a shortest path p from vertex i to vertex j
If i =j then there is no path from i to j.
If i ≠ j , then we decompose the path p into two parts,

dist(i,k) and dist(k,j)

dist (i,j) = dist(i,k) + dist(k,j)

Recursive solution  
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Floyd' s Algorithm for Shortest Paths

• Procedure FLOYDs_G=[V,E]
•

Input: n×n matrix W representing the edge weights of an n-vertex directed graph.            
That is W =w(i,j)  where, (Negative weights are allowed)

• Output: shortest path matrix, dist(i,j) is the shortest path between vertices i and j.
•
• for v ← 1 to n do
• for w ← 1 to n do
• dist[v,w] ←arc[v,w];
• for u ← 1 to n do
• for v ← 1 to n do
• for w ← 1 to n do
• if dist[v,u] + dist[u,w] < dist[v,w] then
• dist[v,w] ← dist[v,u] + dist[u,w] 
• Complexity : Θ(n3)
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2

3

4  

1  

1  

G  A

B  C  

D  

E  F  
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06∞∞532G

403∞∞∞∞F

3∞014∞∞E

2∞∞0∞∞∞D

∞∞∞20∞∞C

23∞∞20∞B

34∞∞310A

GFEDCBA

Distances after using B as the pivot

 

2  5  

4  3  

3  4  

22

2  

2  

3

4

1  

1  

G  A  

B  C  

D  

E  F  
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0697532G

4034776F

3901465E

28110754D

410132076C

2364204B

3475310A

GFEDCBA

Distances after using G as the pivot

 

2  5  

4  3

3  4  

2  2

2  

2

3  

4  

1  

1  

G  A  

B  C  

D  

E  F  
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Transitive Closure

• Given a directed graph G=(V,E), the transitive closure C =(V,F) of G is a 
directed graph such that there is an edge (v,w) in C if and only if there is a 
directed path from v to w in G. 

• Security Problem: the vertices correspond to the users and the edges 
correspond to permissions. The transitive closure identifies for each user 
all other users with permission (either directly or indirectly) to use his or 
her account. There are many more applications of transitive closure. 

• The recursive definition for transitive closure is





∈
∉≠

=
Ejiandijf
Ejiandjiif

jit
),(1

),(0
),(
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Warshall's Algorithm for Transitive Closure

• Procedure WARSHALL's(G=[V,E])
•

Input: n×n matrix A representing the edge weights of an n-vertex  directed 
graph. That is a =a(i,j)  where,

• Output: transitive closure matrix, t(i,j)  =1 if there is a path from i to j, 0 
otherwise

• for v ← 1 to n do
• for w ← 1 to n do
• t[v,w] ← a(v,w)
• for u ← 1 to n do
• for v ← 1 to n do
• for w ← 1 to n do
• if NOT t[v,w] then
• t[v,w] ← t[v,u] AND t[u,w] 
• return T
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• Hamiltonian Cycle

• Eulerian Path

• Biconnected Components

• Bipartite Graph Matching
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Euler Circuit

• An Euler circuit of an undirected graph G(V,E) is a 
path that starts and ends at the same node and 
contains each edge of G exactly once.

• Show that a connected, undirected graph has an 
Euler circuit if and only if each node is of even 
degree.

• Let G (V,E)  be an undirected graph with m edges 
in which every node is of even degree. Give an 
O(V) algorithm  to construct an Euler circuit for 
G. 
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Maximum Flow Networks

Topics

Flow Networks
Residual networks
Ford-Fulkerson’s algorithm
Ford-Fulkerson's Algorithm

Further Reading

Chapter 25 from 
Text book
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Flow Networks

A directed graph can be interpreted as a flow network to 
analyze material flows through networks.

Material courses through a system from a source (where it 
is produced) to a sink (where it is consumed).
Examples : 

Water through pipelines
Newspapers through distribution system
Electricity through cables
Cars on a production line

on roads

The source produces the material at a steady rate .
The sink consumes the material at a steady rate
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Flow: the rate at which the material moves from one point to 
another

100 litres of water per hour in a pipe
30 Amperes of electric current in a circuit

5 litres/hour

30 liters/hour 

25 litres/hour

The rate at which a material 
enters a vertex
= the rate at which the 

material leaves the vertex
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The flow network G =(V,E) is a directed graph in which each 
edge (u,v) ∈ E has a nonnegative capacity c(u,v) ≥ 0.
If (u,v) ∉ E  then c(u,v) = 0.
A flow network has a source vertex s, and a sink vertex t. 
For every vertex v ∈ V there is a path from s to v and
v to t in a connected graph.

source
sink

s
t
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A flow in G is a real-valued function f : V × V → R that satisfies the following 
three properties:

1. Capacity constraint : For all u,v ∈ V, we require f(u,v) ≤ c(u,v).
The net flow from one vertex to another must not exceed the given capacity.

2. Skew symmetry : For all u,v ∈ V, we require f(u,v) = -f(v,u).

The net flow from a vertex u to a vertex v is the negative of the net flow in the 
reverse direction.
The net flow from a vertex to itself is zero for all u ∈ V, that is f(u,u) = 0.

3. Flow conservation :  For all u∈ V - {s,t}, we require

The total net flow out of a vertex other than the source or sink is zero. 

∑
∈

=
Vv

vuf 0),(



61

Kumar CSE5311          CSE@UTA 61

62

Kumar CSE5311          CSE@UTA 62

The quantity f(u,v) can be negative or positive, it is called the 
net flow from vertex u to v. 

The value of a flow is defined as 

∑
∈

=
Vv

vsff ),(

In the maximum-flow problem, we are given a flow network G with source s 
and sink t, and we wish to find a flow of maximum value from s to t.

There is no net flow between u and v if there is no edge between them.
If (u,v) ∉ E and (v,u) ∉ E, then c(u,v) = c(v,u) = 0.
Hence, the capacity constraint, f(u,v) ≤ 0 and f(v,u) ≤ 0.
By skew symmetry, f(u,v) = -f(v,u), 

therefore, f(u,v) + f(v,u) = 0.

Nonzero net flow from vertex u to vertex v implies that (u,v)∈E
or (v,u)∈E (or both). 
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Consider the network G=(V,E) shown in the figure below. The network is 
for a transport system that transports crates of an item from source  
vertex s to sink vertex t through a number of intermediate points. Each 
edge (u,v) ∈ E in the network is labeled with its capacity c(u,v).

db

ca

4
10 9 7

12

20

14

13

16

4

s t
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Let us consider a flow in G, f=19
If f(u,v) >0, edge (u,v) is labeled f(u,v)/c(u,v)
If f(u,v) ≤ 0, the edge is labeled by its capacity only.

db

ca

1/4

10
4/9 7/7

12/12
15/20

11/14

8/13

11/16

4/4

s t
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The positive net flow entering a vertex v is defined by 

∑

>
∈

0),(

),(

vuf
Vu

vuf

Initially, c(a,b) = 8, and c(b,a) = 3 as shown in Fig. a.
f(a,b) = 5 and f(b,a) = 2, the net flow is shown as  3/8 in 
direction a to b

3

8

a

b

2/3

5/8

a

b

3

3/8

a

b

Fig.a Fig.b Fig.c
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f(a,b) = 5 and f(b,a) = 2, the net flow is shown as  5/8 in 
direction a to b and 2/3 in direction b to a as shown in Fig. b.
Then the equivalent flow is 3/8 in the direction a to b  as 
shown in Fig. c. 
If we increase the flow from 
b to a from 2 to 6 then the netflow is 1/3 in the direction b to 
a as shown in Fig. d.

3

8

a

b

2/3

5/8

a

b

3

3/8

a

b

1/3

8

a

b

Fig.a Fig.b Fig.c Fig.d
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The Ford_Fulkerson method

The method is iterative,
Starts with f(u,v) for (u,v) ∈ V, initial flow of value 0.
The method is based on the augmenting path which is 
defined as a path from s to t along which we can push 
more flow and then augment flow along this path.

Procedure Ford_Fulkerson_method(G,s,t)

1. f ← 0;
2. while there exists an augmenting path p
3. do augment flow along path p
4. return f
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Residual Networks

Consider a flow network G(V,E) with source s and sink t  and 
let f be a flow in G.
Consider a pair of vertices u,v ∈ V.
Residual capacity between u and v is given by 

r(u,v) = c(u,v) - f(u,v)

the additional net flow we can push from u to v before 
exceeding the capacity. 
For example, if c(u,v) = 25 and f(u,v) = 19, then r(u,v) = 6.

If f(u,v) < 0 then r(u,v) > c(u,v)

Given a flow network G=(V,E) and a flow f, the residual 
network of G induced by f is Gf=(V,Ef), 

where Ef ={(u,v) ∈V× V : r(u,v) > 0}
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db

ca

1/4

10
4/9 7/7

12/12
15/20

11/14

8/13

11/16

4/4

s t

5

8

11

3
4

15

5

7
4

5
3

11

12

11

5

t

db

ca

s

Each edge in the residual network can admit positive net flow only.
The residual network may include several edges that are not in the 
original network, (u,v) ∈ Ef and (u,v) ∉ E is possible (Ef is not a subset 
of E). However, (u,v) appears in Gf only if (v,u) ∈ E and there is a 
positive flow from v to u. Because the net flow f(u,v) is negative,

r(u,v) = c(u,v)-f(u,v) > 0 and (u,v) ∈ Ef

4
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An edge (u,v) can appear in a residual network only if at least 
one of (u,v) and (v,u) appears in the original network.

Ef≤ 2E

Augmenting Paths

It is a simple path from s to t in Gf. Each edge (u,v) on an 
augmenting path admits some additional positive net 
flow from u to v without violating the capacity constraint 
on the edge. The residual capacity of a path p is given 
by,

r(p) = min { r(u,v) : (u,v) is in p }
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







−=
otherwise

ponisuvifpr
ponisvuifpr

f p
0

),()(

,),()(

Let's define a flow function fp,

fp is a flow in Gf with value fp= r(p) >0.
If we add fp to f, we get another flow in G whose 
value is closer to the maximum.
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Algorithm

Procedure Ford-Fulkerson(G,s,t)
Input : Flow Network G(V,E)
Output : Maximum flow for the given network

1.for each edge (u,v) ∈ E
2. do  f[u,v] ← 0;
3. f[v,u] ← 0;
4.while there exists a path p from s to t in the  

residual network Gf

5. do r(p) ← min{r(u,v) : (u,v) is in p};
6. for each edge (u,v) in p
7. do f[v,u] ← - f[u,v];
8. f[u,v] ← f[u,v] + r(p);
9.return 
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db

ca

4
10 9 7

12

20

14

13

16

4

s t

db

ca

4

10
4/9 7

4/12
20

4/14

13

4/16

4/4

s t
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5

4

4

4

b d

ca

4

10

4 7

8

20

10
13

12

4

s t

db

ca

4

7/10
4/9 7/7

4/12
7/20

11/14

13

11/16

4/4

s t

db

ca

4

10
4/9 7

4/12
20

4/14

13

4/16

4/4

s t
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75

11

4

11

b d

ca

11

3

4 7

8

13

3
13

5

4

s t

db

ca

1/4

10
4/9 7/7

12/12
15/20

11/14

8/13

11/16

4/4

s t

db

ca

4

7/10
4/9 7/7

4/12
7/20

11/14

13

11/16

4/4

s t
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db

ca

1/4

10
4/9 7/7

12/12
19/20

11/14

12/13

11/16

4/4

s t

5

155

11

12

11

b d

ca

11

3

4 7

5

3

8

5

4

s t

db

ca

1/4

10
4/9 7/7

12/12
15/20

11/14

8/13

11/16

4/4

s t
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11

3

1

199

11

12

b d

ca

11
7

1

3

12

5

4

s t

db

ca

1/4

10
4/9 7/7

12/12
19/20

11/14

12/13

11/16

4/4

s t


