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Motivation for AQP

® Answering complex aggregation queries
over large data warehouses exactly can be
time consuming

= If approximate answers are acceptable,
can we answer these queries much faster?
- Along with approximate answers, an estimate
of the error in the approximation is important
+ Confidence Intervals
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Introduction

m Approximate Query Processing (AQP)
in Relational Databases

m Focus on answering Aggregate queries

- Aggregation queries often arise in OLAP
and Data-Mining for large Databases
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Examples of Aggregate
Queries

mSPJ queries with

— aggregation operators such as
* Count, Sum, Count(Distinct), Avg
- Group By




Example

SELECT State, COUNT (*) as ItemCount
FROM SalesData

WHERE ProductID = 5437

GROUP BY State

ORDER BY ItemCount DESC

Exact Answer Approximate Answer
StateItemCount State | EstItemCount |EstError
WA |3425 WA | 3400 50

ca |1065 CA | 1150 100

WY 1432 wy 400 50

TN (235

Ky |56 Estimates may have errors

Small groups may be missing

Quantifying Error

m Consider a simple aggregation query
- Answer is a single number
- Relative error of query Q

Error(Q) = } ExactAnswer — ApproxAnswer ‘

ExactAnswer

= For GROUP-BY query

- Error of query = average error per group

Basic Approach

= Synopsis of data

- Computed online

- Pre-computed
m Rewrite query to run against synopsis
= Give error estimate

Different Synopses

= Histograms, Wavelets, Samples

= Comparing different methods
- Changes necessary to the SQL engine
- Accuracy and confidence intervals
- Resilience to high dimensional data

- Maintenance over updates
* not the focus of this talk
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Histograms

m Partition attribute value(s) domain into a
set of buckets
= Issues:
- How to partition
- What to store for each bucket
- How to estimate an answer using the histogram

m Long history of use for selectivity
estimation within a query optimizer

1-D Histograms: Equi-Depth

1234567891011121314151617181920

bucket

| I Count in

® Goal: Equal number of rows per bucket
- Bbuckets inall
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Equi-Depth Histogram
Construction

m First sort, then taking B-1 equally-spaced
splits

= Faster construction: Sample, take equally-
spaced splits in sample
- Nearly equal buckets

® Can also use one-pass quantile algorithms

Answering Queries

(Implicitly) map the histogram back to an approximate
relation, apply the query fo the approximate relation

Continuous value mapping

PP | T T

1234567891011121314151617181920

Uniform spread mapping

1234567891011121314151617181920

Answering Queries

4<RA<IS

= select count(*) from R where 4 <= R.A <= 15
= approximate answer: F * |R|/B, where

- F = number of buckets, including fractions, that overlap
the range

- error guarantee: + 2 * |R|/B

answer: 35 * |[R|/6 + 05* |R|/6 l
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Multi-Dimensional Histograms

= Use small number of multi-dimensional
buckets to directly approximate the joint
data distribution

= Uniform spread & frequency approximation
within buckets

Actual Distribution Approximate Distribution

10

1-D Histograms: V-Optimal

m Select buckets to minimize
frequency variance within buckets
[Toannidis, Poosala 95]

m O(B*N"2) time dynamic programming
algorithm [Jagadish et al, 98]
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Multi-Dimensional Histogram
Construction

u Construction problem is much harder even for two dimensions
[Muthukrishnan et al 99]

u  Multi-dimensional equi-depth histograms
[Muralikrishna, DeWitt 88]
- Fix an ordering of the dimensions Al, A2, ..., Ak
- Let a= kth root of desired no. of buckets
- initialize B = data distribution
- Fori=1,..,k
+ Split each bucket in B into a equi-depth partitions along Ai
- return resulting buckets

Problems: limited set of bucketizations; fixed aand fixed
dimension ordering can result in poor partitioning




Multi-Dimensional Histogram
Construction

B MHIST histograms [Poosala, Ioannidis 97]
- At each step

+ Choose the bucket b in B containing the attribute
Ai whose marginal /s the most in need of
partitioning

+ Split b along Ai into p (e.g., p=2) buckets

® MHIST chooses bucket/dimension to split based on its
criticality, thus allows for much larger class of
bucketizations (hierarchical space partitioning)

= Experimental results verify superiority over equi-depth

Histograms: Summary

u 1-Dimensional histograms very useful in
selectivity estimation

= Multi-dimensional histograms suffer from
the curse of dimensionality

- Model of the joint distribution becomes
inaccurate as dimensions increase

= Histograms as AQP systems require
substantial changes to the QP engine

21

Other Multi-Dimensional
histograms

m GenHist [Gunopulos et al 90]
- Allows for overlapping buckets
m STHoles [Bruno et al 01]
- Workload based
- Considers nested buckets

20
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One-Dimensional Haar Wavelets

= Simplest wavelet basis, easy to
understand and implement

Resolution Averages Detail Coefficients
3 [2,2,0,2,3,5 4, 4]
2 2, 1, 4, 4 [0, -1, -1, 0]
1 [1.5, 4] [0.5, 0]
0 < [2.75] [-1.25] )
. P A,

Haar wavelet decomposition: [2.75,-1.25, 0.5, 0, 0, -1, -1, 0]

23

Wavelets

= Mathematical tool for hierarchical
decomposition of functions/signals

m Popular in the speech/signal/image
processing domains

22
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Haar Wavelet Coefficients

= Hierarchical decomposition Coefficient “Supports”

structure (a.k.a. “error tree") 275
25 [+ [

o5 (FLT 7]
o T+

Original
data 24




Wavelet-based Synopsis

m Key idea: use a compact subset of wavelet
coefficients [Matias et al 98]
= Steps
- Compute wavelet transform of cumulative data
diistribution
- Coefficient thresholding : only b«|C| coefficients can be
kept
+ Take largest coefficients in absolute normalized value
- Divide coefficients at resolution j by \/?
- Optimal in overall Mean Squared (L2) Error
+ Greedy heuristic methods
- Retain coefficients leading to large error reduction

25

Multi-Dimensional Haar
Wavelets

= Basic pairwise averaging and differencing ideas
carry over to multiple data dimensions

= Two basic methodologies -- no clear "winner"
- Standard Haar decomposition [Stollnitz et al 96]

- Non-standard Haar decomposition [Chakrabarti
et al 00]

27

Estimating Selectivity

m Range Queries: sel(as= X<= b) = C'[b] - C[a-1]
- C'is the (approximate) "reconstructed” cumulative
distribution
- Time: O(min{b, logN}), where b = size of wavelet
synopsis N= size of domain

b = At most logN+1 coefficients are
needed to reconstruct any C value

Fye

Cl[a]
26
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Sampling

m Basic Idea: A small random sample S of
the data R often well-represents the
entire data

- For a fast approx answer, apply the query to S
& "scale” the result

- Use a small random sample of rows of the
original database table to answer queries
approximately

29

Wavelets: Summary

m Suitable for multi-resolution data analysis

m Experimentally seem to perform better
than histograms

= Multi-dimensional wavelets need to be
studied more

m As with histograms, wavelets as AQP
systems require substantial changes to the
P engine

28
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Sampling: Basics

= Eg., Sisa20% sample
of R

Original Query:
Select count(*) from R where R.a=0
Count = 10

Rewritten Query:

Select 5 * count(*) from S where S.a= 0
Est. count = 5*2 = 10

30




Non-Uniform/Biased Sampling

= Different data sampled at different rates

- E.g., outliers sampled at a higher rate for better accuracy

= Each tuple j is selected for the sample S with some

probability Pj

- If selected, it is added to S along with its scale factor = 1/Pj

Original Query:
Select sum(R.a) from R
from S
where Rb <5
Sum(R.a) = 130

Rewritten Query:
Select sum(S.a * S.sf)

where S.b <5

Sum(S.a*S.sf) = 10*3 + 50*2 = 130

31

Error Estimation

= Unbiased estimation for count, sum, avg queries

- ILe., the expected value of the answer is the actual
answer

= Error in the answer depends on
- Sample size
- Variance in the data

= Error can be estimated with high probability
- Leverage extensive literature on confidence intervals
for sampling

- Actual answer is within the interval [a,b] with a given
probability
+ E.g., 54,000 + 600 with probability > 90

32

Error Estimation

u Let R={yy, Y2, ... Yo} be a set of numbers. Let

sum(R) =Y

u Let S be an uniform sample of size k from R. Let

sum(S) =y

Expected Error = Expected

2
n
Zly-v
@ L nivar
Y

Y’k

= Even confidence intervals can be estimated using
Central Limit Theorem

- E.g., 54,000 + 600 with probability > 95%

33

Online vs. Pre-computed Sampling

= Online:
- Continuous refinement of answers (online aggregation)

- Online sampling is expensive in practice, unless data is
randomly clustered on disk

+ Online Query Processing tutorial [Haas, Hellerstein 01]

m Pre-computed:

- Seeing entire data is very helpful (provably & in practice)

+ (But must construct synopses for a family of queries)
- Offten faster: pre-computed synopses can reside in memory
- Middleware: Can use with any DBMS, no special index

34
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Precomputed Sampling Based
Architecture for AQP

Database

—]

Sample

J Build samples

Rewrite
and

tables

execute

Answers with
error estimates

Offline
(Preprocessing)

Online
(Query Processing)

35

Uniform Random Sampling

= Pre-computation using Bernoulli Sampling
- Expected sample size is f*N, where f is the sampling fraction
- Add each tuple in R to sample S with probability f
- Low overheads, no random data access

= Pre-Computation using Reservoir Sampling [Vitter 85]
- Maintains a sample S of fixed-size f*N

Add each new item to S with appropriate probability

If overfull, evict a random item from S

Instead of flipping a coin for each item, determine the number of items
to skip before the next to be added to S

36
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Advantages/Disadvantages of
Uniform Random Sampling

Advantages
- Simplicity
- Efficient preprocessing

Disadvantages

- Large errors due to
+ Large data variance

+ Low selectivity queries
37

Low Selectivity

Sample
Sample may not contain

even a single row selected
by the query

Query

o

39

Large Data Variance

3 Severe

4 underestimate
2 if outlier not
5 Uniform in sample
104572 1%

5 sample Severe

overestimate if
outlier in sample

38
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Outlier Indexing Scheme

Preprocessing Query
1
R, o)
outliers A

Q & extrapolate

2

R \
sample R,
R NO
NO sample

41

Biased Sampling Techniques:
Outlier Indexing

m Basic Idea [Chaudhuri et al 01]

- Separate the outliers from the rest of
the data into an outlier index

- Keep a uniform random sample of the
data

- Use outlier index as well as random
sample to answer queries

40
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Selection of Outlier Index.

m Select outliers (subject to space restriction) such
that the rest of the relation has least variance.

4l 6. o]

Theorem: Given a sorted set of values the set that reduces
the variation looks like:

[CvidViens Vieor VotV Ve

42




Algorithm Outlier Index

4,6,1,10,7
| sort Outliers = {1,10}
1,4,6,7,10 Var =155
|
o
| Var=2.88 | | Var= 155 | Var=422
43
Discussion

= How to allocate storage between
samples and outlier index?

m Outlier index useful for Sum, Avg
- Not useful for Count, Max, Min

m Global Outliers versus Local Outliers

45

Algorithm Implementation

= Requires a single pass over the
relation.

= Main memory required = 2 * size of
outlier index.

44
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Drawback with Static
Uniform Random Samples

= In practice, queries exhibit locality
= Consequence: sample wastes precious real estate

= Example

- Consider the relation recording sales in all Walmart
outlets across United States

- Ananalyst based in Madison may only be interested in
sales in and around Wisconsin

- Insuch cases, uniformly sampling the relation wastes
space

47

Biased Sampling Techniques:
ICICLES [Ganti et al 00]

= Let W={ql,q2,...}beaquery workload
= Biased sampling scheme exploits data locality
- more focus (i.e., #sample points) in frequently-queried
regions
= Biased sample incrementally maintained and adapts
("self-tune") to changing workload

46
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Locality in Query Workload

Workload W: Q;,...Q,
Wisconsin
W exhibits locality if, say,
Wisconsin and Illinois tuples
are accessed more often Illinois

A query Q follows W if tuples required to answer
Q are accessed more frequently by queries in W

48




Problem

m Given
- Relation R
- Workload W: Qq,...,.Q,
- A fixed amount of space

® Goal: Maintain a “sample 5,(R) of R
tuned w.r.t. W' to improve accuracy
for queries following W

49

Maintaining Icicles

m Current workload W: Q... Q,
m LR U R(Q) U .. U R(Q,)
m Current icicle Sy(R): random sample of L

= New query: Q

= Update Sy,(R) to be the sample of L U* R(Q)
- Reservoir sampling technique to update

m Note: L is not materialized

51

ICICLES

m R(Q): set of tuples in R reguiredto answer Q

m Icicle Syy(R): Random sample of R U*R(Q;)
U+..,...U+ R(Qn)

- Tuples required often are more /ikely to be in Sy,(R)

R
Uniform
R(Qq Random
T —1 —Sample Su(R)

ICICLE

.
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ICICLES: Discussion

= Quality Guarantee :The number of tuples in S,,(R)
iaﬁisfyir\kg/ a query Q is higher (than a static sampré) if Q
ollows

Theorem: If a query Avg(Q) follows the workload W, then
the icicle 5,(R) is expected to yield a better estimate
for Avg(Q) than a static sample

= Queries with different counts have different
errors

= Does not claim optimality

= Does not handle data variance

53

Restricting the Workload

® Maintaining icicles requires queries to be
answered exactly!

m Which queries to include in the workload?
- Tradeoff between precision versus overhead

m Restrict the workload to such queries
- Avoids extra overhead
- Represents the most relevant set of queries

52
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Biased Sampling Techniques:
Congressorial Sampling

= Approximating Group By queries: [Acharya
et al 00]
- Decision support queries routinely segment data
into groups & then aggregate the information
within each group

+ Each table has a set of “grouping columns”: queries
can group by any subset of these columns

® Goal: Maximize the accuracy for all groups
(large or small) in each group-by query

54




N

Congressorial Sampling

m E.g., census DB with state (s), gender(g),
and income (i)
- Q: Avg(i) group-by s : seek good accuracy for
S Sb LA g uproy <t seeks Y
- Q: Avg(i) group-by s,g : seek good accuracy for
3! logglgupsp v I Y

m Congress Algorithm: Considers a “workload”
of dll subsefs of grouping columns, and
attempts to design a sample such that all
groups get equal importance

55

Biased Sampling Techniques:
STRAT

m Generalization of Outlier Indexing,
ICICLES, and Congressorial Sampling

m [Chaudhuri, Das, Narasayya 01]

m Based on stratified sampling

57

Congress: Discussion

m Basically uses a form of stratified
sampling

m Allocation of samples not necessarily
optimal

m Does not consider data variance

56
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STRAT: an algorithm based
on stratified sampling

Ry

/

Different strata sampled at different rates

59

Balancing Errors Across
Multiple Queries

Ry

Rot

m Pay attention to:
- "Hot spots” e.g., R,
- Small regions e.g., R5

58
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Intuition

® Stratification reduces data variance
= Allows “hot spots” in relation to be
given more importance

- Workload provides necessary
information

- Don't take workload literally

60
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Lifting Workload to a
Query Distribution

= Motivation - Resilience to variations in
workload

mLletW={Q, ..
workload

m We assume that W is a sample from a
guery distribution py
m Lifting => deriving py, from W

Qg} be the given

61

Steps in STRAT

m Stratification

- R is partitioned into strata: {Ry, .., R}
m Allocation

- Total of k samples

- Stratum R; contributes k; samples such
that error for‘ lifted wor‘i(load is
minimized

- ke ko= k

63

Modeling Query Distribution

= Probability of Q' > Probability of Q"
= prob(Q|W) = parametric function of Q's overlap with queries in W
- Similar to kernel density estimation (queries in W = “"sample
points")

62
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Allocation Step

= Assume r unknowns: ki, ..., k.
= Express error for llffed workload in terms of unknowns
u For eg., for Mean Squared Error, MSE(pg):

2

n-z n .
Y s-8)e ¥ —r(-y)
Ricky K RER\Ry K
[ 2 on,+ 27"1']
RicRy R,ER\Rg

= Minimize MSE(p,,) subject to kp+k,+..+k.= k

65

Stratification Step

Ry
Rot
R

R Rei(R)

m R, ... Ryare called fundamental
regions

64

T I Nl N R wE| T

2 2
n n
o=0)+ 3 =r(-y)
MSE(p<Q>)~R’gRQ j RicR\R, _,2
[ 2o+ 27"1]
R,cRy R;cR\Ry
Ie
a
MSE AL+ 2+
(p(Q}) K k,
Le

66
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Minimizing MSE(py,)

= Minimize MSE(py,) subject to
kitko+.. k. = k

r
m Using calculus

B
kj—kz\/ﬁj

67

STRAT: Summary

= Formal framework
- Quantify errors for lifted workload
- Frame it as an optimization problem

= Principled, pragmatic solution
- Provide error estimates

m Unifies key ideas from past work

- Weighted sampling, outlier indexing, congressional
sampling

u Lifting workload to query distributions
- Motivation: resilience to variations in workload
68

Dynamic Sample Selection

m Basic Idea [Babcock, Chaudhuri, Das 03]

- Optimal bias differs from query o query

- Past work: carefully select biased sample
to give good answers for many queries

- Instead, pre-compute many samples, and
only use appropriate samples at run time

69

Dynamic Sample Selection

Standard Sampling Dynamic Sample Selection
[@]

] — =
— |5
(]
@
>

2 ﬂ%@?
2 7 3
5 = |5 & g i
> [ o =] @
m > L
— =
&
@]
>
L = |5
| B— -
L]
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Dynamic Sample Selection

= Improved accuracy, no change to query fime
- Query time is the scarce resource
- OK to use extra pre-processing, disk space

<~ Howtopickagoodsefof

———_ . samples?

m Construct many differently-biased samples

u For each query, use the best sample and ignore the
others

= Givenaquery, what's The best >
T ———— sample? ——

7

Small vs. Large Groups

= In a group-by query, small groups are
difficult to approximate

m Small Group Sampling

- A specific example of dynamic sample selection
for handling group by queries

72
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Small Group Sampling

Main idea: Treat small and large groups differently

Large Groups: Use
uniform random sample

= Well-represented in
sample

® Good quality of
approximation

73

Small Group Sampling

Main idea: Treat small and large groups differently

[ ]= Small groups are query-dependent
- Depend on grouping attributes
- Depend on selection predicates

= How do we know which rows to scar
to find the small groups?

75

Small Group Sampling

Main idea: Treat small and large groups differently

Small Groups: Use Original Data

m Contain few records, by definition
= Thus can be scanned very quickly

74
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Pre-Processing Steps

= Create a table containing a
uniform random sample of all data

m For each attribute A in the schema:
- Identify rare values for attribute A

- Create a fable containing all
records with rare A values

- Size of table limited by threshold

smGrps_A

sample_all

mGrps
mGrps

ii
(@]}(ss]

smGrps_D|

w

Finding the Small Groups

m Heuristic idea:
- Most small groups in most queries have a rare value for
at least one grouping attribute

= Small group in this query — rare value in entire
DB

- Not always true (snowblower sales in California)
= Summary of Small Group Sampling:
- Identify rare values during pre-processing

- Store rows with rare values in a different (small) table
for each attribute: the small groups tables

- At query time, scan small groups table for each
grouping attribute

76
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Pre-Processing Steps

= Augment rows in with table
membership information
- Some rows may be added to multiple tables

- One extra bitmask column: which small group tables
contain this row?

- Used to avoid double-counting during query processing

| DATA ]

pd

smGrps

sample all

mGrps
mGrps

ii
O] Of @

mGrps

@

78

13



Answering Queries Using
Small Group Sampling

Values of attribute A

Common Rare
o l—sample_all
o 5 S
> £
2 £
=] Q -~
E © \smGr A
o ps_
(=]
3
=S
s 5 -

T—smGrps_B
79

Dynamic Sample Selection:
Summary

= Dynamic Sample Selection
- Gain accuracy at the cost of disk space.

- Non-uniform samples are good, but different
ones are good for different queries.

- Build lots of different non-uniform samples.
- For each query, pick the best sample.
= Small Group Sampling
- Treat large and small groups differently.
- Uniform sampling works well for large groups.
- Small groups are cheap to scan in their
entirety.

81

Query Answering Example

= Run query on small group table for each grouping attribute
= Run scaled query on

= Combine answers
SELECT A,B,COUNT(*) as cnt

FROM smGrps_A

WHERE C=10

SELECT A,B,COUNT(*) GROUP BY A,B UNION ALL

FROM FACT_TBL SELECT A,B,COUNT(*) as cnt
WHERE C=10 :> FROM smGrps_B

GROUP BY A,B WHERE C=10 AND bitmask & 1 = 0
GROUP BY A,B UNION ALL

SELECT A,B,100 * COUNT(*) as cnt
FROM sample_all

WHERE C=10 AND bitmask & 3 =0
GROUP BY A,B

80
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Sampling over F-K Joins
= Two approaches

- Only pre-sample the fact table, and at
run time join with the dimension tables

- Join synopses, where we pre-sample
from materialized F-K joins

83

Sampling over multi-table
databases

= Sampling over the joins of tables is
difficult [Chaudhuri et al 99]

- Not possible to push the sampling operator
below the join

= However, sampling over foreign-key joins is
ok

- In star schemas, F-K joins represent a
"widening" of the fact table

82
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Join Synopses for F-K
Joins

= Based on sampling from materialized
foreign key joins [Acharya et al 99]

- Typically < 10% added space required

- Yet, can be used to get a uniform sample
of ANY foreign key join

- Plus, fast to incrementally maintain

84




Distinct Value Estimation

m Example of distinct value query

select count(distinct target-attr)
from T
where P

= Uniform Sampling-based approaches
- Collect and store uniform sample. At query time, apply
predicate to sample. Estimate based on a function of the
distribution. Extensive literature.

85

Distinct Value Estimation

m Pessimistic lower bound [Chaudhuri et al
00]

For any p > €7 there exists a relation such that with
probability at least p,

error (d') >

I.e, any estimator must examine (sample) almost
the entire table to guarantee the estimate is
within a factor of 10 with probability > 1/2!

86

"Proof" of Lower Bound

= Consider two distributions, one with all
identical values, and another with x+1
distinct values, of which x are singleton
and the x+1st occurs n-x times

= A small sample will miss the singleton
values with high probability, and hence
cannot distinguish between the two
distributions

87

Example of a DV Estimator

u Let rbe the sample size from 7 tuples
m Let #; I«=i<=r denote the number of distinct
values that occur exactly /times. (Clearly

21;=r)

m Estimator is
n
d'zwf;fﬁr > /i

2<=i<=r

88
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Sampling-Based Distinct Value
Estimation: Summary

m Very difficult to solve using sampling
- Often, some data distribution
information needs to be used for good
results
= One pass hash-based approaches
more successful
- AQP over data streams
- Not topic of this tutorial

89

Sampling for AQP: Summary

m Resilient to high dimensional data

= Easy to give probabilistic error
guarantees

= Can be implemented with minimal
changes to QP

90
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AQP topics not covered in this
tutorial

m Other synopses models for joint
distributions
- Kernel Density models, Bayes Nets
m AQP over data streams
= Beyond aggregations

- How to return approximations to set-
valued results

91
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Conclusions

® Much theoretical advance in AQP
algorithms

m Big gap between algorithms and actual
systems
- future work should focus on this aspect

= But, likely to catch on as data
repositories are ever increasing

93

T

AQP Systems in the Industry

m AQP internally used by query optimizers
for selectivity estimation
m AQP not yet externalized by major vendors

- Although sampling operators are appearing in
commercial DBMS

m Research prototypes, e.g.
- AQP from MSR
- AQUA from Bell Labs

92
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