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Abstract  

We show that  several well-known computational geometry problems 
involving 3-dimensional convex polyhedra are NP-hard or NP-complete. 
One of the techniques we employ is a linear-time method for realizing a 
planar 3-connected triangulation as a convex polyhedron. 

1 Introduction 

Convex polyhedra are fundamental geometric structures (e.g., see [14]). More- 
over, due to a beautiful theorem of Steinitz [14, 23], they provide a strong link 
between computational geometry and graph theory, for Steinitz shows that a 
graph forms the edge structure of a convex polyhedra if and only if it is planar 
and 3-connected. 

Unfortunately, algorithmic problems dealing with 3-dimensional convex poly- 
hedra seem to be much harder than their 2-dimensional counterparts. In addition, 
this difficulty goes beyond simple notions of running time; it also impacts our 
notions of efficiently-representable structures. For example, although the pub- 
lished proofs of Steinitz's theorem can easily be converted to algorithms running 
in O(n 3) time in the real-RAM model, these algorithms produce polyhedra that 
may require an exponential number of bits to represent. 

In this paper we formally establish that several natural problems on convex 
polyhedra are provably difficult, including several problems involving the approx- 
imation and illumination of convex polyhedra. Interestingly, a key ingredient in 
our proofs is a linear-time method for realizing any 3-connected planar triangu- 
lation as a convex polyhedron using a polynomial number of bits. 

We describe this realization method in the section that follows. In the subse- 
quent section we establish the NP-completeness of the problem of finding the min- 
imum number of vertex lamps needed to illuminate a convex polyhedron, which 
is a problem studied by Griinbanm and O'Rourke and featured in O'Rourke's 
book on "art gallery,' theorems [20], where they show that, for a convex polyhe- 
dron P with f faces in ~t 3, [(2] - 4)/21 vertices are sometimes necessary and 
always sufficient to see the exterior of P. Finally, in Section 4, we show that 
finding an optimal decision tree in lR 3 is NP-complete, as is the problem of find- 
ing a minimum-facet convex polyhedron lying between two polyhedra in ~3  is 
NP-complete, which fixes a "gap" in a proof by Das and Joseph [6, 7]. 
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2 Realizing 3-Connected Triangulations in ]R 3 

In this section we show how to realize a 3-connected planar triangulation as a 
convex polyhedron in linear time. Our algorithm constructs a polyhedron that  
can be represented using a polynomial number of bits in the rational-RAM model. 

T h e o r e m  2.1 Given a n-vertex 3-connected planar triangulation G = (1I, E) ,  
one can realize G as a convex polyhedron P with a bit complexity that is polyno- 
mial in n. The running time is O(n) in the rational-RAM model. 

Before we prove this theorem we present the following graph-theoretic lemma, 
which has been proven in various forms (e.g., see [10, 17]). 

L e m m a  2:2 Given a n-vertex planar graph G = (V,E) ,  one can compute in 
linear time an independent set with at least n /18 vertices such that each vertex 
has degree ~ 8. 

The overall idea of our algorithm is as follows. We compute a large indepen- 
dent set of G, and "compress" each vertex in this set with one of its neighbors 
along a common incident edge. We show that  one can always choose a neighbor 
so that  this results in a smaller planar triangulation that  is still 3-connected; 
hence, we can recursively construct an equivalent polyhedron pI for the com- 
pressed graph G'. To construct P,  we then "expand" the previously compressed 
edges appropriately so that  convexity is maintained. Although this approach 
seems fairly straightforward, implementing it in O(n) time is not so easy. 

Since we compress a constant fraction of the vertices in each level, there are 
O(log n) levels of recursion. Our algorithm ensures that  at each level the number 
of bits required to represent each added vertex is within a constant multiple of 
the number of bits required to represent a vertex of the previous level. Thus, the 
total bit complexity of representing P is polynomial in n. 

We now give more details of our algorithm. Let the exterior face of the input 
triangulation contain the vertices u, v and w. At every level of the recursion, 
along with other properties, we will also ensure that  u, v and w are on the xy- 
plane (u = (0, 0, 0), v -- (2, 0, 0) and w = (1, 2, 0)), and the remaining vertices are 
above this plane, but strictly within the vertical "tube" whose horizontal cross 
section is congruent to the triangle uvw. 

Case  1 (n = 4): Let the four vertices be u, v, w and t. In this case we construct 
a tetrahedron by positioning u at (0, 0, 0), v at (2, 0, 0), w at (1, 2, 0)), and t at 
(1, 1, 1), which completes the construction. 

Case  2 (n > 4): Using the method of Lemma 2.2, we compute a large inde- 
pendent set I of G. Let Ii = I \ {u, v, w}, so that  /1 contains only interior 
vertices. Then, we repeat the following for each vertex s in /1 .  Let s be incident 
to the vertices Sl, s2 , . . ,  sl, where I _< 8. We choose one of the vertices sj and 
compress the edge (s, s j), removing any parallel edges this produces. We cannot 
choose just any vertex, however, for compressing s with some sj 's may violate 
3-connectivity of the resulting planar graph. Consider the face f = sis2 �9 .. sl 
that  would result if we were to remove the edges incident to s, and mark the 
edges (sl, s2), (s2, s3 ) , . . . ,  (sl, Sl) as peripheral edges. The vertex sj is selected 
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as follows. If there are no edges connecting two non-adjacent vertices of ] ,  then 
any vertex of f may be selected, say sl. If, on the other hand, there are indeed 
such "exterior" edges, then there has to be an edge (s~, sk) such that the closed 
region defined by (s~, sk) and the boundary of ] does not further contain such 
exterior edges. Consider the relevant boundary of f between si and Sk. It has to 
contain at least one intermediate vertex, and we select this to be sj. 

Let the resultant graph after all the edge compressions are performed be G'. 
We recursively construct an equivalent polyhedron pi for this graph. We know 
that the vertices of PI other than u, v and w are strictly confined within a vertical 
tube with cross section congruent to uvw. 

Recall that some edges of P~ have been marked as peripheral. We compute 
for each peripheral edge e a plane p(e) as follows. If e E {(u, v), i v, w), (w,u)), 
then p(e) is the vertical plane tangential to P~ at e, otherwise p(e) is any plane 
tangential to P~ at e. Let s' be some vertex of P '  created by the compression 
of some s and sj in G, and let f be the cycle of edges marked as peripheral by 
this compression. For each edge e E f ,  consider the half-space defined by p(e) 
which includes P~. The intersection of these halfspaces defines a "pyramid" over 
f .  Next, consider the half-spaces not containing P corresponding to each face 
of P~ within f .  If we intersect these half-spaces with the above pyramid, the 
resulting region will be convex. We show in the full version that if we expand 
s I into sj and s, where the point 1 sj remains at s ~, and s is selected inside this 
convex region, then P (which is the convex hull of s and P~) will be convex. We 
can find s so that its resulting bit complexity (using rational arithmetic) is at 
most a constant factor larger than the bit complexity needed to represent each 
vertex of f .  Performing this edge expansion for each s' that resulted from an 
edge compression, then, completes the construction. 

I m p l e m e n t i n g  the  compress ion  a lgor i thm 

In this subsection we show how to implement a single recursive level in our edge- 
contraction algorithm in O(n) time. Since the size of the graph decreases by a 
constant-factor with each recursive level, this will establish that the total running 
time of our drawing algorithm is O(n). 

The important step in our procedure is identifying, for a particular node s 
in our independent set/1,  an adjacent node sj such that the edge (s, sj) can be 
compressed without violating 3-connectivity. The crucial condition for this to be 
possible is that s and sj cannot already be members of a separating triangle, for 
then merging them would create a separating pair (and the graph would no longer 
be 3-connected). As observed above, the set of adjacencies for s define a face f ,  
whose edges we call the peripheral edges. Since the graph is triangulated, the 
crucial condition for s to to be mergeable with sj is equivalent to the condition 
that sj cannot be adjacent to another vertex of f through a non-peripheral edge 
(i.e., an edge external to f). We say that such an adjacency disqualifies the merge 
of s and sj. It is not immediately clear, however, how we can efficiently test this 
condition for each candidate sj around f during the compression step for s, since 
some of these sj's may have a large number of adjacencies in the graph. 

1We ask the readers indulgence into this abuse of notation so that s (resp., sj) can denote 
a vertex in G and its corresponding point on P. 
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Our implementation is to break this computation into a batch component, 
which we perform in advance for all the s's in our independent set, and an on- 
line component, which we perform for each s in turn as we perform our edge 
compressions. Our batch computation is as follows: 

. We identify, for each s in 11, and each vertex sj adjacent to s, all the 
candidate adjacencies that  would disqualify our being able to merge s and 
sj. There are d(s)(d(s) - 2) = O(1) such adjacencies for each s in /1 ,  where 
d(s) denotes the degree of s; hence, the total number of all such candidate 
adjacencies is O(n). We label each such candidate adjacency between sj 
and some s~ on f as (s~, sj, s) meaning "adjacency (si, sj) would disqualify 
the merging of sj and s." 

. We then radix sort into a list L all the labels computed in the previous 
step together with all the existing adjacencies in G, lexicographically. This 
takes O(n) time. 

. For any match of a real adjacency (si, sj) with a candidate disqualifying 
adjacency (si, sj, s) we mark the edge (sj, s) as "disqualified." We remove 
all the (si, sj) and (si, sj, s) labels from the sorted list L for each such 
match. This step also takes O(n) time. 

. Finally, we group together in one list Li,j each sublist of the sorted list L 
that  identify the same candidate disqualifying adjacency (si, s j) (for several 
different s's in our independent set). We store a pointer to the list Li,j in 
the records of each s in /1  that  contributes an element to L~,j. The total 
number of such fields is O(1) for any such s and the total space needed for 
all the Li,j's is clearly O(n). 

The meaning for each list Li,j is that  this is a disqualifying adjacency that  cur- 
rently does not exist in G, but may exist at some point during the compression 
phase. Thus, for the compression computation for a node s in I1, we choose 
an edge (sj, s) that  is not marked "disqualified" and compress it. For each new 
adjacency (si, sj) this creates, we consult the list Li,j (if it exists), and for each 
(sl, sj, s') label in Lid (with s' ~ s) we mark the edge (sj, s ~) as "disqualified." 
We then discard the list Li,j. 

We have already argued why there will always be some edge incident upon 
s that  is not ma r ked  "disqualified;" hence, the above computation can always 
proceed to the next s in 11. The total time needed is O(n) for the preprocessing 
step, and then an additional O(n) time during the compression step (for once an 
Li,j list is consulted it is then discarded). Therefore, we can complete a recursive 
step in our 3-d drawing algorithm in O(n) time, as claimed. 

Since we can perform each level in the recursion in O(n) time, by Lemma 2.2, 
this results in a linear-time algorithm for drawing G as a convex polyhedron. 
Moreover, the fact that  there are only O(log n) levels in this recursion implies that  
our method produces a polyhedron that  can be represented using a polynomial 
number of bits (using rational arithmetic). 
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Figure 1: The cross-over gadget. 

3 Po ly tope  I l lumination 

In this section we prove that polyhedron illumination is NP-complete. We begin 
by showing that the well-known vertex cover problem remains NP-complete even 
for 3-connected planar graphs, and show how this can be used to further extend 
the NP-completeness of vertex covering to convex polyhedra in ~3. This extends 
the previous results of Garey and Johnson [11] and Garey, Johnson, and Stock- 
meyer [13], which showed that the vertex cover problem remains NP-complete 
for planar graphs with degree at most three. 

Vertex Cover for 3-connected planar graphs 

Our reduction is actually a chain of reductions, starting from the (standard) ver- 
tex cover problem. So, let G = (V, E) and k be the graph and integer parameter 
defining an instance of the vertex cover problem. Without loss of generality, we 
can assume that IV[ _> 4. We begin our chain of transformations by augmenting 
G by adding three new vertices vl, v2, and v3 that we define to be adjacent to 
all the vertices in G. Clearly, the resulting graph G' is 3-connected. 

Cla im 3.1 G has a vertex cover of size k < n if  and only if G' has a vertex 
cover of size k + 3. 

Proof:  Omitted in this preliminary version. �9 

Thus, the vertex cover problem remains NP-complete for 3-connected graphs. 
So, let us now use G and k to together denote an instance of vertex cover with 
G being 3-connected. We will reduce this version of vertex cover to the version 
of the problem where the graph is 3-connected and planar. Our reduction is an 
adaptation of the proof of Garey et al. [13], who give a reduction from general 
graphs to planar graphs that does not preserve 3-connectivity. We begin by 
drawing G in the plane so as to have c = O(rt 2) edge crossings (e.g., using a simple 
straight-line strategy). We replace each edge crossing by the "gadget" illustrated 
in Figure 1 as illustrated in Figure 2. Performing all these replacements results 
in a 3-connected planar graph G'. 
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Figure 2: The way the cross-over gadget replaces an edge crossing. 

C l a i m  3.2 G has a vertex cover of size k if and only if G ~ has a vertex cover of  
size 16c -t- k. 

Proof: A close inspection of the gadget we use to replace each edge crossing 
shows that  the edges of the gadget can be covered with 16 nodes only if we include 
at most one member of {v, v'} and at most one member of {w, w'}. Thus, if there 
is a vertex cover of size k in G, we can create a vertex cover of size 16c + k by 
including the 16 nodes in each crossover gadget so as to also cover each of the 
edges joining crossover gadgets (and original vertices of G). Suppose, conversely, 
tha t  G' has a vertex cover of size 16c + k. As we have already observed, each 
cross-over gadget can be covered with 16 nodes only if at most 16 nodes only if we 
include at most one member of {v, v'} and at most one member of {w, w'}. Tha t  
is, covering each gadget with 16 nodes establishes a "parity" along any chain of 
gadgets derived from a single edge in G. Thus, by a counting argument, which 
is similar to one given by Garey et al. [13], we can conclude that  G must have a 
vertex cover of size k. I 

Therefore, the vertex cover problem remains NP-complete for 3-connected 
planar graphs. We can further restrict our graphs, however, and the problem 
still remains NP-complete. 

Polytope Vertex Cover 

Given an embedded 3-connected planar graph G, define the stellation of a face f 
in G as the insertion of a vertex in the interior of f that  we then make adjacent 
to each vertex on f .  Moreover, if f is a triangle, then we also allow any of edges 
of f to be subsequently removed, so long as we still preserve the 3-connectivity 
of G. (See Figure 3 . )Def ine  a stellation of the entire graph G to be the result 
of performing a collection of independent, non-interfering face stellations on a 
subset of the faces of G. Further define the t-stellation of G to be the result of 
performing t consecutive stellations on G. 

An interesting property of stellations is that  they have a natural  analogue 
with respect to convex polyhedra. In particular, if a 3-connected planar graph 
G is represented as a convex polyhedron in Kt 3, then the stellation of a face f of 
G can be accomplished geometrically by introducing a point p "above" f so that  
the convex full of p unioned with P results in the updated graph G I. Indeed, the 
proof of Steinitz's theorem (e.g., see [14]), showing that  a graph can be drawn as a 
convex polyhedron in ] a  3 if and only if i t  is 3-connected and planar, is essentially 
equivalent to showing that  any 3-connected planar graph (or polyhedron) can 
be constructed from a planar embedding o f / ( 4  (or tetrahedron) in a series of 
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Figure 3: The steUation of a face. 

O(n 3) stellations or "inverse" stellations. We show that  the vertex cover problem 
remains NP-complete for c-stellations of 3-connected 3-regular planar graphs, for 
any constant c > 4. 

We have shown, in Section 2, that  any 3-connected planar triangulation can 
be drawn as a convex polyhedron in ~3  using a polynomial number of bits. 
By a simple duality argument, this immediately implies that  any 3-connected 
3-regular planar graph can also be drawn as a convex polyhedron in ~t 3 using a 
polynomial number of bits. Since performing a stellation of a convex polyhedron 
in ]R 3 will increase the bit complexity of its representation by at most a constant 
factor, this also implies that  the c-stellations of a 3-connected 3-regular planar 
graph can be  drawn as a convex polyhedron in ~t 3 using a polynomial number of 
bits if c is a constant. Thus, by showing that  vertex cover remains NP-complete 
for c-stellations of 3-connected 3-regular planar graphs we will establish the NP- 
completeness of the Polytope Vertex Cover problem, where we are given a convex 
polyhedron P and an integer k and asked if there is a subset V of the vertices on 
P such that  each edge on P has at least one end in V. 

Our reduction will be from the vertex cover problem for 3-connected planar 
graphs. So, let G be a 3-connected planar graph and let k be a given integer 
parameter.  Our reduction is a modification of an argument of Garey and John- 
son [11], who showed that  vertex cover remains NP-complete for planar graphs 
with degree at most 3. For each vertex v in G, we replace v by a cycle Cv of 
size d(v), where d(v) denotes the degree of v, so that  each vertex on C.  retains 
exactly one adjacency of v. Clearly, the graph that  results from this transforma- 
tion will be a 3-connected 3-regular graph. We stellate each face defined by the 
interior of a C.  by introducing a new vertex v ~ in its interior. We furthermore 
stellate each triangle T incident on v ~ so as to eliminate all the edges of T. (See 
Figure 4.) The resulting graph, G r, is a c-stellation of a 3-connected 3-regular 
g raph  (the last step can be accomplished by first stellating the  odd-numbered 
triangles around v' and then doing the even-numbered ones, with possibly one 
more to do after tha t  if the number of triangles is odd). 

C l a i m  3.3 G = (V ,E)  has a vertex cover of size k if and only i f  G ~ has a vertex 
cover of size k § 21E I. 
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Figure 4: The stellations forming the subgraph of G r associated with a face in G. 

P r o o f :  Suppose G has a vertex cover of size k. For any v in G in this cover, we 
can put  in a cover for G ~ all the vertices in the cycle Cv we created for v, together 
with the interior vertex v ~ (these vertices are shown in black in Figure 4). If  v is 
not in the cover for G, then  we can cover the subgraph of G J associated with v 
by using the vertices introduced in the stellation of each triangle incident on v ~ 
(these vertices are shown in white in Figure 4). The set of all such vertices will 
clearly form a cover of G'. We use d(v) + 1 vertices for each vertex v in the cover 
for G and d(v) vertices for each vertex v not in the cover, where d(v) denotes the 
degree of v; hence, the total  size of this cover is k + ~vcr  d(v) = k + 21E I. 

Conversely, suppose G'  has a vertex cover of size k + 21E I. The subgraph in 
G ~ determined by a vertex v in G can be covered with d(v) vertices (using the 
nodes colored white in Figure 4), and d(v) nodes are necessary. To cover an edge 
of G ~ outside of such a subgraph (i.e., an edge corresponding to an edge of G), 
however, requires tha t  we use a ver tex ' f rom some Cv (i.e., a black vertex).  But  
if such a vertex is included in a cover for the subgraph of G ~ corresponding to 
a vertex v, then covering this subgraph now requires d(v) + 1 vertices. But  we 
can cover such a subgraph using d(v) + 1 vertices using only the vertices of Cv 
and the new vertex v ~ (the black vertices). We can thus define a cover of G by 
including each vertex v whose corresponding subgraph in G has at least d(v) + 1 
vertices and this cover will have size at most  k in G. �9 

As we mentioned above, given the result of Section 2 regarding drawing 3- 
connected 3-regular planar graphs as convex polyhedra, Claim 3.3 immediately 
applies to the Polytope Vertex Cover problem. 

T h e o r e m  3.4 The Polytope Vertex Cover problem is NP-complete. 

P o l y t o p e  L a m p  C o v e r  

We are now ready to prove our result regarding lamp placement on convex poly- 
hedra. Specifically, in this problem we are given a convex polyhedron P in IR 3 
and an integer k and asked if thcre are k vertices on P such tha t  each point on 
the boundary  of P can be connected to a vertex in this set by a line segment tha t  
does not intersect the interior of P .  We show tha t  deciding if a given k number  
of vertices suffice for P is NP-complete.  Our proof is based upon a reduction 
from Polytope  Vertex Cover. 

So, suppose we are given a polyhedron Q and an integer k such tha t  we would 
like to know if there is a k-node vertex cover on Q. Our reduction is to form a 
c-stellation of Q, where, for each face f on Q, we form a vertex F in its interior 
and form triangles with the nodes on f .  We then perform two more stellations, 
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Figure 5: An example stellation used in forming P. 

so as to form for each triangle AabF incident on F ,  three consecutive triangles 
AaxF,  AxyF ,  and ybF. Call this transformed polyhedron, P.  (See Figure 5.) 

C l a i m  3.5 Q has a vertex cover of size k if and only if P has a lamp cover of 
size k + Jr, where J: is the number of faces on Q. 

Proof :  Suppose Q has a vertex cover of size k. We can form a lamp cover 
for P by including each vertex in the cover for Q together with each vertex F 
created in the stellation of a face f of Q. This lamp cover will have size k + ~'. 

Conversely, suppose P has a lamp cover of size k + 9 c. Consider the subgraph 
in P associated with any face f from Q. If F is not included in a lamp cover, then 
illuminating this portion of P requires at least [3e/2] vertices, where e _> 3 is 
the number of edges on f .  But, by including F in a lamp, we can illuminate this 
portion of P using just one vertex! The only other faces that  are not illuminated 
are faces that  correspond to edges of Q (that no stellation vertex F can see). Since 
we can assume without loss of generality that  the lamp cover for P includes each 
stellation vertex F,  we can further assume that  each other vertex in the lamp 
cover is also a vertex in Q (for if this were not the case, we can substitute such 
a vertex (labeled x or y above) with a vertex that  is also in Q and illuminate 
more faces of P).  Thus, taking the vertices in the lamp cover for P that  are also 
vertices in Q forms a vertex cover for Q of size k. �9 

This immediately implies the following: 

T h e o r e m  3.6 The Polytope Lamp Cover problem is NP-complete. 

4 Approximating Convex Polyhedra 
In this section we consider the problem of polyhedral approximations, where one 
wishes to construct a polyhedron Q from a given polyhedron P, such that  Q is 
simpler than P and may be used to replace P. This is a very loose definition, 
and the exact requirements which Q should satisfy of course depends upon the 
particular problem. For example, there have been many results describing and 
analyzing various approximation schemes (e.g., see [2, 1, 6, 7, 8, 19]). We are in 
particular concerned with the combinatorial simplicity of the approximate object, 
e.g., it should not have too many faces. 
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Approximation by a Decision Tree 

The first approximation problem we consider is that  of defining an efficient deci- 
sion tree that  can be used as a discriminator for a given polyhedron (indeed, we 
define the problem for any point set in jR3). It is well known, for example, that  
constructing a best decision tree in general settings [15, 16] or in arbitrary dimen- 
sions [3, 18] is NP-complete, but in the context of fixed-dimensional decision-tree 
approximations, however, each of these NP-completeness proofs fail. Still; 

Theorem 4.1 Given a set S of n points in ]R 3, divided into two concept classes 
"red" and "blue," deciding if is there a linear decision tree T with at most k nodes 
that separates the red points from the blue points is NP-complete. 

Proof: First, let us observe that  this problem is in NP. This is because each 
candidate split in a linear decision tree is determined by 3 points, hence, there 
are O(n 3) candidate splits. We can therefore guess k splits and a tree structure 
with one of these splits at each node, and we can then test that  this decision tree 
separates all the red and blue points. 

To prove the problem NP-hard we reduce POLYTOPE VERTEX-COVER to it. 
For the sake of simplicity, let us allow as input point sets where red points and 
blue points can "overlap". A complete classification of such a pair of points must 
therefore have a split that  passes through this common location in space. Our 
reduction is based upon judiciously placing such pairs of points on the edges of 
Q, the Poincar@ dual to P,  i.e., Q is a convex polyhedron whose 1-skeleton is 
the graph-theoretic planar dual to the 1-skeleton of P. Thus, a face cover in Q 
corresponds immediately to a vertex cover in P. We place two red-blue pairs 
along each edge of Q so that  the only way four such pairs can be co-planar is if 
they all lie on the same face of Q. Let S denote this set of red and blue points. 
Note that ,  since Q is a convex polyhedron, each face of Q contains at least six 
pairs of points in S. 

We claim there is a k-node decision tree for S if and only if there is a k-face 
face-cover for Q. First, note that  if there is a k-face face-cover for Q, then there 
must be k planes that  collectively contain all the pairs in S; hence, there is a 
k-node decision tree for S. For the more difficult direction, suppose there is no 
k-face face-cover for Q; that  is, any face cover requires more than k faces. This 
implies that  any decision tree restricted to splits containing faces of P must have 
more than k nodes. Note, however, that  each such split contains at least six 
pairs of points in S whereas any other type of split contains at most three pairs 
of points in S: Therefore, since each pair of points in S must be contained in 
some split, there must be more then k nodes in any decision tree that  completely 
separates the pairs in S. �9 

Polyhedral Separability 

Another well-known instance of polyhedral approximation we consider is poly- 
hedral separability. In the simplest sense, given two polyhedral objects, we ask 
whether they are separate in space or whether they intersect. If they are indeed 
separate, we may want to construct a separator between them, such as a hyper- 
plane, or a surface with minimum number of faces~ Polyhedral separability has 
been the subject of extensive research, e.g., see [1, 4, 9, 19, 21]. 
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The version we address is is that one is given two Concentric polyhedra, and 
one wishes to find a separating polyhedra with minimum faces nested between 
the two. The nested polyhedral separability problem that we consider was first 
raised by Victor Klee [21], which arose during the study of sequential stochastic 
automata [22]. In two dimensions, this problem has been solved in polynomial 
time by Aggarwal et al [2]. Das and Joseph [6, 7] proved the interesting result that 
the problem is NP-hard for three dimensions, even for convex polyhedra. While 
the combinatorial and logical aspects of the proof are correct, a certain geometric 
part has a flaw. More precisely, a part of the reduction requires constructing 
a convex polyhedron from a 3-connected planar triangulation, and the version 
presented in [6] does not run in polynomial time. As we show below, Theorem 2.1 
can be used to correct this flaw in the proof. 

Since the results in [6, 7] appeared, there have been several efforts to design 
good approximation algorithms for the problem. In particular, Mitchell and 
Suri designed an efficient algorithm in [19] which achieves an approximation 
ratio of O(logn). This bound was matched by a simple randomized scheme 
of Claxkson [5], and extended to terrains by Agarwal and Suri [1]. More recently, 
BrSnnimann and Goodrich [4] show how to achieve an approximation ratio of 
O(1) for the convex polyhedral case. 

T h e o r e m  4.2 The problem of fitting a polyhedron with minimum faces between 
two concentric convex polyhedra is NP-hard. 

Proof:  The original NP-hardness proof in [6, 7] is a reduction from Planar- 
3SAT [12]. The first part of the reduction is graph-theoretic, where an instance 
of Planar-3SAT is used to construct a planar triangulation G where, (1) the 
exterior face may not be a triangle, (2) the interior faces are marked either fixed or 
removable. We modify this slightly by enclosing G in a triangle, and triangulating 
the region between G and the enclosing triangle such that the resulting graph G' 
is a 3-connected planar triangulation. Let the new faces be marked fixed. 

The next step is geometric, where two polyhedra P'  and Q are constructed 
such that Q is inside pt. Instead of following the procedure in [6], we use the 
polynomial-time procedure in Theorem 2.1 to construct Q from G r. Thus Q can 
be expressed in a polynomial number of bits in the rational-RAM model. 

We can retain the old procedure to construct pr. Recall that a pyramid of 
a face f of Q is defined to the region above f and below the intersection of 
the three faces adjacent to f .  We construct an intermediate P, defined to be 
the (non-convex) polyhedral region of the union of Q with all the pyramids of 
the removable faces of Q. This takes polynomial time, since each pyramid only 
requires the computation of intersections of planes. Next, P '  is constructed to 
be the convex hull of P, which can be performed in polynomial time. �9 
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