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ABSTRACT

Top-k queries on large multi-attribute data sets are fundameptal
erations in information retrieval and ranking applicasorin this
paper, we initiate research on the anytime behavior ofktafgo-
rithms. In particular, given specific tap-algorithms (TA and TA-
Sorted) we are interested in studying their progress towded-
tification of the correct result at any point during the algons’
execution. We adopt a probabilistic approach where we sesd t
port at any point of operation of the algorithm the confidetit

the top# result has been identified. Such a functionality can be a
valuable asset when one is interested in reducing the rentoat

of top-k computations. We present a thorough experimental evalu-
ation to validate our techniques using both synthetic antidata
sets.

1. INTRODUCTION

Top-k queries on large multi-attribute databases are common-
place. Such queries report thehighest ranking results based on
similarity scores of attribute values and specific scoreeggtion
functions. Such queries are very frequent in a multitudeppfiaa-
tions including (a) multimedia similarity search (on imageudio,
etc.), (b) preference queries expressed on attributesoftes data
types, (c) Internet searches on scores based on word occerre
statistics and diverse combining functions, and (d) sensbwork
applications over streams of sensor measurements.

Several algorithms have been introduced in literatureficiefitly
perform tops computations. Among the most successful is the TA
algorithm discovered independently by Nepal et. al., [&Eijntzer
et. al., [12] and Fagin et. al., [23]. In this algorithm eaeliue of an
attribute can be accessed independently via an index ireddsty
order of its score. Such a score is computed with a specifigyque
condition. Numerous algorithms for performing thpecomputa-
tions have been proposed [10, 8, 7, 2, 19, 16, 1, 15, 20] démpnd
on the model of data access, stopping conditions, etc. Tharitya
of such computations however can be exhaustive. The aigusit
come to a stop only when there is absolute certainty thatdhrect
top-k result has been identified.

An anytimealgorithm is an algorithm whose quality of results
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improves gradually as computation time increases [13]hdlgh
several types of such algorithms have been propasgstruptible
anytime algorithms are highly popular and useful. An iniptible
anytime algorithm is an algorithm whose runtime is not deteed
in advance but at any time during execution can be intercugptel
return a result. Moreover, interruptible algorithms hameaasoci-
atedperformance profilavhich returns result quality (for suitably
defined notions of quality) as a function of time (relativeet@cu-
tion) for a problem instance. Such algorithms are valualviees
at any point during the execution a user can obtain feedback r
garding the result quality at that point. If one is satisfidthwhe
current feedback one may bring the algorithm to a halt. Thush
algorithms provide a graceful trade-off between resultiguand
response time.

In this paper we initiate a study ahytime top-kalgorithms. We
study the behavior of common tdpalgorithms at any point of their
execution and we reason about topesult quality. Notice that this
notion of anytime topt computation is significantly different from
the notion of approximate top-algorithms previously introduced
in the literature [6, 3]. Such models aim to relax the conpal
rameters of the computation (e.g., distance) which arecdlffto
translate into guarantees perceived by a user. The actbaVioe
of such models remains largely empirical. In contrast wehwis
monitor a topk algorithm at any point in its execution and reason
about result quality. For large data collections such ancggh
can be significantly beneficial as one may decide to termitete
computation early if one is satisfied with the current qyadit the
results. In particular we make the following contributions

e We initiate the study of anytime top-computations. We
present a framework, within which at any point in query exe-
cution for suitable topk algorithms, we can compute proba-
bilistic estimates of several measures of topesult quality.
Such measures inclu@®nfidence of having the correct top-
k result, precision of the results assessed with respecteto th
correct top% results, rank distance between the current top-
k result and the exact result, as well as the difference betwee
the scores of the current tapresult and the exact result

e We investigate the monotonic properties of these anytime
measures for various tap-algorithms such as TA and TA-
Sorted. We show that such measures are monotone for TA,
but for a single instance of a tdpeomputation of TA-Sorted,
these measures can be non-monotonic, thoughpectation

such measures are monotonic.

We present algorithmic enhancements to TA and TA-Sorted
by which they can provide such anytime guarantees with
small runtime overheads during the course of their exeoutio
over large data collections.



2. RELATED WORK However, even if each of the unseen tuples has a very sméalhpro

The threshold algorithm (TA) constitutes the state of théar ~ ility of being in the topk tuples, collectively there may be a large
top-k computations [21, 12, 23]. Several variants of the basic TA Probability that we do not have the correct tbfiuiples. For e.g..
ideas have been considered in various contexts [15, 20, [1].  (&@ssume: = 1), if each unseen tuple has only 1% chance of being
deals with topk problems on web accessible data sources with lim- the top-1 tuple, and we have 1,000,000 unseen tuples, thalpito
ited sorted access. Nearest neighbor type of approachesbeam ity that any one of them is the true top-1iis- 0.99"%%% ~ 1.
considered in this context as well [5, 4, 26, 14]. It is asstithat In contrast, our work is more general in that we propose arg/ti
sorted lists of the data items by each attribute are availamid ~ €nhancements to both TA and TA-Sorted. Moreover, our method
TA scans these lists (performirsprted accessgin an interleaved ~ depend on a careful consideration of the number of unsedestup
manner, and computes the items with tepeores using monotone  Which is necessary to give correct probabilistic guarantee
score combining functions. The algorithm has to immedjatein- Recent work [18, 24] on probabilistic ranking of data, ishog-
pute the complete score for each item encountered in theselin onal to the work presented here. The model assumed in theke wo
lists and thus its overhead may be high depending on thecappli  On Possible worlds semantics. In contrast we assume coeniplet
tion context. For the rest of this paper we refer to this dtgoras ~ formation with or without noise and we are interested ingrisig
TA. guarantees on early stopping of popular foplgorithms.

Several variants of this basic idea have been proposed. TA-

Sorted [23, 12] can work in environments where random adsess 3. FRAMEWORK

not available. It maintains worst and best scores for iteased on
partially computed total scores; the algorithm comparesvibrst
case score of thie-ranked item with the best score of all candidates
as a stopping condition. In this algorithm items are alway®ased
sequentially. Since expensive random access is avoidegstain
situations the performance may be much better than TA.

Optimization issues for TA algorithms have been considasd
well [19, 1, 16]. The main thrust has been to reduce the nummber
random accesses when sources vary in several paramehgasu
speed, selectivity etc. Several statistical aids have bepioyed,
such as histograms and probabilistic estimators for thebeurof
random accesses.

Anytime algorithms have found numerous applications inid a
planning contexts [13, 25]. The quality of results of an angt
algorithm improves as the computation evolves. At a higlellev
anytime algorithms can be categorized as being eitheruygble
or contract. An interruptible algorithm does not have a sehing
time and can always be interrupted at any time during exacuti
returning a result. The quality of the result can be deteechivia a
performance profile. A contract algorithm has a time deaddis a
parameter and no assumption about the results can be mamte bef
the deadline.

Theobald et. al., [17] presented an approach for probébilis
top-k query evaluation. This work is specifically targeted to the
TA-Sorted algorithm. The basic idea is, for a newly seen jtem
compute the probability with which it may belong to the tope-

3.1 Anytime Measures

Our focus in this paper is to upgrade tb@gorithms so that they
can exhibitanytime behavior This means that at any point during
the execution - i.e., before the algorithm has terminatee wigh to
be able to (a) reveal the current tépesults calculated thus far, and
(b) associate a “guarantee” with our current answers. Famgie,
we may wish to be able to givyerobabilistic guaranteessuch as:
“With probability p, the current tope tuples are likely to be the true
top-k tuples”. Providing such probabilistic guarantees is thestmo
critical aspect of our approach, and much of the remaindéhisf
paper is devoted to developing appropriate guarantee mesasnd
efficient techniques by which such measures can be caldul@ar
goal is to provide a mechanism to continuously recomputeethe
guarantees as more data is seen.

e Confidence:The algorithms shall be able to determine the
probability that the current top-tuples are indeed the true
top-k tuples.

e Precision The algorithms shall be able to calculate a (proba-
bilistic) lower bound on th@recisionof the current topk tu-
ples - i.e., this bound on the precision will hold with a given
probability of p (typically, p = 0.95). The precision of the
retrieved results is defined agk wherer is the number of

sult. If that probability is below a user supplied threshibid item
is discarded from further consideration. This way, pogsfbiver

items are considered during tépguery evaluation. Moreover, by

carefully maintaining bounds for the scores of the most psorg

(as far as the top-result is concerned) items that have been en-

countered the algorithm may probabilistically decide tori@ate
earlier than the regular TA-Sorted deterministic compatatEm-
pirical evaluation presented in [17] demonstrated thaatberithm
performs well in practice.

The work of [17] has some similarity to our work, however it is

not an anytime algorithm. It applies only to the TA-Sortedaal
rithm, and offers guarantees only at the end of the execuitien
when the algorithm runs out of candidates. Further, sinfoeitses
only on eliminating candidates that are partially seen nlikely

to be in the final topk result, it is not directly applicable to the TA

algorithm. Finally, the algorithm in [17] only gives a prdiikstic
guarantee that a discarded/unseen tuple is not in thé toples,

independently of the number of unseen tuples in the dataltset.
result does not change if we have 10 vs. 1,000,000 unseesstupl

the current topk tuples that belong to the true tdptuples.

e Rank Distance Likewise, the algorithms shall be able to

compute a probabilistic upper bound on tlenk distance
of the current topk tuples. The rank-distance is defined as
follows. Let CurRank(t) be the rank of a tuple in the
current topk, and letT'rue Rank(t) be its rank in the entire
database when sorted by scores. Then

Rank Distance =
Z |CurRank(t) — TrueRank(t)|

teCurTopk

Rank Distance is related to tipearman’s Footruleneasure
for comparing ranked lists [9].

Score DistanceFinally, the algorithms shall be able to com-
pute a probabilistic upper bound on the difference between
the smallest score of the true téguples relative to the small-
est score of the current tdptuples.



3.2 Knowledge of the Data Distribution

To be able to give probabilistic guarantees with our anytame
swers, it is critical that we assume some knowledge of the,dat
such as the number of tupl@g, as well as knowledge of the distri-
butional properties of the data. Such knowledge can beradaiia
popular parametric or non-parametric techniques (i.stpgrams).
These data distribution models are assumed to be eithdalaleai
(e.g., histograms of the data have been pre-computed, ted u
multiple times for different tope queries), or can be computed
on demand (e.qg., for each tdpguery, fresh histograms are com-
puted). Our development of anytime tépalgorithms does not de-
pend on the particular type of distributional knowledgeuassd.
For this reason, we employ a generic probabilistic modelhef t

tion 3.2, thenPDF(D|D € D) is the probability density associ-
ated with each specific datababe

Let OneMore(Seeng) refer to the space of all possible valid
prefixes of databases that is defined by extendiagn, by one
more iteration. Consider any specific extensiorSetn, by one
iteration, saySeeng+1. We note that a pdf over this space of ex-
tensions, i.e PDF(Seeng+1 | Seeng+1 € OneMore(Seenyg)),
can be naturally defined. To car@neMore(Seenq) even fur-
ther, letD(Seengy) refer to the space of all possible valid complete
databases that can be defined by extendiagn, into complete
databases, i.e., afté&f — d iterations. The pdf of these databases,
PDF(D|D € D(Seeng)), can be naturally defined.

Let Score(t) be the score of a tuple defined as a linear addi-

data which we assume is known to us. We choose to do so in ordertive function on the the individual attribute values in tygi top%

to keep the presentation of our techniques generic and emiigmt
of specific forms of data distribution models.

To be more specific, let our databa3daveN tuples overM at-
tributesAy, ..., Ay andletDomg, ..., Domas be the respective
domains of the attributes. The probability distributionabdel of
the data may either be specified (assuming attribute indispee)
as a product of known probability density functignB D F;;(x) as-
sociated with eaclith attribute (e.g.,M single-dimensional his-
tograms), or as a joint distributional model over the spdcallo
possible tupledDom; x ... x Doms (€.9., @ multi-dimensional
histogram). Our actual databaBemay be assumed to be a specific
instance ofV tuples drawn from this distribution.

4. ANYTIME TA ALGORITHM

4.1 Preliminaries

We begin with a short description of the Threshold Algorithm
(TA): The algorithm proceeds in iterations, where in eaehait
tion, the next items in each sorted list are retrieved in Ipdra
For each retrieved tuple-id, the entire tuple is retrieveithgi ran-

dom access and its score is computed. The algorithm madntain

a bounded buffer of siz& in which the current tog: tuples (i.e.,
among those seen) are maintained. The algorithm termindtes
a stopping conditioris reached, i.e., when the minimum score in
the topk buffer (henceforth referred to a@sMinScore is larger
thanScore(h), whereh = [hy, - - - , ha] is a “hypothetical” tuple

such that eaclh; is the last attribute value read along the sorted

order forA;.
Consider a snapshot of TA aftéiterations for a specific database

D. Let Seeng be the “prefix” of the database that has been seen

by this algorithm after thesé iterations. To be able to estimate
the anytime measures, the algorithm will have to make sosta-di
butional assumptions about the remaining portion of thalutede
that has not yet been seen. Intuitively, the algorithm deitees the
pdf of the remainder of the database dnynditioningthe data dis-
tributional model (discussed in Section 3.2) with the prafready
seen, and then computes estimates of each of the anytimemesas
based on this conditional pdf. As an example, assume thalatze
distribution of D is defined using the distributionsP DF; along
theith attribute assuming independence among the attributés, a

lethi,..., ha be the last values seen along each attribute respec-

tively. Then theith attribute of any unseen tuplen the remainder
of the database will be a random variabjé distributed according
gP DF; conditioned byt[i] < h;.

Let PDF(O|O € O) represents the probability density associ-
ated with objec® that belongs to a (possibly infinite) s&t Thus
if D refers to the space of all database tables Wthuples that
can be generated by the probabilistic data model discussgdd-

algorithms, such aScore(t) = wit[1] + ... wat[M] where the

weights are positive constants. Let th&/inScore(Seeng) refers

to the kth largest score of all tuples ilieenqy. We can make the
following observation:

OBSERVATION 1. The minimum score of the current téptu-
ples increases monotonically as the algorithm progresseary
database.

kMinScore(Seenq) < kMinScore(Seengi1)

Let kthScore(D) refer tokth largest true score of all tuplesin a
specific databasP. For Anytime TA letC'on fidence(Seeng) be
defined as the probability that

kMinScore(Seenq) = kthScore(D)

where D is a random valid extension dfeengy into a complete
database drawn fro®DF(D|D € D(Seeng)).

THEOREM 1. For all database instances it holds that

Confidence(Seenq) < Confidence(Seengt1)

Proof: Since thekMinScore(Seeng) is increasing in each itera-
tion, the probability of thésMinScore(Seeng) being equal to the
kMinScore(D) is also always increasing?

4.2 The Algorithm

The anytime version of TA is shown in Algorithm 1. The algo-
rithm proceeds like the standard TA, selecting attributessiound-
robin fashion, and at each step processes the next value sotted
list of the selected attribute. In addition, it also mainsaihe infor-
mation necessary to compute probabilistic guarahtees

For each round of the algorithm a new vakaet, t[i] > is read
along the listL; corresponding to theth attribute, i.e., the-th
attribute value of tuplé. When this item is read, the algorithm has
to (a) resolveScore(t) (which is the sum of the attributesbénd is
done by probing the lists using random access), (b) updatpdh
of the i-th attribute g PDF(4)) so that it reflects the distribution
of the remaining values of that attribute, and (c) updatetoipe:
buffer with thek tuples with the highest scores. At the end of each
round the statistics are updated and the confidence is cehput

!Note that unlike the standard TA algorithm our algorithmsinet

have a termination condition, since the objective is to poadany-
time probabilistic guarantees. Our algorithm can be easilglified

to terminate, for example when the probabilistic guaratzess a
user defined threshold.



Algorithm 1 Anytime TA

1: topk = {dummuy, ..., dummyy}, Score(dummy;) = 0
2. kMinScore = 0/l smallest score itopk buffer
3: ford=1to N do

4. foralllists L;(1 < i < M) in paralleldo
5 Let <tuple-id¢, ¢[i] > be thed-th item in L;
6: /I ComputeScore(t) using random access
7: Score(t) =0
8: for j = 1to M do
9: Score(t)+ = w;t[j]
10: end for
11: //Update PDFs to model the remaining values
12: Update-gPDF(gPDF¢[i])
13: /lUpdatetopk buffer
14: if Score(t) > kMinScore then
15: if ¢t & topk then
16: Letu be the tuple with the smallest scoretipk
17: topk = topk — {u}
18: topk = topk U {t}
19: end if
20: kMinScore = min{Score(v)| v € topk}
21: end if
22: /l Compute confidence
23: Confidence = ComputeConfidence()
24:  end for
25: end for

4.3 Computing Anytime TA Measures

In this subsection we discuss details of how the variousiaueyt
measures are computed in each iteration of the algorithm.afo
unseen tuplé, its score may be viewed as a random variable. Let
scorePDFy(zx) be the pdf of the score df In order to compute

[__JHistogram 1
[ Histogram 2
[ Max

100

Figure 1: An example of the result of the max-convolution of
two distributions.

4.3.1 Computing Confidence

Let Seen (Unseen) refer to the set of tuples that have been seen
(unseen) by the algorithm thus far. Cleatlynseen| = N —
|Seen|. To execute the function call'omputeCon fidence(),
we have to estimat®rob(kMinScore > MaxUnseen), where
kMinScore is the minimum score in the top-buffer, while the
random variableM axUnseen describes the maximum score of
all the unseen tuples. The pdf dfaxUnseen can be com-
puted by first computing the pdf of the score of diieseen tu-
ple. This involves the convolution of the pdfs of the atttidbwual-
ues: OneUnseenPDF = x{gPDF;|]1 < i < M}. Then the
pdf of MaxUnseen (i.e., MaxrUnseenPDF’) can be computed
by computing the max-convolution over the multi-set camtag
|[Unseen| copies ofOneUnseenPDEF"

MaxUnseenPDF =
*max ({OneUnseenPDF, ..., OneUnseenPDF'})

As we shall later show in Lemma 4.3 the max-convolution of

the anytime measures, we need to compute the pdf of the scoreidentical pdfs can be efficiently computed in constant til®ace

of any unseen tuple, and the pdf of ttraximum scoref all the
unseen tuples. If we assume attribute independence, teesttine
of an unseen tuple is the sum df random variables. To compute
the pdf of this sum we compute tlenvolutionof thegPDF;. If
joint-distributions are known we can also proceed to egéntiae

pdf of the score. We show below how this score can be estimated

by convolution of pdfs of\/ independent attributes.

DEFINITION 1. Convolution of two distributions: Assume that
f(x), g(x) are the probability density functions (pdfs) of the two
independent random variableX, Y respectively. The pdf of the
random variableX + Y (the sum of the two random variables) is
the convolution of the two pdfs:

«({f, 91 (@) = [§ f(2)g(z — 2)dz

This definition can be easily extended to the sum of more tivan t
random variables. We also give another definition that alisvio
estimate other aggregates, suchhas< and min of random vari-
ables.

DEFINITION 2. Max-convolution of two distributions: As-
sume thatf(z), g(z) are the pdfs of two random variables, Y
respectively. The pdf of the random variablex (X, Y") (the max-
imum of the two values) is the max-convolution of the two: pdfs

wmax ({f, g})(2) = f(2) [§ 9(2)dz + g(2) [} f(2)dz

Figure 1 shows the result of max-convolutions over two gigien
tributions. The max-convolution definition can be easilyeaxded
to more than two random variables.

we have computed/axUnseenP DF', we can compute
Confidence = Prob(kMinScore > MaxUnseen)

4.3.2 Computing Other Anytime Measures

In this subsection we outline how, in addition to Confideribe,
anytime measures of Precision, Rank Distance, and Scotardes
can be computed.

In the case of Precision, we wish to determine (with a given
probability p, say 95%) the fraction of the current téptuples
that will belong to the true top-tuples of the database. Let the
worst case scores of the currdapk tuples besi, s2, ..., sk(=
kMinScore). Let Prob; be the probability thas; is greater than
MaxUnseen. TheseProb;’s can be computed using the same
techniques used for computing Confidence above, exceptvihat
have to execute it for each rather that just fok MinScore. Letsq
be the largest integer such thatob;, > p. The algorithm outputs
i/k as Precision. Note that this is a conservative bound on Preci
sion because we only considgrefixesof the current tops to be
overlapping with the true tog; and not any subset.

In order to compute Score Distance, our task is to find a “high
probability” upper bound on the smallest score of the tiayg: tu-
ples. Thus, we wish to find the smallest positive numbsuch that
Prob(kMinScore + 6 > MaxzUnseen) > p wherep is a given
probability, such a85%. Once we know the pdf aifaxUnseen,
the answer to this question is straightforward.

Computing Rank Distance is more involved. The main task is to
determine, for each tuplg in the currentopk tuples, a high prob-
ability upper bound for its true rank in the database (oncéae



these estimates, we can compute a high probability uppencbou Proof: The proof is similar to that of Lemma 4.2, except that once
for the Rank Distance). To determine an upper bound on tlee tru the cumulative pdf off 4 has been pre-computed, each probability

rank oft;, we need to compute how many tuples fréfmseen term Prob(Ar < max(A,A,...,A) < Ag41) reduces ton -
have larger scores thanwith high probability. Further details are  Halk+1]- (>, ., Hali])" ", which can be computed in constant
omitted from this version of the paper. time. O B

4.4 Approximating PDFs Using Histograms 4.5 An Example

We presented our techniques thus far using a generic ptababi

tic model of data. In this section we describe the practiealiza- A Az

tion of our methodologies using a widely adopted model for ap id,val | id,val
proximating data distributions (i.e., pdfs), namely higams. For t4:0.9 | t5:0.8
simplicity of exposition, we adopt equi-width histogranms bur t2:0.8 | £4:0.7
discussion, however the description is applicable to asgogram t3:0.4 | t2:0.6
technique. We note that histograms can approximate anpftrac- t1:0.3 ] #1:0.3
tions and thus our use of histograms does not place anyatésts 15:0.2 | 13:0.2

or require any assumptions about the underlying distiamstithat
are being approximated.

The following lemmas detail the running time of the basicrepe
ations of the algorithm.

Table 1: Sorted lists of a sample table with two column#\; and
A, tuplest;...ts, and values for each attribute ranging from 0
to 1.

LEMMA 4.1. The convolution of two pdfs that are represented

by twob bucket histograms can be computedj(iF) time. Table 1 shows the sorted lists for a dataset with 2 attribamels

5 tuples. We have a query for the tépuples wherek is equal to

Proof: Consider two random variabled, B in the domain0, 1] 2, and the score for a given tuplés computed as a linear additive
with pdfs fa(z), fs(z) respectively. Assume that the two pdfs ~function of the individual attributes. o

are approximated by two histograms withuckets,H 4 and H 5. Throughout the example, assume we use equi-width histagram
Assume that the bucket boundaries are the safig: = [0 = with at most 2 buckets. At the start, the buckets of the histiog
Ai,..., A, = 1]; if not we can create two equivalent histograms for A have countg3, 2), while the buckets of the histogram for
with 2b buckets and the same bucket boundaries. Consider the<12 have countg2, 3). Note that each histogram can represent the
Cartesian product of the two histografis s = Ha x Hp where ~ corresponding PDF; by normalizing to relative counts.

Ca.sli,j] = Hali|Hp|j] (Hali] is the relative count associated Assume a snapshot of the algorithm where the first items df eac
with bucketi.) We can approximate the pdf ¢f + B with a his- list has been read, argandts have been fully resolved and loaded
togram with2b buckets and boundarigs = 0, g1 = A1, ..., g = into the topk buffer. Thusty andt¢s belong to theSeengroup.
1,goi1 = 1+ As,..., g2 = 2. To compute the histogram we Clearly kMinScore = Score(ts) is the lowest score in the tap-

have to compute the probabilitProb(g, < A + B < gri1) buffer. o )

for the buckets of the new histogram, which may be derived as  1he remaining tupleg,, ¢, andi; are in theUnseen group.

Sain s, Ca 5[l,m] This histogram can subsequently be We need to estimat®neUnseenPDRhe pdf of the score of any
L m=—Y9k+1 ’

. : : . : Unseen tuple using thegy PDF;s for attributesA; and A>. We
approximated by @& bucket histogram by merging neighboring ) S
; . ves( - have to first update theP D F;s to model the remaining values for
pairs ofr?uckets. lTh'S pr?chedure gl:j/fe (b*) algorithm for com- each a’[tributep Consequently the buckets of the hisgt]ogmmlf
puting the convolution of the two pdfs] - ) ; g
. will now have counts(3, 1), while the buckets of the histogram
Asa corollary, fom hlstpgrams, e can perf(;rm the convolu- for A2 will have couri(ts(2)2). We then normalize eac@PD%x
tions in sequence, with a final running time@fnb*). by dividing by the sum for eachPDF; to get (3/4,1/4) and
LEMMA 4.2. The max-convolution of two pdfs that are repre- (1/2,1/2) respectively. We then compu@neUnseenPDby tak-

sented by twé bucket histograms can be computedifh) time. ing the convolution ofyPDF; and gPDF5, resulting in counts
(3/8,5/8). Next we need to computdaxUnseenPDFthe pdf of

Proof:  The trick here is to avoid the Cartesian product. As be- the max score of all unseen tuples. As shown in Lemma 4.3, we do
fore, consider two random variablels B with pdfs approximated  this by taking the pdf of a single unseen tufleeUnseenPDFand
by two histograms 4 and H each withb buckets and the same  raising it to the power of the total number of unseen tuplésciv

bucket boundaries. We approximate the pdfefx(A, B) with in this case is 3.

a histogram with the same bucket boundaries. TRenb(A; < We can then compute the confidence of the currentitopdfer
max(A, B) < Agt1) is equal toHalk + 1] - (3, Hgli]) + by compgrin@ﬂaxUngeenPDinth the current topk kM inScore
Hplk+1]- (X<, Hali]). - as described in Section 4.3.1.

' .If we first compute theumulative dIS.'[I.’IbU'[IOI’ISf Ha andHB., 4.6 Considering Multidimensional

it is easy to see the the above probability can be computedrin ¢ Distributions

stant time. Since the cumulative distributions can be cdegin

O(b) time, the overall time for the max-convolution@¥b). O The pdf of the score of a tuple for a given query depends on
As a corollary, we can compute the max-convolutionoffiis- the joint distribution of the attributes. Many commercigbtems

tograms inO(nb) time. Even more interestingly, as the following ~make the attribute value independence assumption, ancsketep

lemma shows, the max-convolution ofidentical histograms can tics only for individual attributes. In our setting as déked above,

be computed IO (b) time. the independence assumption is similarly assumed when me co
pute the pdf of the score of a tuple by taking convolutionshef t
LEMMA 4.3. The max-convolution of identical PDFs, repre- histograms of the different attributes. We stress heretttieatom-

sented by & bucket histogram, can be computediib) time. putation of the score is the only place in our framework tlis a



sumption has been made. All other computations (includiag-m  Algorithm 2 Anytime TA-Sorted

convolutions) that take place in the computation of our ame 1: topk = {dummy, . .., dummyy}, MinScore(dummy;) =
measures do not make any assumptions on the distributiohs. A 0
though the independence assumption is commonly appliedsand Partials = {} // Partially seen tuples not currently inpk

well validated in practice for in a wide variety of appliaats, it kMinScore = 0 // smallest score itopk buffer
may produce inaccurate results in some cases (whether tifie co Assume for all tuples, obs¢) = {}

2:
3:
4.
dence curve using one-dimensional histogram is higherwero 5 for d = 1to N do
6
7
8

than the confidence curve using two-dimensional histogrdeis for all sorted listsL;(1 < 4 < M) in paralleldo
pends on whether the independence-based approach is operly Let <tuple-idt, t[i] > be thed-th item in L;
timistic or pessimistic). For such cases, joint distribotmodels obs¢) = obs¢) U {3}

o- e ww

involving multiple attributes may be necessary. : MinScore(t) =0
Joint distributions can easily be applied in our framew@kp- 10: for j € obs¢) do
pose for some tuple we have three attributed, B andC' which 11: MinScore(t)+ = wjt[j]
are unknown. Earlier we showed that we can compute the convo- 12: end for
lution of H4, Hg, andHc, but withmultidimensional histograms ~ 13: //Update PDFs by conditioning with remaining values
we can now compute the convolution of the score pdfof B 14: Update-gPDF(gPDR[i])
and Hc, where the score pdf od + B may be directly computed 15: //Updatetopk buffer
from H 4, g, the two-dimensional histogram representing the join 16: if MinScore(t) > kMinScore then
distribution of attributesA and B. 17: if t & topk then
As in the case of one-dimensional histograms, multidirreeredi 18: Letu be tuple with smallest worst case scoreédpk
histograms are computed as a pre-processing step. Metbods f 19: Removey from topk
computing multidimensional histograms have been througe 20: if jobs@)| < M then
searched [11] [22] involving sampling and other efficienpraxi- 21: Partials = Partial U {u}
mation techniques. In the evaluation section of this workcae- 22: end if
sider two-dimensional histograms. Since the number ofipless  23: topk = topk U {t}
two-dimensional histograms is quadratic in the numbertobaites, 24: end if
we have to decide which pairs to take. We use the following sim 25: kMinScore = min{MinScore(v)| v € topk}
ple heuristic: starting with the set of attributes, we find thost 26: end if
correlated pair of attributes, compute a two-dimensioistblgram 27: if jobs¢)| < M andt ¢ topk then
on these attributes, remove these two attributes, andreentiith 28: Partials = Partials U {t}
the remaining set. This approach produces a linear numbasof 290: else
tograms, and, since there is no overlap of attributes betwier- 30: Partials = Partials — {t}
ent histograms, greatly simplifies the selection of theogistms 31: end if
that have to be used to compute the convolution of a set of at- 32: /I Compute confidence
tributes. 33: Confidence = ComputeConfidence()
Recall that for one dimensional histograms (histogram®ecov  34:  end for
ing a single attribute) every time a new item from the sorietl | 35: end for

is read, the corresponding bucket has to be decreased bylione.
the case of multidimensional histograms we similarly dewet

the histograms as new items are read. Suppose we have as#atabathe next (sorted by decreasing magnitude) value of the teelext-
with two attributesA and B, two one-dimensional equi-width his-  tribute. The differentiating factor between Anytime TA aAdy-
togramsH 4, H g, as well as one0 x 10 equi-width 2-dimensional time TA-Sorted is the inclusion dPartials. Let Partials be the
histogramH 4, . If the first tuple that is completely resolved has set of tuples that are partially seen (some but not all of thidbates
the values(0.3,0.9), we decrement the buckets of the histograms for a given tuple have been resolved), but are not in thektbpffer.

as follows: H 4[3] would be decremented/ z[9] would be decre- Let < t,t[¢] > be the next item read by the algorithm along
mented, andd 4,5(3, 9] would be decremented. This same tech- the sorted listL; corresponding to thé-th attribute, i.e., the-th
nique follows through for higher dimensional histograms aan attribute value of tuplé. When this item is read, the algorithm has
be performed incrementally. to (a) updateMinScore(t) (which is the sum of the attributes that
have seen fot) (b) update the pdf of the attributg{g P D F;), and
5. ANYTIME TA-SORTED ALGORITHM (c) update the togbuffer with thek tuples with the highest lower-

bound scores. After readingi], ¢ will either be fully resolved
(that is, all attributes of have been seen and its final score found)
and put in theSeen group, or partially resolved and placed in the
Partials group.

In this section we describe how the TA-Sorted algorithm oan b
extended to compute online probabilistic guarantees. tlitiad
to Seen and Unseen tuples, TA-Sorted also maintains tuples in
which only some of the attributes have been seen. This is a con
sequence of the inability of TA'-Sorted to perform randomeasc 51 Monotonicity for Anytime TA-Sorted
operations. Consequently, during thg operation of TA{SbrWe Measures in Expectation
need to keep a set of tuples callPdrtials that are not in the top- )
k, yet cannot be eliminated because we know only a lower-bound L€t kthScore(D) refer to thekth largest score of all tuples in a
of their true score. The TA-Sorted algorithm must estimaéepdf specific databas®. The Con fidence(Seenq) for Anytime TA-
of the maximum scores of thBartials before giving any proba- ~ Sorted may be defined as the probability that
bllls,_tlc guarantee on the confld(_ance. _ _ kMinScore(Seeng) > (k + 1)thScore(D)

Like TA, the TA-Sorted algorithm as shown in Algorithm 2 se-
lects attributes in a round-robin fashion, at each stepgssing where D is a random valid extension dfeeny into a complete



database drawn frol? DF(D|DinD(Seenq)). Because of the
use of lower-bound scores, this definition of confidence tigaily
even more conservative than the earlier definition of confidan
Section 3.1.

Example: There exist a database instance where
Confidence(Seeng) > Confidence(Seenqgy1)

Assume a database with two columfisandA-, each with domain
[0.0, 1.0] and a uniform distribution model. Let the score function
be Score(t) = t[1] + ¢[2]. Let the database have four tuples with
tuple-idst1, . .., t4, and assume that the task is to return theZop-
tuples.
In the first iteration, assume we encountér = [0.9, 7] and

t2 = [?7,0.9], along each of the sorted lists{@mplies that the cor-
responding attribute value is unresolved). After thisatemn, the
top-2 buffer is loaded withl andt2, each with a worst case score

of 0.9. Since we have not seen the other two tuples, we assume that

each is distributed uniformly if0.0,0.9] x [0.0,0.9], and hence
the probability that the current worst case score of 0.9 gelathan
the scores of both these unseen tupldd j?) * (1/2) = 1/4.

Suppose in the next iteration the algorithm encount8rs=
[0.8,7] andt4 = [?,0.8]. After this iteration, the top-2 buffer re-
mains unchanged. However, the unresolved attribute3 dfas a
probability of 7/8 of having a value in the randé.1, 0.8], which
would enablet3 to have larger score than the current worst case
score. A similar argument can be made fér Thus, the probabil-
ity that the current worst case score of 0.9 is larger thasdbees of
both these (now partially seen) tuples decreas€s®) « (1/8) =
1/64. 0

Similar examples can be constructed to show that the othyer an
time measures are non-monotonic for certain databasenoesta
These arguments bring to light a subtle issue. The uncepadt-
abilistic) nature of anytime measures should of course v@ab
to the reader - i.e., that at any point during execution, wmoabe
completely certain that we have discovered the truektdpples,
and therefore can only make probabilistic guarantees detgour
anytime measures. However, what the example shows is tlia as
iterations progress, we may have to revise, and sometversre-
duce our probabilistic guarantees. We note that a similar agpum
will not suffice in the case of TA, because in that algorithroale
is never in a partially resolved state - it is either compieseen or
completely unseen.

However, although the anytime measures for TA-Sorted are no
monotonic for certain database instances, we can nevesthshow
that the measures are monotoiticexpectationover all database
instances. We describe the result for the confidence mezSume
ilar results for the other anytime measures are straightfot and
omitted due to lack of space.

Let E[Con fidence(Seenq41)] be defined as the expected value
of Confidence(Seenq+1), whereSeeng1 is randomly drawn
from PDF(Seengt1 | Seengy1 € OneMore(Seeng)).

THEOREM2 (EXPECTEDMONOTONICITY THEOREM).

Confidence(Seenq) < E[Confidence(Seengy1)]

Proof: From the definition of confidence, we know that

>

DeD(Seeny)
kthScore(D)) - Prob(D|D € D(Seeng))

Confidence(Seeng) = (kMinScore(Seenq) =

Partitioning all valid database extensiabBsas follows, we get

Confidence(Seeng) = Z
Seengy1€0neMore(Seeny)
( Z (kMinScore(Seenq) =
DeD(Seengy1)
kthScore(D))

-Prob(D|D € D(Seeng+1)))
-Prob(Seengy1|Seenqy1 € OneMore(Seeng))

From Theorem 1 we have
kMinScore(Seenq) < kMinScore(Seengi1)

for any extensiorSeeng1. Thus the above reduces to:

>

Seengy1€0neMore(Seeng)

(kMinScore(Seeng+1) = kthScore(D)) -

Confidence(Seenq) <

(>

DeD(Seengy1)
Prob(D|D € D(Seend+1))) -
Prob(Seengi1|Seengy1 € OneMore(Seenq))

Thus,

Confidence(Seenq) <

>

Seengy1€0neMore(Seeny)
Confidence(Seengt1) -
Prob(Seeng+1|Seenqgy1 € OneMore(Seeng))

Thus,Con fidence(Seeng) < E[Confidence(Seenqs1)]. O

5.2 Computing Anytime TA-Sorted Measures

In this subsection we discuss how the anytime measures iare co
puted in each iteration of the TA-Sorted algorithm. Our fo@ion
the Confidence measure; the details of the computation @i oth
anytime measures are omitted due to lack of space.

5.2.1 Computing Confidence

At any instance during the execution of the algorithm, coesi
the set of tuple®thers = PartialsUUnseen. Let MaxOthers
be the random variable that denotes the maximum score af-all t
ples inOthers. To execute the functioomputeCon fidence(),
we have to estimaté@rob(kMinScore > MaxOthers). To
compute this probability, we need to first compute the pdfhef t
random variableM axOthers. This can be accomplished if we
compute the pdfs of two random variable®/ax Partials and
MaxUnseen and then compute the pdf of the maximum of these
two random variables.

The pdf of M axUnseen (i.e., MaxUnseenP DF) can be com-
puted as was done in TA, i.e., by raisi@gneUnseen PDF to the
power of the total number of unseen tuples. To compute thefjpdf
MaxPartials, we first defineScore P D Fy, the distribution of the
score of a partially seen tupte The definition is similar to the defi-
nition of the score pdf of an unseen tuple (i@neUnseenPDF),
except that the convolutions are taken only over the pdfaetin-
resolved attributes of, to which the aggregate of the resolved at-
tribute values (i.e.MinScore(t)) is combined.



More formally, given a real number, letd,, (x) denote the “delta
distribution” where all the probability mass is concergrhaita and
is 0 elsewhere. Then

We note that the running time of this update is independen{ of
the total number of tuples in the database.

6. EXPERIMENTAL EVALUATION

In this section we present an experimental evaluation ofraure-
work. The implementation of our techniques is in C++ and our
evaluations are performed on a dual AMD Opteron 280 processo
system with 8GB of memory.

We have conducted series of experiments using synthetic and
two real-world data sets varying the distribution and sitee data
sets range in size from 4,990 to 1,000,000 rows, and fourrto te
attributes (we vary the number of attributes when we repogpier-
formance). Our experiments focus on the comparison of the ac
curacy of our estimated results with the expected perfooamart
the TA and TA-Sorted algorithms. We also generate data wijth Z
fian distributions and conduct similar sets of experimeitse to
space constraints we do not include illustrations for caingaZip-
fian distributed scores but we briefly discuss the highligtitthe
results.

ScorePDFy = *({0ainscore(r) y U {gPDFi|i & obs(t)})
MaxPartialsPDF may now be defined as:

MazPartialsPDF = smax({scorePDF;|t € Partials})

This operation is linear in the number of partially seenespband
so it can become slow for large data sets. In the followingiSec
5.2.2 we present an efficient implementation by clusteregiglly
resolved tuples. Once we have compulddxzUnseenP DF and
MazPartialsPDF,we can comput@/axOthersPDF and use
that to compute

Confidence = Prob(kMinScore > MaxzOthers)

5.2.2 Efficiently Computingfaz PartialsPDF

The straightforward way to compufd ax PartialsPDF is to
compute the max-convolution of the score pdfs of the pdytssen

. DIVOTLHON % . 6.1 Real World Data Sets
tuples. This operation is linear in the number of partiabgs tu- ) i
ples, and so it may become slow for large data sets. In our experiments we use two real-world data sets. Our fatst d

To improve the running time, we cluster the partially seen tu S€t i§ atm.ospheri(.: data collected from several indepersiergor
ples. Consider a subset of the attributés,and let Partialss locations in Washington and Oregon by the Department of Atmo
be the set of tuples that have exactly thesattributes resolved.  SPheric Science at the University of Washington. The sectite
That is, Partialss = {t|obs(f) = S}. Since all the tuples in  Internet Movie Database IMDB

Partialss have the same attributes unresolved, we can speed up FOr the sensor data, 25 sensors independently obtaineetamp
the computation of the max-convolution of their scores: ture readings on an hourly basis between June 2003 and J0Ag 20

fmax({scorePDFy|t € Partialss)}) = for a total of 208 days. For each sensor there is a total 0of04,99

s . readings. Each of the readings taken from a sensor were nethbi
*“’a"({*({(SMi”S“‘_’”“)} UigPDFi ¢ S}t € Partialss}) with readings from other sensors which had taken a readiriggiu
Then, let us consider the worst case scores (i&nScore(t)) of

> - o the same time period. These readings were grouped to maike ind
the tuplest in Partialss, and consider an equi-widtB-bucket

! ' ! vidual rows based on their time-stamps. Sensor data sudteas t
histogramH with these values (wher& may be different from  temperature data provided can specifically benefit from tgo-a

the b used to denote the number of buckets in the score/attribute rithm due to theanytimebehavior. For our experiments we use the
histograms). Let/(t) be the upper bound of the range of the his-  readings from five to ten randomly selected sensors.

togram bucket off that MinScore(t) falls in. Let us replace the The IMDB database is composed of more than 860,000 titles
worst case score of each tuple with this upper bound of thecor  anq details about each. For the IMDB data set, we extractisd a |
sponding histogram bucket. We have then, totaling 863,049 titles. For each title, we queried thedeihg

*max ({scorePDFy|t € Partialss}) <
*max ({*({0v (1)} U {gPDFi|i € S})|t € Partialss})

Thus, any two tuples iiPartials that have the same set of resolved
attributes and whose worst case scores map to the same hawvket

approximately identical score distributions. Since thare 2/

attributes: budget, gross income, opening weekend grassnie,
and number of keywords describing the title.

We experimented with several different histogram sizefonad
that the accuracy did not improve much with histograms ofenor
than 20 buckets for our real-world experiments.

possible subsets of attributes, and we ugklauckets histogram for 6.2 Anvii M
each subset, we have essentially partitioned all tuplddairtials : nyume lvieasures
into at most2™ B clusters. Using Lemma 4.3 for each of these Our experimental evaluation validates our measures omexddl
clusters we can compute an upper bound for the pdf of their max and synthetic data sets. As a baseline we compare our approac
imum score. We can then compute the max-convolution of the re against the actual confidence, TA, and TA-Sorted algorithms
sulting2™ B histograms to finally comput&/ ax PartialsPDFE. In the case when the distribution of scores is skewed, thé-con
To efficiently do this computation we have to maintain onenteu  dence of the algorithm may stay relatively low for a largetjpor
for each of th@ B histogram buckets (which are in the beginning  of the data set. This is due to a high density of values keeping

initialized at 0). Every time a new value is read in, one ofttifges
has one more attribute resolved. If this is a new tuple, weement
the corresponding bucket and add this tuple tofetials set. If

the tuple is already iPartials, one bucket will have its counter re-

duced by one. If the tuple is still not fully resolved, anatbacket
will have its counter increased by one.

thekMinScore andMaxOthers close for a larger portion of the
running time (i.e., there is a low-sloping increase in thefictence,
but eventually it reaches 100% confidence). In cases whedishe
tribution of the data set contains a distinct clusterfofor more
high scores (row-level correlation) the confidence quiakiynbs.

For the IMDB data set, there are few large values with the ma-

Using Lemmas 4.1, 4.2 and 4.3, we can state the following jority of the scores being clustered toward the lower endhef t

lemma:

LEMMA 5.1. An upper bound fol ax PartialsPDF can be
computed ir0 (2 Bb?) time.

value range for each attribute. This is reasonable corisgiéinat
there are only a few big budget movies and of these moviesem ev

2http://www.imdb.org



Confidence: Anytime TA (Data Set: IMDB)
[Rows = 863,049, Attributes = 4]
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Figure 2: In this experiment we evaluate the confidence for varying
as the number of seen tuples is increased for the IMDB data set

Actual: Anytime TA (Data Set: Synthetic)
[Rows = 100,000, Attributes = 4]
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Figure 3: In this experiment we show the precision, defined as the per-
centage of the current top-k buffer that is actually in the top-k result
for the IMDB dat set.

Tuple Error: Anytime TA (Data Set: Synthetic)
[Rows = 100,000, Attributes = 4]
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Figure 4: In this experiment we compare the actual and Anytime TA configince. The two figures show the difference in the number of itemread

for various levels of confidence using the synthetic data set

smaller subset that gross a large sum of money. This creat®sa
set with a small number of high score tuples. Similarly in¢hse
of the sensor data there is row-level correlation aroungerature
spikes with the majority of the readings being located adotire

runs (i.e., we built a new vector that represents the elemées® av-

erage of the vector set) creating a new vector of real vallesav
each element of the vector represents the actual confideneach

respective run.

average temperature for each sensor. As shown in figures 2 and We evaluate the accuracy of readings by comparing the number

9, both the IMDB and sensor data sets illustrate how coioglat
of attributes can quickly cause the Anytime TA algorithm liond

to 100% confidence, this can be accounted for by the fact tieat t
correlation of data cause the thd/inScore and MaxOthers
groups to quickly diverge.

Accuracy: Our results show good performance for both real-world
and synthetic data sets. In figures 2 and 3 we show the conédenc
and percentage of correct results in the kopuffer during the ex-
ecution of the algorithm. These figures illustrate how otinestes
coincide with the number of correct results in the topuffer.

Further, in Figure 4 we show that our estimates for the confi-
dence accurately approximates the actual confidence. br ¢od
compare the accuracy of our estimations, we computed thalact
confidence by running the TA algorithm for 10 independentsrun
(we generated 10 randomly distributed synthetic data setgan
the algorithm for each) building a vector for each run wheaehe
element of the vector contains one of two values (1="kdpund”,
0="Top-k not found yet"). We then computed the average over all

of items read given a user-defined confidence using Anytikhe-T
with the number of items retrieved had the actual confidedee (
fined above) been known. We can estimate the accuracy of a read
ing by comparing the number of items read for Anytime TA and
the actual confidence. In Figure 4 we shown the error pergenta
for confidence levels of 0.80 through 0.95. Our algorithnfqens
well for various levels of confidence. The results suggestttere

is little correlation between the confidence level and tleeieaxy of

our results. For the experiment presented in Figure 4, thebeu of
items read by the Anytime TA algorithm never deviates moesth
16% from the number of items read for the corresponding actua
confidence.

6.3 Scalability & Performance

Efficiency: Our results show that sizable savings can be achieved
in comparison to the TA and TA-Sorted algorithms. As a baseli

we ran TA and TA-Sorted on the IMDB and sensor data sets. In
each case we computed how many tuples were read before the TA



Accesses: Anytime TA (Data Set: IMDB)
[Rows = 863,049, Attributes = 4]
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Figure 5: In this experiment we compare the number of tuples re-
trieved for Anytime TA with various levels of confidence usirg the
IMDB data set where K=100.

Accesses: Anytime TA (Data Set: Sensor)
[Rows = 4,990, Attributes = 10]
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Figure 7: In this experiment we compare the number of tuples re-
trieved for Anytime TA with various levels of confidence usirg the sen-
sor data set where K=300.

or TA-Sorted stopping condition was reached. We then coetpar
these results with our algorithm. As shown in Figure 5 Angim
TA provides sizable savings over TA. We achieve a saving ef ov
70% (1,200 tuples) for a confidence level of 99% using the IMDB
data set. Similarly, Anytime TA works well for high dimensil
(sensor) data sets. As shown in Figure 7, we achieve savilngeo
50% (3,000 tuples) for a confidence level of 99% using the@ens
data set. Since TA-Sorted does not allow for random acceiges
number of tuples read is usually much greater than TA (atigvior

Accesses: Anytime TA-Sorted (Data Set: IMDB)
[Rows = 863,049, Attributes = 4]
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Figure 6: In this experiment we compare number of tuples retrieved
for Anytime TA-Sorted with various levels of confidence usig the
IMDB data set where K=100. (TA-S) = TA-Sorted

our implementation of the Anytime TA algorithm. This doeg no
include the time that it takes to compute the anytime measunre
other words, this includes the time it takes to run TA and tmet

it takes to maintain thgPDFs for each round. Note that this time
is dependent upon the users confidence bound. The third nolum
shows the average time for computing the anytime measure (co
fidence, rank distance, and so on) every time this compuatésio
invoked. The total running time of our algorithm is the suntraf
time it takes to run Anytime TA (column 2) and the time it takes
to compute the anytime measures (column 3) times the nunfber o
times the anytime computation is invoked.

The experimental results in Table 2 suggest that the ovdrhea
of our approach is relatively small for Anytime TA. Thereiiglé¢
variation in runtime between the TA and Anytime TA algorithm
(this is attributed to the fact that histograms are not z&di for
computation until a reading is taken). Varying the histogrsize
between 5 and 25 buckets make little difference in effecthg
runtime of the Anytime TA algorithm.

For the Anytime TA-Sorted algorithm as shown in Table 3 there
is a sizable difference in the running time for TA-Sorted &my-
time TA-Sorted algorithms. This is attributed to the ovexdhén-
curred from the maintenance of the partially seen tuplesttier
words, this includes the time it takes to run Anytime TA-8drtup-
date thegPDFs and maintain partially seen clusters for each round
as defined in Section 5.2.2. Varying the histogram size batvie
and 25 buckets make little difference in effecting the mnetiof the
Anytime TA-Sorted algorithm. Overall, the overhead for fiee-
tials remains a fixed cost over Anytime TA and increases when t
size of the histograms increases, as expected.

greater savings). As shown in Figure 6 we compare the Anytime performance: We evaluate performance in terms of how many tu-

TA-Sorted algorithm with TA-Sorted. In this case, for TA+&ml

ples we read, and how long it takes to run the algorithm usimg o

and a confidence level of 99% we achieve an even greater saving jmplementation. We compare Anytime TA with TA. To evaluate

of over 95% (14,000 tuples).

our approach we ran experiments using a synthetic datatakhgp

Scalability: To evaluate the overhead of our approach we ran scala- 100,000 rows, 4 attributes, and a uniform distribution facle at-

bility experiments with a synthetic data set totaling 1,000 rows

tribute; we use a histogram size of 20 to describe the digtadb.

and 4 attributes. We used histograms of 5 to 25 buckets to de- In this set of experiments we s& = 1000, but similar results

scribe attribute distributions. In this set of experiments set

K = 1,000, but similar results were obtained for different values.
Table 2 shows the runtime performance of the Anytime TA algo-

rithm, as well as the overhead that the technique imposestiose

TA algorithm. In the first column we report the running timetioé

TA algorithm. In the second column we report the running tohe

were obtained for different values. Proper selection op sire
(i.e. the number of tuples sampled between readings) cailgre
affect the runtime and total number of tuples sampled. Adatdp
size ensures that the number of readings is minimal. If the sk
size is too large then there is a coarsening of the confideveds|
between readings, generally causing additional tuplesetoebd



TA Anytime | Estimation Time | Histogram
TA Average Time Pe Size
Readings
1.0908| 1.1238 0.0001 5
1.1598 0.0004 10
1.2068 0.0009 15
1.1778 0.0014 20
1.2107 0.0020 25

Table 2: Run time performance for synthetic data set compar-
ing Anytime TA, TA and time required to take an Anytime TA

measure. Synthetic data set (1,000,000 tuples, 4 attribigehis-
tograms size 20, random distribution). Time is reported in €c-

onds.

TA-Sorted| Anytime | Estimation Time | Histogram
TA-Sorted | Average Time Per Size
Readings
2.7696 20.8258 0.0001 5
26.2369 0.0004 10
32.3550 0.0007 15
41.4386 0.0013 20
51.6661 0.0019 25

Table 3: Run time performance for synthetic data set compar-
ing Anytime TA-Sorted, TA-Sorted and time required to take an
Anytime measure. Synthetic data set (1,000,000 tuples, 4 at-
tributes, histograms size 20, random distribution). Time & re-
ported in seconds.

from the database. On the other hand, if the skip size is gheil
fewer tuples may be sampled but the runtime will increasetdue
the inflation of reading overhead.

Table 4 offers a comparison of runtime performance for Any-
time TA and TA for several confidence levels. We have omitted
results for Anytime TA-Sorted due to space constraints. daah
confidence level we report both the runtime and number oktupl
sampled for each algorithm. The experimental results ileTdb
show that sizable gains can be achieved over TA for bothmenti
and the number of tuples read from the database. For ouriexper
ments we achieved a reduction of about 35,000 - 38,000 togdes

from the database and a 34% - 44% decrease in runtime over TA.

Overall, we have found that the our approach works well in-a va
riety of settings that can be further tuned using differastdgram
and skip sizes.

6.4 Multidimensional Histograms

We consider the effects of joint distributions (multidinseanal
histograms) by comparing the accuracy and performancerailou
gorithm using one- and two-dimensional histograms. Likedhe-
dimensionalgPDFs we have used thus far, we assume that multi-
dimensional histograms are provided as a pre-processépg ¥le
want to compare the accuracy of our results using variousldev
of knowledge about the scores in the database. For the experi
ments using joint distributions we assume all combinatioiitsvo
attribute joint distributiongjPDF;s are available as described in
Section 4.6.

As shown in Figure 10 we compared the performance of one-
and two-dimensional histograms for the IMDB data set. The in
clusion of multidimensional histograms did not greatlyeeffthe
number of tuples read from the database. We experimentdd wit

Confidence| TA Tuples| TA Anytime TA | Anytime
Read Time | Tuples Read TA Time

0.75 54,082 | 0.0650 16,000 0.0359
0.85 17,000 0.0399
0.95 19,000 0.0429

Table 4: Run time performance comparingT’ A and Anytime—

T A for varying confidence levels. Synthetic data set (100,000
tuples, 4 attributes, histograms size 20, random distribubn,
skip size=1000). Time is reported in seconds.

the number of tuples retrieved for the Anytime TA algorithst u
ing independent and joint distributions. In both cases therdahm
retrieved roughly the same number of tuples.

In addition, in figures 8 and 9 we show how the inclusion of
multidimensional histograms can increase the accuracyofb
gorithm. This is shown in the (1D,2D Histogram) results bg th
increase in slope for the confidence. This is expected siog |
distributions offer more information pertaining to the szof the
unseen tuples. Therefore, at any given point during exectiiere
is less uncertainty of the remaining unseen scores in ttebdsé.
Accuracy: As shown in figures 8 and 9 as the dimensionality of the
gPDFs increases, the confidence measure for both the sensor and
the IMDB data sets become increasingly accurate as expdeted
the IMDB and sensor data sets there is a strong correlatiamgm
the high score values. This correlation is not detected agdum-
ing independence as illustrated in the quick rise in confiderin
contrast, the two-dimensional histograms can better prddgh
score values for unseen tuples. As shown in figures 8 and 9, the
confidence stays low until a sufficient number of high valugres
have been seen by the algorithm.

Histogram | One-Dimensional Two-Dimensional
Size Histograms Histograms
5 1.1238 11.5802
10 1.1598 11.6392
15 1.2068 11.5983
20 1.1778 11.7991
25 1.2107 11.7562

Table 5: Run time performance for Anytime TA using one-
and two-dimensional histograms. Synthetic data set (1,00000
tuples, 4 attributes, histograms size 20, random distribuibn).
Time is reported in seconds.

Performance: In order to evaluate the performance of multidimen-
sional histograms for Anytime TA we used a synthetic data set
and compared the running times for one- and two-dimensiaisal
tograms gPDFs). Each of our results are averaged over five inde-
pendent experiments. As shown in Table 5, using multidinogwas
gPDFs requires a significant overhead regardless of the sizesof th
histograms. This is due to the increased number of updajegee

to maintain the multidimensionglPDFs for each round.

7. CONCLUSIONS

In this paper we have presented an anytime framework for top-
k computations. Our framework can be applied on a variety of
popular topk algorithms (TA and TA-Sorted) and enable anytime
behavior. We have discussed and analytically demonstised
eral properties of our framework regarding the behaviorevEsgal

confidence levels (85% and 95%) and in each case we comparedmeasures of interest to anytime tbgomputations. Through a de-



Confidence: Anytime TA (Data Set: IMDB)
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Figure 8: In this experiment we compare the confidence for one- and
two-dimensional histograms using the IMDB data set where K300.
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Figure 10: In this experiment we compare the number of tuples re-
trieved from the database using one- and two-dimensional ktograms
for Anytime TA using the IMDB data set and K=100.

tailed experimental study we have demonstrated the pedctidity
of our approach.
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