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Introduction 

� Approximate Query Processing (AQP) 
in Relational Databases 

� Focus on answering Aggregate queries
– Aggregation queries often arise in OLAP 

and Data-Mining for large Databases
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� Answering complex aggregation queries 
over large data warehouses exactly can be 
time consuming

� If approximate answers are acceptable, 
can we answer these queries much faster?
– Along with approximate answers, an estimate 
of the error in the approximation is important

• Confidence Intervals

Motivation for AQP
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Examples of Aggregate 
Queries

�SPJ queries with 
– aggregation operators such as

• Count, Sum, Count(Distinct), Avg

– Group By
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Example
SELECT State, COUNT (*) as ItemCount
FROM SalesData
WHERE ProductID = 5437
GROUP BY State
ORDER BY ItemCount DESC

432

CA

56

TN 235

WY

KY

3425

1065
WA

ItemCountState

Exact Answer Approximate Answer

EstErrorEstItemCountState

50400WY

1001150CA

503400WA

Estimates may have errors

Small groups may be missing
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Quantifying Error

� Consider a simple aggregation query
– Answer is a single number

– Relative error of query Q

� For GROUP-BY query
– Error of query = average error per group

rExactAnswe

erApproxAnswrExactAnswe
QError

−
=)(
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Basic Approach

� Synopsis of data
– Computed online

– Pre-computed

� Rewrite query to run against synopsis

� Give error estimate
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Different Synopses

� Histograms, Wavelets, Samples

� Comparing different methods
– Changes necessary to the SQL engine
– Accuracy and confidence intervals
– Resilience to high dimensional data
– Maintenance over updates 

• not the focus of this talk
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Histograms

� Partition attribute value(s) domain into a 
set of buckets

� Issues:
– How to partition

– What to store for each bucket

– How to estimate an answer using the histogram

� Long history of use for selectivity 
estimation within a query optimizer
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1-D Histograms: Equi-Depth

� Goal: Equal  number of rows per bucket

– B buckets in all

1  2  3 4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

Count in

bucket
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Equi-Depth Histogram 
Construction

� First sort, then taking B-1 equally-spaced 

splits

� Faster construction: Sample, take equally-

spaced splits in sample

– Nearly equal buckets

� Can also use one-pass quantile algorithms
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Answering Queries

� select count(*) from R where 4 <= R.A <= 15

� approximate answer: F * |R|/B, where

– F = number of buckets, including fractions, that overlap 
the range

– error guarantee:  ± 2 * |R|/B

1  2  3 4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

4 ≤ R.A ≤ 15

±  0.5 * |R|/6answer: 3.5 * |R|/6
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Answering Queries
(Implicitly) map the histogram back to an approximate 
relation, apply the query to the approximate relation

1  2   3 4  5  6  7  8  910 11 12 13 14 15 16 17 18 19 20

1  2   3 4  5 6  7 8  9  10 11 12 13 14 15 16 17 18 19 20

Need number

of distinct in

each bucket

3                2            1      2                  3       1

Count spread
evenly among
bucket values

Continuous value mapping

Uniform spread mapping
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1-D Histograms: V-Optimal

� Select buckets to minimize 
frequency variance within buckets 
[Ioannidis, Poosala 95]

� O(B*N^2) time dynamic programming 
algorithm [Jagadish et al, 98]
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Multi-Dimensional Histograms 

� Use small number of  multi-dimensional 
buckets  to directly approximate the joint 
data distribution  

� Uniform spread & frequency  approximation 
within buckets

16

Approximate Distribution

10

20

40

35

90

120

Actual Distribution
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Multi-Dimensional Histogram 
Construction 

� Construction problem is much harder even for two dimensions 
[Muthukrishnan et al 99]

� Multi-dimensional equi-depth histograms
[Muralikrishna, DeWitt 88]

– Fix an ordering of the dimensions A1, A2, . . ., Ak

– Let  a = kth root of desired no. of buckets

– initialize B  =  data distribution

– For i = 1, . . ., k  

• Split each bucket in B into a equi-depth partitions along Ai

– return resulting buckets

� Problems: limited set of bucketizations;  fixed a and fixed 

dimension ordering can result in  poor partitioning
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Multi-Dimensional Histogram 
Construction 

� MHIST  histograms [Poosala, Ioannidis 97]
– At each step

• Choose the bucket b in B  containing  the  attribute 
Ai  whose  marginal  is the most in need of 
partitioning

• Split b along Ai into  p  (e.g., p=2)  buckets

� MHIST chooses bucket/dimension to split based on its  
criticality, thus allows for much  larger class of 
bucketizations (hierarchical space partitioning)

� Experimental results verify superiority over equi-depth

20

Other Multi-Dimensional 
histograms

� GenHist [Gunopulos et al 90]
– Allows for overlapping buckets

� STHoles [Bruno et al 01]
– Workload based

– Considers nested buckets

21

Histograms: Summary

� 1-Dimensional histograms very useful in 
selectivity estimation

� Multi-dimensional histograms suffer from 
the curse of dimensionality
– Model of the joint distribution becomes 

inaccurate as dimensions increase

� Histograms as AQP systems require 
substantial changes to the QP engine

22

Wavelets

� Mathematical tool for hierarchical 
decomposition of functions/signals

� Popular in the speech/signal/image 
processing domains
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One-Dimensional Haar Wavelets 

� Simplest wavelet basis, easy to 
understand and implement 

Resolution           Averages                    Detail Coefficients

[2, 2, 0, 2, 3, 5, 4, 4]

[2,    1,    4,      4] [0, -1, -1, 0]

[1.5,           4] [0.5, 0]

[2.75] [-1.25]

----3

2

1

0

Haar wavelet decomposition: [2.75, -1.25, 0.5, 0, 0, -1, -1, 0]

24

Haar Wavelet Coefficients 
Coefficient “Supports”

2              2  0          2   3           5  4              4

-1.25

2.75

0.5 0

0 -1 0-1

+

-
+

+

+ + +

+

+

- -

- - - -

+

-+

+ -
+ -

+-
+-

-+
+--1

-1

0.5

0

2.75 

-1.25

0

0

� Hierarchical decomposition 
structure (a.k.a. “error tree”)

Original 
data



5

25

Wavelet-based Synopsis

� Key idea: use a compact subset of wavelet 
coefficients [Matias et al 98] 

� Steps
– Compute wavelet transform of cumulative data 
distribution

– Coefficient thresholding :  only b<<|C| coefficients can be 
kept

• Take largest coefficients in absolute normalized value

– Divide coefficients at resolution j by 

– Optimal in overall Mean Squared (L2) Error

• Greedy heuristic methods

– Retain coefficients leading to large error reduction

j
2

26

Estimating Selectivity

� Range Queries: sel(a<= X<= b) = C’[b] - C’[a-1]

– C’ is the (approximate) “reconstructed” cumulative 
distribution

– Time: O(min{b, logN}), where b = size of wavelet 
synopsis N= size of domain

C[a]

� At most logN+1  coefficients are 
needed to reconstruct any C value

27

Multi-Dimensional Haar
Wavelets

� Basic pairwise averaging and differencing ideas 

carry over to multiple data dimensions

� Two basic methodologies -- no clear “winner” 

– Standard Haar decomposition [Stollnitz et al 96]

– Non-standard Haar decomposition [Chakrabarti 

et al 00]
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Wavelets: Summary

� Suitable for multi-resolution data analysis

� Experimentally seem to perform better 
than histograms 

� Multi-dimensional wavelets need to be 
studied more

� As with histograms, wavelets as AQP 
systems require substantial changes to the 
QP engine
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Sampling

� Basic Idea:  A small random sample S of 
the data R often well-represents the 
entire data

– For a fast approx answer, apply the query to S 

& “scale” the result

– Use a small random sample of rows of the 
original database table to answer queries 
approximately

30

Sampling: Basics

� E.g., S is a 20% sample 

of R

1 1 0 1 

1 1 1 1 0 0 0

0 1 1 1 1 1 0 1

1 1 0 1 0 1 1

0 1 1 0

Original Query:
Select count(*) from R where R.a = 0

Count = 10

Rewritten Query:
Select 5 * count(*) from S where S.a = 0

Est. count = 5*2 = 10
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Non-Uniform/Biased Sampling
� Different data sampled at different rates

– E.g., outliers sampled at a higher rate for better accuracy

� Each tuple j is selected for the sample S with some 

probability Pj

– If selected, it is added to S along with its scale factor = 1/Pj

R.a    10  10   10  50  50

Pj ⅓ ⅓ ⅓ ½   ½ 

Sf --- 3   --- --- 2

Original Query: Rewritten Query:
Select sum(R.a) from R Select sum(S.a * S.sf) 
from S
where R.b < 5  where S.b < 5

Sum(R.a) = 130 Sum(S.a*S.sf) = 10*3 + 50*2 = 130
32

Error Estimation

� Unbiased estimation for count, sum, avg queries
– I.e., the expected value of the answer is the actual 

answer

� Error in the answer depends on
– Sample size
– Variance in the data

� Error can be estimated with high probability
– Leverage extensive literature on confidence intervals

for sampling
– Actual answer is within the interval [a,b] with a given 

probability
• E.g.,  54,000 ± 600  with probability ≥ 90
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Error Estimation

� Let R = {y1, y2, …, yn} be a set of numbers. Let 
sum(R) = Y 

� Let S be an uniform sample of size k from R. Let 
sum(S) = y

kY

Varn

Y

Yy
k

n

ExpectedErrorExpected
2

2
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� Even confidence intervals can be estimated using 
Central Limit Theorem
– E.g.,  54,000 ± 600  with probability ≥ 95%
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Online vs. Pre-computed Sampling

� Online:
– Continuous refinement of answers (online aggregation)
– Online sampling is expensive in practice, unless data is 

randomly clustered on disk
• Online Query Processing tutorial [Haas, Hellerstein 01]

� Pre-computed:
– Seeing entire data is very helpful (provably & in practice)

• (But must construct synopses for a family of queries)
– Often faster: pre-computed synopses can reside in memory
– Middleware: Can use with any DBMS, no special index

35

Precomputed Sampling Based 
Architecture for AQP

Incoming 
query

Rewrite 
and 

execute

Answers with 
error estimates

Online
(Query Processing)

Offline
(Preprocessing)Build samples

Sample 
tables

Tables

Database
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Uniform Random Sampling

� Pre-computation using Bernoulli Sampling
– Expected sample size is f*N, where f is the sampling fraction

– Add each tuple in R to sample S with probability f

– Low overheads, no random data access

� Pre-Computation using Reservoir Sampling [Vitter 85]
– Maintains a sample S of fixed-size f*N

– Add each new item to S with appropriate probability 

– If overfull, evict a random item from S

– Instead of flipping a coin for each item, determine the number of items 

to skip before the next to be added to S
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Advantages/Disadvantages of 
Uniform Random Sampling

Advantages
– Simplicity

– Efficient preprocessing

Disadvantages

– Large errors due to
• Large data variance

• Low selectivity queries
38

Large Data Variance

Severe 
overestimate if 
outlier in sample

Uniform 
1% 

sample

Severe 
underestimate 
if outlier not 
in sample

3

4

2

5

104572

5

9

…

39

Low Selectivity

R

Sample

Query

Sample may not contain 
even a single row selected 
by the query
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Biased Sampling Techniques:
Outlier Indexing

� Basic Idea [Chaudhuri et al 01]
– Separate the outliers from the rest of 

the data into an outlier index
– Keep a uniform random sample of the 

data

– Use outlier index as well as random 
sample to answer queries

41

Outlier Indexing Scheme

R

RO

(outliers)

RNO

sample RNO

(sample)

Preprocessing

Q
A1

Q & extrapolate

A2

+ A

Query

42

Selection of Outlier Index.

� Select outliers (subject to space restriction) such 
that the rest of the relation has least variance.

Theorem: Given a sorted set of values the set that reduces 
the variation looks like:

...,vk,vk+1, vk+2,…,vm-1,vm,vm+1,…

1,  4,  6,  7,  10 
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Var = 4.22Var = 1.55Var = 2.88

Algorithm Outlier Index

4, 6, 1, 10, 7

sort

1, 4, 6, 7, 10

Outliers = {1,10}

Var = 1.55

1,  4,  6,  7,  10 

44

Algorithm Implementation

� Requires a single pass over the 
relation.

� Main memory required = 2 * size of 
outlier index.

45

Discussion

� How to allocate storage between 
samples and outlier index?

� Outlier index useful for Sum, Avg
– Not useful for Count, Max, Min

� Global Outliers versus Local Outliers
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Biased Sampling Techniques:
ICICLES [Ganti et al 00]

� Let  W = {q1, q2, . . .} be a query workload 

� Biased sampling scheme exploits data locality  
– more focus  (i.e., #sample points)  in  frequently-queried 

regions

� Biased sample incrementally maintained and adapts 
(“self-tune”) to changing workload
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Drawback with Static 
Uniform Random Samples
� In practice, queries exhibit locality

� Consequence: sample wastes precious real estate

� Example
– Consider the relation recording sales in all Walmart 

outlets across United States

– An analyst based in Madison may only be interested in 
sales in and around Wisconsin

– In such cases, uniformly sampling the relation wastes 
space

48

Locality in Query Workload

R

Wisconsin

Illinois

Workload W: Q1,…,Qn

W exhibits locality if, say,  

Wisconsin and Illinois tuples

are accessed more often

A query Q follows W if tuples required to answer 
Q are accessed more frequently by queries in W
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Problem

� Given
– Relation R

– Workload W: Q1,…,Qn

– A fixed amount of space

� Goal: Maintain a “sample SW(R) of R 
tuned  w.r.t. W” to improve accuracy 
for queries following W

50

ICICLES
� R(Q): set of tuples in R required to answer Q

� Icicle SW(R): Random sample of R U+ R(Q1) 
U+……U+ R(Qn)
– Tuples required often are more likely to be in SW(R)

R

R(Q1)

R(Qn)

Uniform
Random
Sample

ICICLE

SW(R)= L

51

Maintaining Icicles

� Current workload W: Q1,…,Qn

� L: R U+ R(Q1) U+ … U+ R(Qn)

� Current icicle SW(R): random sample of L

� New query: Q

� Update SW(R) to be the sample of L U+ R(Q)

– Reservoir sampling technique to update

� Note: L is not materialized

52

Restricting the Workload

� Maintaining icicles requires queries to be 
answered exactly!

� Which queries to include in the workload?
– Tradeoff between precision versus overhead

� Restrict the workload to such queries
– Avoids extra overhead
– Represents the most relevant set of queries

53

ICICLES: Discussion

� Quality Guarantee :The number of tuples in SW(R)
satisfying a query Q is higher (than a static sample) if Q 
follows W

Theorem: If a query Avg(Q) follows the workload W, then 
the icicle SW(R)  is expected to yield a better estimate 
for Avg(Q) than a static sample

� Queries with different counts have different 
errors

� Does not claim optimality

� Does not handle data variance

54

Biased Sampling Techniques: 
Congressorial Sampling

� Approximating Group By queries: [Acharya
et al 00]
– Decision support queries routinely segment data 

into groups & then aggregate the information 
within each group

• Each table has a set of “grouping columns”: queries 
can group by any subset of these columns

� Goal: Maximize the accuracy for all groups 
(large or small) in each group-by query
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Congressorial Sampling

� E.g., census DB with state (s), gender(g), 
and income (i)
– Q: Avg(i) group-by s : seek good accuracy for 

all 50 states
– Q: Avg(i) group-by s,g : seek good accuracy for 

all 100 groups

� Congress Algorithm: Considers a “workload” 
of all subsets of grouping columns, and 
attempts to design a sample such that all 
groups get equal importance

56

Congress: Discussion

� Basically uses a form of stratified 
sampling

� Allocation of samples not necessarily 
optimal

� Does not consider data variance

57

Biased Sampling Techniques: 
STRAT

� Generalization of Outlier Indexing, 
ICICLES, and Congressorial Sampling

� [Chaudhuri, Das, Narasayya 01]

� Based on stratified sampling

58

Balancing Errors Across 
Multiple Queries

� Pay attention to:
– “Hot spots” e.g., R2

– Small regions e.g., R5

R

RQ1

RQ2

R3

R1 R2

R4 RQ3 R5

59

STRAT: an algorithm based 
on stratified sampling

R

R1

R2

R3

Rr

…

Different strata sampled at different rates

60

Intuition

� Stratification reduces data variance

� Allows “hot spots” in relation to be 
given more importance
– Workload provides necessary 

information

– Don’t take workload literally
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Lifting Workload to a 
Query Distribution

� Motivation – Resilience to variations in 
workload

� Let W = {Q1, …, Qq} be the given 
workload 

� We assume that W is a sample from a 
query distribution pW

� Lifting => deriving pW from W

62

Modeling Query Distribution

� Probability of Q’ > Probability of Q’’

� prob(Q|W) = parametric function of Q’s overlap with queries in W

– Similar to kernel density estimation (queries in W = “sample 
points”)

R

Q
Q’

Q’’

63

Steps in STRAT

� Stratification
– R is partitioned into strata:  {R1, …, Rr}

� Allocation
– Total of k samples

– Stratum Rj contributes kj samples such 
that error for lifted workload is 
minimized

– k1+… kr = k

64

Stratification Step

� R1, … R5 are called fundamental 
regions

R

RQ1

RQ2

R3

R1 R2

R4 RQ3 R5

65

Allocation Step
� Assume r unknowns: k1, …, kr

� Express error for lifted workload in terms of unknowns
� For e.g., for Mean Squared Error, MSE(p{Q}):

� Minimize MSE(pW) subject to k1+k2+…+kr= k
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Minimizing MSE(pW)

� Minimize MSE(pW) subject to 
k1+k2+…kr = k

� Using calculus

















=
∑ j

j

j kk
β

β
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STRAT: Summary

� Formal framework
– Quantify errors for lifted workload
– Frame it as an optimization problem

� Principled, pragmatic solution
– Provide error estimates

� Unifies key ideas from past work
– Weighted sampling, outlier indexing, congressional 

sampling

� Lifting workload to query distributions
– Motivation: resilience to variations in workload
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Dynamic Sample Selection

� Basic Idea [Babcock, Chaudhuri, Das 03]

– Optimal bias differs from query to query

– Past work: carefully select biased sample 
to give good answers for many queries

– Instead, pre-compute many samples, and 
only use appropriate samples at run time

70

Dynamic Sample Selection

D
A

T
A

S
A

M
P

L
E

Standard Sampling

D
A

T
A

S
A

M
P

L
E

S
A

M
P

L
E

S
A

M
P

L
E

S
A

M
P

L
E

Dynamic Sample Selection
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Dynamic Sample Selection

� Construct many differently-biased samples

� For each query, use the best sample and ignore the 
others

Given a query, what’s the best 
sample?

� Improved accuracy, no change to query time

– Query time is the scarce resource

– OK to use extra pre-processing, disk space

How to pick a good set of 
samples?

72

Small vs. Large Groups

� In a group-by query, small groups are 
difficult to approximate

�Small Group Sampling
– A specific example of dynamic sample selection 

for handling group by queries
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Small Group Sampling

Large Groups: Use 
uniform random sample

� Well-represented in 
sample

� Good quality of 
approximation

Main idea: Treat small and large groups differently

74

Small Group Sampling

Small Groups: Use Original Data

� Contain few records, by definition

� Thus can be scanned very quickly

Main idea: Treat small and large groups differently

75

Small Group Sampling

� Small groups are query-dependent
– Depend on grouping attributes
– Depend on selection predicates

� How do we know which rows to scan 
to find the small groups?

Main idea: Treat small and large groups differently

76

Finding the Small Groups

� Heuristic idea:  
– Most small groups in most queries have a rare value for 

at least one grouping attribute

� Small group in this query → rare value in entire 
DB
– Not always true (snowblower sales in California)

� Summary of Small Group Sampling:
– Identify rare values during pre-processing

– Store rows with rare values in a different (small) table 
for each attribute:  the small groups tables

– At query time, scan small groups table for each 
grouping attribute

77

Pre-Processing Steps
� Create a table sample_all containing a 

uniform random sample of all data
� For each attribute A in the schema:

– Identify rare values for attribute A
– Create a table smGrps_A containing all 

records with rare A values
– Size of smGrps_A table limited by threshold

smGrps_B

smGrps_D

smGrps_C

smGrps_A
sample_all

78

Pre-Processing Steps
� Augment rows in sample_all, smGrps_* with table 

membership information
– Some rows may be added to multiple tables
– One extra bitmask column: which small group tables 

contain this row?
– Used to avoid double-counting during query processing

smGrps_B

smGrps_D

smGrps_C

smGrps_A
sample_all

DATA
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smGrps_B

smGrps_A

Answering Queries Using 
Small Group Sampling

Values of attribute A

V
a

lu
e

s 
o

f 
a

tt
ri

b
u

te
 B

Common Rare

C
o

m
m

o
n

R
a

re

sample_all

80

Query Answering Example
� Run query on small group table for each grouping attribute
� Run scaled query on sample_all
� Combine answers

SELECT A,B,COUNT(*) as cnt

FROM smGrps_A
WHERE C=10 

GROUP BY A,B UNION ALL

SELECT A,B,100 * COUNT(*) as cnt

FROM sample_all
WHERE C=10  AND bitmask & 3 = 0

GROUP BY A,B

SELECT A,B,COUNT(*) as cnt

FROM smGrps_B
WHERE C=10 AND bitmask & 1 = 0

GROUP BY A,B UNION ALL

SELECT A,B,COUNT(*)
FROM FACT_TBL

WHERE C=10
GROUP BY A,B

81

Dynamic Sample Selection: 
Summary

� Dynamic Sample Selection
– Gain accuracy at the cost of disk space.
– Non-uniform samples are good, but different 

ones are good for different queries.
– Build lots of different non-uniform samples.
– For each query, pick the best sample.

� Small Group Sampling
– Treat large and small groups differently.
– Uniform sampling works well for large groups.
– Small groups are cheap to scan in their 

entirety.

82

Sampling over multi-table 
databases

� Sampling over the joins of tables is 
difficult [Chaudhuri et al 99]
– Not possible to push the sampling operator 

below the join

� However, sampling over foreign-key joins is 
ok
– In star schemas, F-K joins represent a 

“widening” of the fact table

83

Sampling over F-K Joins

� Two approaches 

– Only pre-sample the fact table, and at 
run time join with the dimension tables

– Join synopses, where we pre-sample 
from materialized F-K joins 

84

Join Synopses for F-K 
Joins

� Based on sampling from materialized 
foreign key joins [Acharya et al 99]

– Typically < 10% added space required

– Yet, can be used to get a uniform sample 
of ANY foreign key join

– Plus, fast to incrementally maintain
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Distinct Value Estimation

� Example of distinct value query

select count(distinct target-attr)
from T
where P

� Uniform Sampling-based approaches
– Collect and store uniform sample.  At query time, apply 

predicate to sample. Estimate based on a function of the 

distribution. Extensive literature.
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Distinct Value Estimation

� Pessimistic lower bound [Chaudhuri et al 
00]

For any p > e-r there exists a relation such that with 
probability at least p, 
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I.e., any estimator must examine (sample) almost 
the entire table to guarantee the estimate is 
within a factor of 10 with  probability > 1/2!
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“Proof” of Lower Bound

� Consider two distributions, one with all 
identical values, and another with x+1 
distinct values, of which x are singleton 
and the  x+1st occurs n-x times

� A small sample will miss the singleton 
values with high probability, and hence 
cannot distinguish between the two 
distributions
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Example of a DV Estimator

� Let r be the sample size from n tuples
� Let fi 1<=i<=r denote the number of distinct 

values that occur exactly i times. (Clearly 
∑fi = r)

� Estimator is

∑
<=<=

+=
ri

iff
r

n
d

2

1'
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Sampling-Based Distinct Value 
Estimation: Summary

� Very difficult to solve using sampling
– Often, some data distribution 

information needs to be used for good 
results

� One pass hash-based approaches 
more successful
– AQP over data streams

– Not topic of this tutorial
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Sampling for AQP: Summary

� Resilient to high dimensional data

� Easy to give probabilistic error 
guarantees

� Can be implemented with minimal 
changes to QP
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AQP topics not covered in this 
tutorial

� Other synopses models for joint 
distributions
– Kernel Density models, Bayes Nets

� AQP over data streams

� Beyond aggregations
– How to return approximations to set-

valued results
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AQP Systems in the Industry

� AQP internally used by query optimizers 
for selectivity estimation

� AQP not yet externalized by major vendors
– Although sampling operators are appearing in 

commercial DBMS

� Research prototypes, e.g.
– AQP from MSR

– AQUA from Bell Labs
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Conclusions

� Much theoretical advance in AQP 
algorithms

� Big gap between algorithms and actual 
systems
– future work should focus on this aspect

� But, likely to catch on as data 
repositories are ever increasing


