
 

Privacy Preservation of Aggregates in Hidden Databases: 
Why and How? 

ABSTRACT 
Many websites provide form-like interfaces which allow users to 
execute search queries on the underlying hidden databases. In 
this paper, we explain the importance of protecting sensitive 
aggregate information of hidden databases from being disclosed 
through individual tuples returned by the search queries. This 
stands in contrast to the traditional privacy problem where 
individual tuples must be protected while ensuring access to 
aggregating information. We propose techniques to thwart bots 
from sampling the hidden database to infer aggregate 
information. We present theoretical analysis and extensive 
experiments to illustrate the effectiveness of our approach. 
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1. INTRODUCTION 
Databases with public web-based search interfaces are 

available for many government, scientific, and health-care 
websites as well as for many commercial sites. Such sites are 
part of the much talked about hidden web and contain a lot of 
valuable information.  These sites provide controlled access to 
their databases through their search interfaces.  

The simplest and most widely prevalent kind of search 
interface over such databases allows users to specify selection 
conditions (point or range queries) on a number of attributes and 
the system returns the tuples that satisfy the selection conditions. 
Sometimes the returned results may be restricted to a few (e.g., 
top-k) tuples, sorted by one or more ranking functions 
predetermined by the hidden web site. To illustrate the scenario 
let us consider the following examples. 
Example 1: An auto dealer’s web form lets a user choose from 
a set of attributes e.g., manufacturer, car type, mileage, age, 
price, engine type, etc. The top-k answers, sorted according to a 

ranking function such as price, are presented to the user, where 
k is a small constant such as 10. 
Example 2: An airline company’s flight search form lets a user 
search for a flight by specifying a set of attributes such as 
departure and destination cities, date, number of stops, carrier, 
and cabin preferences. The top-k flights, sorted according to a 
ranking function such as price, are presented.  

In this paper, our key observation is that there is a large 
class of such websites where individual result tuples from search 
queries are public information and raise no privacy concerns 
(e.g., availability of a specific model of car, schedule for a 
specific flight). However, such sites would like to suppress 
inference of aggregate information. In Example 1, while the 
auto dealer wishes to allow potential car buyers to search its 
database, it would not like to make public information that 
enables competitors to infer its inventory, e.g., that a certain 
popular car has been in short supply at the dealership in recent 
weeks. If the competitors were able to infer such aggregate 
information, then this would allow them to take advantage of the 
low inventory by a multitude of tactics (e.g., stock that vehicle, 
make appropriate adjustments to price).  

Likewise in Example 2, an airline company would not wish 
to reveal information that enables terrorists to predict which 
flights, on what dates, are more likely to be relatively empty. In 
recent hijackings such as 9/11 and Russian aircraft bombing of 
2004, terrorists’ tactics are believed to be to hijack relatively 
empty flights because there would be less resistance from 
occupants. If terrorists are able to infer aggregate information 
such as Friday afternoon flights from Washington DC to Denver 
are emptier than others on average, they could leverage this 
information to plan their attacks. 

Of course, extremely broad aggregate information is usually 
well known and publicly available – e.g., that family sedans are 
more common than sports cars, or that flights are usually empty 
on Christmas Day. It is the inferences of relatively fine-grained 
aggregates as illustrated by the examples above that need to be 
protected against, as the impact of such inference can range 
from being merely disadvantageous to the data publisher to 
posing serious security threats to society at large. Also, 
aggregates collected from human efforts (through domain 
knowledge) do not provide any form of statistical guarantees, 
which may be particularly relevant for fine-grained aggregates. 

It is important to recognize that our scenario of Privacy 
Preservation of Aggregates is in sharp contrast to the 
traditional privacy scenarios, where the individual information 
needs to be protected against disclosure but aggregate 
information that does not lead to inference to an individual’s 
information is considered acceptable disclosure. To our best 
knowledge, this form of data privacy is novel and has not been 
explored by researchers. 

The goal of this paper is to propose techniques that can 
enable the owner of a hidden database to guarantee the privacy 
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of aggregate information without compromising the utility of 
search queries submitted through the front-end search interfaces. 

Because most interfaces only allow a limited number of 
search results to be returned, and do not allow aggregate queries 
(e.g., a query such as “SELECT COUNT(*) FROM D where 
<selection-condition>”) to be directly executed, it may seem that 
aggregate information is already adequately protected from bots 
or malicious users, as they would have to execute an inordinate 
number of search queries to collect enough returned tuples to 
aggregate at their end. However, in our recent works [DDM07, 
DZD09], we have studied how an external application can 
leverage the public interface of a hidden database to draw high 
quality uniform random samples of the underlying data, which 
can then be used to approximately infer fine-grained aggregates. 
As the size of the samples collected increases, the estimation of 
aggregates becomes more robust. In particular, we proposed two 
samplers that can be used against a wide variety of existing 
hidden databases: HIDDEN-DB-SAMPLER [DDM07] and 
HYBRID-SAMPLER [DZD09]. These approaches can be very 
effective, as in many cases, approximate aggregates can provide 
the critical insights into the data. These samplers obtain samples 
from the restrictive interface provided by hidden databases in an 
efficient manner by optimizing the number of queries posed to 
the database. Thus, our main challenge is to develop techniques 
to thwart such sampling attacks.  
Technical Challenge: Given a hidden database, develop 
techniques that make it very difficult to obtain uniform random 
samples of the database via its search interface without 
necessitating human intervention.  

Note that if we were to accept a “human in the loop”, then a 
seemingly simple solution is to embed into the search interface a 
human-readable machine-unrecognizable image called 
CAPTCHA [EDHS07], and to require each user to provide a 
correct CAPTCHA solution before executing every search 
query. This strategy is used in a number of real-world websites1. 
Nonetheless, a key limitation of this approach is that it 
eliminates the possibility of any automated access, including 
legitimate ones such as third-party web services, over the hidden 
database. Such limitation is becoming increasingly problematic 
with the growing popularity mash-up web applications. 

Thus, we aspire to develop techniques that allow search 
queries issued by bona fide users, both human as well as third-
party web applications, but at the same time make it very 
difficult for adversaries including automated bots by forcing 
them to execute an inordinate number of search queries before 
they can obtain a small random sample of the database.  

While there has been significant recent work in the areas of 
privacy preserving data mining [AS00, CKV+03, ZZ07], data 
publishing [Swe02], OLAP [AST05], and information sharing 
[AES03], these techniques are inadequate for our purposes. 
Unlike our scenario, these techniques are appropriate where the 
privacy of the individual needs to be preserved - e.g., in a 
medical database, it is acceptable to reveal that the number of 
HIV patients is 30% more than cancer patients, but not 
acceptable to reveal that a particular patient has HIV. Tuplewise 
privacy preservation techniques such as encryption [AES03], 
data perturbation [AS00] and generalization methods [Swe02] 
cannot be used in our framework either as obfuscating 
individual data tuples is not an option since tuples need to be 
made visible to normal search users. The well-studied online 
query auditing [NMK+06], which answers or denies a query 
based on the user’s query history, is also not applicable in our 

                                                                    
1 e.g., http://www.seatcounter.com/ 

scenario as these websites provide public interfaces and cannot 
monitor individual users’ history of past queries. 
Our Approach: In this paper we present novel techniques for 
protecting aggregates over hidden databases. We propose a 
privacy-preserving algorithm called COUNTER-SAMPLER, 
which can be used to defend against all possible sampling 
attacks. The key idea used in COUNTER-SAMPLER is to insert 
into the hidden database a small number of carefully constructed 
dummies tuples, i.e., tuples that do not exist in the original 
hidden database but are composed of legitimate attribute values.  

The reasons why dummy tuples can be effective at 
defending against sampling attacks are subtle - we defer a 
detailed discussion for later in the paper, but provide brief 
intuition here. Our approach builds on the observation that all 
existing sampling attacks retrieve uniform random sample from 
tuples returned by queries that select at most k tuples each 
(where k is a small constant such as 10 or 100), because 
otherwise the search on the hidden database will return only the 
top-k tuples sorted by ranking functions unknown to the 
sampler, and hence cannot be assumed to be random. In other 
words, we target a common characteristic of samplers to find 
“valid” search queries that neither “overflow” (i.e., do not have 
broad conditions that select more than k tuples) nor “underflow” 
(i.e., do not have narrow conditions that select no tuple). Thus, 
the key idea of COUNTER-SAMPLER is to carefully construct 
and insert dummy tuples into the database such that most valid 
(and some underflowing) queries are converted to overflowing 
queries, thus significantly decreasing the proportion of valid 
queries within the space of all possible search queries. As a 
result, any sampler which generates samples from valid queries 
has to execute a huge number of queries before it encounters 
enough valid queries be able to generate a uniform random 
sample. 

Of course, the presence of dummy tuples presents an 
inconvenience to normal search users or applications, which 
have to now distinguish the real tuples from the dummy tuples 
in the returned results of any search query. How to distinguish 
dummy tuples from real tuples is discussed later in the paper. 
Nevertheless, to reduce such inconveniences, our objective is to 
minimize the number of inserted dummy tuples while providing 
the desired privacy guarantees. Our analytical as well as 
experimental results show that only a small number of dummy 
tuples are usually inserted by COUNTER-SAMPLER to provide 
adequate privacy guarantees. 
Summary of Contributions:  
• We define the novel problem of Privacy Preservation of 

Aggregates in Hidden Databases.  
• We develop COUNTER-SAMPLER, a privacy-preserving 

algorithm that inserts dummy tuples to prevent the efficient 
sampling of hidden databases. 

• We provide theoretical analysis on the privacy guarantee for 
sensitive aggregates provided by COUNTER-SAMPLER. 

• We describe a comprehensive set of experiments that 
demonstrate the effectiveness of COUNTER-SAMPLER. 
Although it is universally effective against all possible 
sampling attacks, we demonstrate its effectiveness against 
the state-of-the-art sampling algorithms, HIDDEN-DB-
SAMPLER [DDM07] and HYBRID-SAMPLER [DZD09]. 
The rest of this paper is organized as follows. We introduce 

preliminaries notions in Section 2, the basic ideas behind 
COUNTER-SAMPLER in Section 3, the actual algorithm and 
analysis in Section 4, case studies against existing attacks in 
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Section 5, experimental results in Section 5, related work in 
Section 6 and final remarks in Section 7. 

2. PRELIMINARIES 
2.1 Hidden Databases 

In most of this paper, we restrict discussions to categorical 
data – we discuss extensions to numerical data in Section 4.5. 
Consider a hidden database table D with m tuples t1,…,tm on N 
attributes a1,…,aN. The table is only accessible through a web-
based interface where users can issue queries that specify values 
for a subset of the attributes, say a1, …, an. We refer to such 
queries as the search queries, which are of the form: QS: SELECT 
* FROM D WHERE ac1 = vc1 AND ··· AND acu = vcu, where vc1,…,vcu 
are from the domains of ac1,…,acu  ∈ { a1, …, an}, respectively. 

Let Sel(QS) be the set of tuples in D that satisfy QS. As is 
common with most web interfaces, we assume that the query 
interface is restricted to only return up to k tuples, where k << m 
is a pre-determined small constant. If the query is too broad (i.e., 
|Sel(QS)| > k), only the top-k tuples in Sel(QS) will be selected 
according to a ranking function, and returned as the query result. 
The interface will also notify the user that there is an overflow. 
At the other extreme, if the query is too specific and returns no 
tuple, we say that an underflow occurs. If there is neither an 
overflow nor an underflow, we have a valid query result. 

In this paper, we assume that the interface does not allow a 
user to “scroll through” the complete answer Sel(QS) when an 
overflow occurs. We argue that this is a reasonable assumption 
because many real-world top-k interfaces only allow a limited 
number of “page turns”. Google, for example, only allows 100 
page turns (10 results per page) per query. This essentially 
makes Google a top-1000 interface in our model. 

2.2 Privacy Requirements 
Consider aggregate queries of the form: SELECT AGGR(*) 
FROM D WHERE ac1=vc1 AND···AND acu = vcu, where AGGR(·) is 
an aggregate function such as COUNT, SUM, etc, and vc1, …, 
vcu are from the domains of ac1, …, acu, respectively. Let 
Res(QA) be the result of such an aggregate query. As discussed 
Section 1, due to privacy concerns the owner of a hidden 
database may consider certain aggregate queries to be sensitive 
and would not willingly disclose their results. 

To quantify privacy protection, we first define the notion of 
disclosure. Similar to the privacy models for individual data 
tuples [NMK+06], we can define the exact and partial 
disclosure of aggregates. Exact disclosure occurs when a user 
learns the exact answer to an aggregate query. Exact disclosure 
is a special case of partial disclosure; the latter occurs when 
there is a significant change between a user’s prior and posterior 
confidence about the range of a sensitive query answer. 

In this paper we consider the (broader) partial disclosure 
notion because approximate answers are often adequate for 
aggregate queries. Carrying the same spirit in the privacy-game 
notion for individual data tuples [KMN05], we define the 
following (ε, δ)-privacy game between a user and the hidden 
database owner for a sensitive aggregate query QA: 
1. The owner chooses its defensive scheme. 
2. The user issues search queries and analyzes their results to 

try and estimate Res(QA). 
3. The user wins if ∃x such that the user has confidence > δ 

that Res(QA)  ∈ [x, x+ε]. Otherwise, the user loses. 
Based on the (ε, δ)-game notion, we define the privacy 

requirement for a hidden database as follows: 

Definition 2.1: We say that a defensive scheme achieves (ε, δ, 
p)-privacy guarantee for QA iff for any user, Pr{A wins (ε, δ)-
privacy game for QA} ≤ p. 

The probability is taken over the (possible) randomness in 
both the defensive scheme and the attacking strategy. Note that 
if a defensive scheme achieves (ε, δ, p)-privacy guarantee, then 
no user can win a (ε0, δ0)-privacy game with probability of p0 if 
ε0 ≤ ε, δ0 ≥δ, and p0 ≥ p. Thus, the greater ε or the smaller δ and 
p are, the more protection a (ε, δ, p)-privacy guarantee provides. 

2.3 Attack: Cost and Strategies 
A user cannot directly execute aggregate queries. Instead, it 

must issue search queries and infer sensitive aggregates from the 
returned results. There may be an access fee for search queries 
over a proprietary hidden database. Even for hidden databases 
with publicly available interfaces, the server usually limits the 
number of queries a user can issue before blocking the user’s 
account or IP address (e.g., Google SOAP Search API enforces 
a limit of 1,000 queries per day [Google08]). Thus, we define 
the attacking-cost limit umax as the maximum number of search 
queries that a user can issue. Such limits make it unrealistic for 
an attacker to completely crawl a large hidden database. 
However, as recent research [DDM07, DZD09] has shown, such 
databases are vulnerable to sampling attacks, which are based on 
the generation of uniform random samples (with replacement) 
from the database and the approximate estimation of sensitive 
aggregates from the samples.  

2.4 Defense: Dummy Insertion 
We study the strategy of inserting dummy tuples to defend 

against sampling attacks. To enable a bona fide search user to 
distinguish real tuples from dummies, we propose to accompany 
each returned tuple with a CAPTCHA flag indicating whether it 
is real or dummy. Unlike the CAPTCHA challenge discussed in 
Section 1, our scheme applies to a large class of third-party 
applications such as meta-search engines2. In particular, a meta-
search engine queries several hidden databases based on a 
search condition specified by an end-user, and then returns the 
union of all returned tuples after (re-)sorting or filtering. In the 
process, it treats all tuples in the same manner regardless of real 
or dummy. The engine does not parse any CAPTCHA itself, and 
instead simply forwards the tuples with the CAPTCHA flags 
they receive from the hidden database to end-users. 

An important note of caution is that the attribute values of a 
dummy tuple may allow an adversary to identify it as a dummy, 
essentially incapacitating the CAPTCHA flag. In particular, an 
adversary may identify a dummy tuple by checking whether its 
attribute values violate constraints obtained by the adversary 
through external knowledge (e.g., that the airline in Example 2 
does not operate any flight out of Seattle, WA). A solution to 
this problem requires the proper modeling of external 
knowledge, which we will leave as an open problem.  In this 
paper, we assume that there exists a dummy-generating oracle 
DUMMY-ORACLE(m0, C) which generates dummy tuples that 
(1) satisfy the search condition C, and (2) cannot be identified as 
a dummy by the adversary. The oracle terminates when either no 
more tuples satisfying the above conditions can be generated, or 
m0 dummy tuples have been generated, whichever occurs first. 

2.5 Problem Definition 
The objective of defense is to protect sensitive aggregates 

while maintaining the utility of search queries to normal users. 
                                                                    

2  e.g., http://www.kayak.com/ 
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We measure the (loss of) utility by the number of inserted 
dummy tuples: more dummy tuples increases inconvenience for 
normal users and hence reduces utility3. The problem studied for 
the remainder of this paper is formally defined as follows: 
Problem: Given the attacking-cost limit and a set of sensitive 
aggregate queries, the objective of dummy insertion is to 
achieve (ε, δ, p)-guarantee for each aggregate query while 
minimizing the number of inserted dummy tuples. 

3. SAMPLING ATTACK AND DEFENSE 
In this section, we develop the main intuitive ideas behind 

COUNTER-SAMPLER, our algorithm for defense against all 
possible sampling attacks. The actual algorithm and its analysis 
are presented later in Section 4. For simplicity, in this section we 
shall consider Boolean databases (extensions for categorical and 
other non-Boolean databases will be discussed later in Section 
4). We assume the actual number of tuples m is much smaller 
than the space of possible tuples, which is at least 2n. We shall 
frequently refer to the two running examples in Table 1: 
Example A: A Boolean database with m unique tuples on n 
attributes. Only one tuple t1 = <0,…, 0,1> satisfies a1=a2=0. 
Example B: A Boolean database with m = 2l unique tuples on n 
attributes. All tuples satisfy a1 = ··· = an–l = 0. 

Table 1. Examples 
a1 a2 a3 ··· an–1 an  a1 ··· an–l ··· an 
0 0 0 ··· 0 1  0 ··· 0 ··· 1 

1 0 0 ··· 1 1  0 ··· 0 ··· 0 

··· ··· ··· ··· ··· ···  ··· ··· ··· ··· ··· 

0 1 1 ··· 0 0  0 ··· 0 ··· 1 

Example A Example B 

3.1 A Common Characteristic of Sampling 
Algorithms 

We begin by finding a common characteristic for all existing 
sampling attacks. Recall that a search query has three possible 
outcomes: overflow, valid, underflow. A common characteristic 
for all existing samplers [DDM07, DZD09] is: to obtain a 
uniform random sample tuple t, a sampler must have discovered 
at least one valid search query that contains t in its result. The 
reason for this property is that sample tuples are only retrieved 
from results of valid queries: An underflowing query of course 
does not return any tuple. And even though an overflowing 
query returns k tuples, these are the top-k tuples preferentially 
selected by a ranking function, and hence cannot be assumed to 
be random. We focus on defending against sampling algorithms 
with this property in the paper. 

It is also worth noting a restriction on how valid queries can 
be discovered: they cannot be constructed using tuples returned 
by overflowing queries. Without this restriction, a trivial way to 
generate a valid query is to issue SELECT * FROM D, pick one 
of the k returned tuples, and construct an n-predicate query from 
it. Such valid queries are useless for sampling due to the same 
reason why overflowing queries cannot be used: The returned 
tuples are not randomly but preferentially selected by some 
ranking function.  

                                                                    
3 Admittedly, this is a simplified measure because a dummy tuple in a 

frequently issued search query might introduce more inconvenience 
than one that is rarely retrieved. We propose to study such query-
distribution-based utility measures in the future. 

3.2 Single-Sample Attack and Defense 
We start with a simple version: how a sampler can obtain 

one uniform random sample tuple by finding one valid query, 
and how to defend against such single-sample attacks by forcing 
a sampler to issue a large number of queries. There are two 
important concepts related to the space of search queries used in 
this subsection: the universal space Ω and the active space Θ. 
The universal space Ω is the set of all possible search queries. 
The active space Θ will be defined during the discussion later, 
but intuitively, at any point during the search for a valid query, 
Θ is a subset of Ω containing only those queries that are 
candidates for issuing at a subsequent time. That is, after a 
sampler receives a query answer, it removes from Θ all queries 
which it determines should never be issued later. 

3.2.1 How to Find a Single Valid Query 
Consider the task of finding one valid query. A naïve sampler 
may randomly choose a query from Ω, submit it through the 
interface, and retry if the query returns not valid. However, this 
is extremely inefficient: Each tuple may be retrieved by (at 
most) nC0 + nC1 + ··· + nCn = 2n queries, where nCi is the number 
of i-predicate queries that retrieve the tuple4. On the other hand, 
the universal space Ω contains 3n unique queries because each 
attribute ai has three possibilities in the query specification (i.e., 
ai = 0, ai = 1, or not specified). Thus, the probability of picking a 
valid query is at most m ⋅ (2/3)n, which is extremely small when 
n is large. Thus, such a naïve sampler may need to issue a very 
large number of queries before it encounters a valid query. 

Due to the low percentage of valid queries in Ω, in order to 
find a valid query without incurring a high query cost, any 
reasonable sampler should not blindly guess the next query to 
issue. Instead, it should adopt a “smarter” strategy to reduce the 
active space of candidate queries based on the previously 
received query answers and improve efficiency. 

In what follows we investigate the characteristics of such 
smart samplers that attempt to reduce the active space of 
candidate queries. We first describe examples that illustrate the 
various ways in which Θ can be shrunk. We then follow with a 
more general quantification of the amount of shrinkage possible 
by receiving answers to any arbitrary search query. 
Examples of Active Space Shrinkage: As a sampler issues 
queries and receives their answers, it is able to shrink the active 
space Θ. For example, let the first query issued be Q1: SELECT 
* FROM D WHERE a1 = 1. We discuss the three possible 
outcomes of Q1: underflow, overflow, and valid, respectively: 
Case 1: Q1 underflows: In this case the size of Θ decreases to 
3n–1 because 
• Since Q1 underflows, any query with predicate a1 = 1 will 

underflow. Thus, all such queries can be removed from Θ. 
• Any query with predicate a1=0 can also be removed because 

it will remain the same after removing predicate a1 = 0. That 
is, it can be reduced to another query in the remaining Θ. 

• Thus, Θ contains only 3n–1 queries with no predicate of a1. 
Case 2: Q1 overflows: Any smart sampler can first remove from 
Θ two queries, Q1, and SELECT * FROM D, because they both 
will overflow. Furthermore, since Q1 overflows, at least k + 1 
queries with predicate a1 = 1 are valid. Since the sampler only 
aims to find one valid query, it may choose to remove from Θ 
all queries except those with predicate a1 = 1. After doing so, the 
size of Θ becomes 3n–1. 

                                                                    
4 The reason is that once the i (out of n) attributes are chosen, their 

values in the search condition are determined by the tuple’s values. 



 

 5 

Case 3: Q1 is valid: The sampler concludes the search for a valid 
query. The new size of Θ is shrunk to 1. 

As we can see, no matter whether Q1 underflows, overflows, 
or returns valid answers, it always shrinks Θ and thereby 
reduces the query cost for obtaining one valid query. The formal 
definition of Θ is as follows: 
Definition 3.1 (Active Space): The active space Θ is the 
minimum subset of Ω for which there exists a previously issued 
overflowing query Q such that every query Q´ ∈ Ω which 
contains all predicates of Q can be inferred from the previously 
received query answers and the answer to a query in Θ. 
Quantifying Active Space Shrinkage: We now generalize the 
above observations and derive the amount of shrinkage possible 
by any arbitrary query Qc containing c Boolean predicates: 
• An underflowing Qc can remove from Θ as many as (c + 

1)⋅3n–c queries consisting of two disjoint sets: (1) at most 3n–c 
queries each of which includes all predicates of Qc, as these 
queries always underflow, and (2) at most c⋅3n–c queries 
each of which includes c – 1 predicates of Qc and the 
complement of the remaining predicate of Qc, because such 
a query is equivalent to a corresponding query (that is 
retained in Θ) with the last predicate removed. 

• An overflowing Qc may lead to an active space only 
containing queries with all of Qc’s predicates, as it is 
guaranteed to contain at least one valid query. Thus, Θ may 
shrink to size as small as ≈ |Θ|/3c

. Note that when c is large, 
such reduction of Θ is usually much more significant than 
that with an underflowing query. 

• A valid query Qc concludes the search for the current valid 
query and shrinks Θ to size 1. 

Key Observations: Based on the above discussion, we make 
two key observations on single-sample attack characteristics: 
• Shrinking Θ significantly reduces sampling query cost. Thus 

any smart sampler should attempt to issue queries that 
maximize the shrinkage of Θ. 

• In particular, valid queries as well as long overflowing 
queries contribute the most to shrinking Θ and thereby lead 
to the most reduction in the cost of sampling. Here “long” 
refers to queries having many predicates. Thus a smart 
sampler should attempt to issue these types of queries as 
often as possible. 

3.2.2 Neighbor Insertion: Defense against Single-
Sample Attacks 

To defend against single-sample attacks, we introduce a 
strategy called Neighbor Insertion based on the attacking 
characteristics discussed above. Recall from Section 1 that we 
cannot change/remove existing tuples, as this will pose a severe 
adverse impact to normal search users. Instead, we propose to 
insert dummy tuples into the database in such a way that valid 
and/or underflowing queries get converted into overflowing 
ones, thus making the task of finding a valid query by a sampler 
difficult (note that with the insertion of dummy tuples, 
overflowing queries will continue to overflow). 

Recall from the key observations above that an efficient 
single-sample attack relies on two types of queries: valid queries 
and long overflowing queries. These two types form the main 
threat to defense. Fortunately, long queries (both overflowing as 
well as valid) are usually difficult for a sampler to find even 
before dummy insertion: within the (2c ⋅ nCc) c-predicate queries 
in Ω, the total number of valid and overflowing queries is at 

most m⋅ nCc; thus the probability of choosing one is no more 
than m/2c, which is extremely small when c is large5. This 
inherent difficulty of finding long valid/overflowing queries 
leaves us with short valid queries as being the most dangerous 
threat to the defense. Thus, our objective of dummy tuples 
insertion is to convert short valid queries into short overflowing 
queries; the latter are orders of magnitude less effective in 
shrinking Θ (recall that a c-predicate overflowing query Qc 
reduces Θ to approximately |Θ|/3c). 

To convert short valid queries to short overflowing queries, 
our basic idea is to insert dummy tuples into the “neighboring 
zone” of real tuples (i.e., sharing the same values on a large 
number of attributes). In Example A, <0,…,0,0> is a neighbor of 
t1 = <0, …,0,1>, and may be added as a dummy tuple to 
overflow an originally valid query SELECT * FROM D 
WHERE a1=0 AND a2=0 when k = 1. In our algorithm, we 
choose to add dummy tuples such that all valid queries with 
fewer than b predicates will overflow, where b is a parameter. 
We refer to such a method as b-neighbor insertion. The detailed 
algorithm and analysis will be provided in Section 4. 

3.3 Multi-Sample Attack and Defense 
Having discussed the simple single-sample cases, we now 

consider practical cases where a sampler must obtain multiple 
uniform random sample tuples. We will point out the key 
differences between the two cases, and present an additional 
strategy called high-level packing to defend against all possible 
multi-sample attacks. 

3.3.1 How to Find Multiple Valid Queries 
Recall from Section 3.1 that obtaining multiple sample 

tuples may require the sampler to find multiple valid queries. To 
do so, a sampler can always invoke a single-sample attack for 
multiple rounds by resetting Θ to Ω at the end of each round. 
For such samplers, our neighbor insertion technique discussed 
above would provide adequate defense. However, such samplers 
are hardly optimal - they are essentially memory-less and use no 
information from queries answered in the previous rounds. In 
what follows, we investigate the characteristics of “smart” 
samplers that can take advantage of historic queries in multi-
sample attacks, and then describe additional defense techniques 
to counter such attacks. 

Recall two important concepts: the universal space Ω and 
the active space Θ. For multi-sample cases, we further 
distinguish between two types of active spaces, the essential 
space ΘE and the focused space ΘF. They will be formally 
defined later in the discussion, but intuitively, ΘE is a subset of 
Ω that excludes all queries the sampler knows will not be issued 
during the entire search process, while ΘF is a subset of ΘE that 
further excludes all queries the sampler knows should not be 
issued during the search for the current valid query. For single-
sample attacks, Θ=ΘE=ΘF. However, for multi-sample attack, 
ΘE excludes queries based on historic information that a sampler 
is able to carry over to future rounds.  
Examples Comparing with Single-Sample Attacks: Consider 
again Q1: SELECT * FROM D WHERE a1 = 1. The 
consequence of an underflowing Q1 is similar to the single-
sample case. All queries removed from Θ in that case can be 
simultaneously removed from ΘE and ΘF. However, there are 
two important differences in the aftermath of valid and 
overflowing queries: 

                                                                    
5 Esp. when the size of the database is much smaller than the space of all 

possible tuple values (m << 2n). This is usually the case in practice. 
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First, a valid Q1 shrinks ΘE for the subsequent search of 
valid queries, but not to the size of 1 (as was the case with Θ for 
the single-sample case). In particular, the size of ΘE will 
decrease to 3n–1 due to the following reasons: 
• All queries with predicate a1 = 1 can be removed from ΘE 

because their answers can be inferred from the returned 
tuple of Q1 (by matching them with all predicates). 

• All queries Q without predicate of a1 can also be removed 
from ΘE because the answer to such a query is a union of (1) 
the tuple in Q1 that match all predicates of Q, and (2) the 
answer to Q' which is the same as Q except having an 
additional predicate a1=0. (i.e., Q can be reduced to Q'). 

• Thus, the essential space ΘE contains only queries with 
predicate a1 = 0. Similar to the discussion in Section 3.2.1 
for overflowing queries, there are 3n–1 such queries. 
Second, with an overflowing Q1, the distinction between ΘE 

and ΘF becomes necessary. Recall that in a single-sample case, 
two types of queries are removed from Θ: The first type has two 
queries, Q1 and SELECT * FROM D, which always overflow. 
These can be removed from both ΘE and ΘF in multi-sample 
attacks. The second type contains all queries without predicate 
a1 = 1, because the sampler chooses to focus on queries with this 
predicate. These queries can be removed from ΘF as they should 
never be issued during the search for the current valid query. 
However, they cannot be removed from ΘE if the sampler needs 
to find more valid queries than the two guaranteed in ΘF.  

Formally, we have the following definition of ΘE: 
Definition 3.2 (Essential Space): The essential space ΘE is the 
minimum subset of Ω such that for every query Q ∈ Ω, there 
exists Q´ ∈ ΘE such that the answer to Q can be inferred from 
the answer to Q´ and the previously received query answers. 

That is, a query should be excluded from ΘE iff (1) its 
answer can be inferred from the previously received query 
answers, or (2) it can be reduced to another query in the new ΘE. 
Such a query never needs to be issued. Thus, the size of ΘE 
decreases monotonically over time. Based on the definition of 
ΘE, the formal definition of ΘF is as follows: 
Definition 3.3 (Focused Space): The focused space ΘF is the 
minimum subset of ΘE for which there exists a previously issued 
overflowing query Q satisfying the next drawn sample tuple, 
such that ΘF includes every query Q´ ∈ ΘE which contains all 
predicates of Q. 

The focused space ΘF only contains queries in ΘE that the 
sampler chooses to focus on for finding the current valid query. 
A query in ΘE\ΘF may be issued to find other valid queries in 
the future. In particular, to generate uniform random samples, 
ΘF decreases monotonically during the process of finding each 
valid query, but must be reset to ΘE to find the next valid query.  
Quantifying Shrinkage of ΘE and ΘF: We again generalize 
the results to any c-predicate search query Qc: 
• An underflowing Qc has similar consequence as the single-

sample case: up to (c+1)⋅3n–c queries should be removed 
from both ΘE and ΘF. 

• An overflowing Qc removes from ΘE as many as 2c queries 
which are formed by a subset of the predicates of Qc because 
they all overflow. In addition, Qc leads to a focused space 
ΘF consisting of queries with all of Qc’s predicates. The size 
of ΘF can be as small as |ΘE|/3c. 

• A valid query Qc concludes the search for the current valid 
query. Similar to the underflowing case, it also removes 
from ΘE as many as (c+1)⋅3n–c queries. 

Key Observations: Based on the above discussions, we make 
two key observations on the characteristics of multi-sample 
attacks: 
• For multi-sample attacks, shrinking ΘE contributes more to 

the efficiency of sampling than shrinking ΘF, because the 
shrinkage of ΘE accelerates the process of finding all 
remaining valid queries while the shrinkage of ΘF only 
accelerates the search for the current valid query. 

• In particular, short underflowing queries become a major 
threat to defense because each of them may remove from the 
“critical” ΘE as many as (c+1)⋅3n–c queries, which is much 
more than the reduction of 2c queries by an overflowing 
query. Thus, a smart multi-sample attacker should attempt to 
issue these types of queries as often as possible. 

3.3.2 High-Level Packing: Defense against Multi-
Sample Attacks 

We introduce another dummy insertion defensive strategy 
called High-Level Packing based on the attacking 
characteristics discussed above. The objective here is to address 
the new threat from short underflowing queries. We do so by 
converting such queries into short overflowing queries which are 
much less effective for shrinking ΘE. With such conversion, the 
reduction in the size of ΘE may be lessened by orders of 
magnitude, from (c+1)⋅3n–c to 2c (e.g., from 8.6×107 to 32 when 
n=20 and c=5). Although the converted short overflowing query 
also sets ΘF to size |ΘE|/3c, the impact of ΘF only lasts during the 
search for the current valid query. 

To convert short underflowing queries to overflowing ones, 
we need to “pack” such queries with dummy tuples. In Example 
B, when k = 1, <1,0,…,0> and <1,0,…,1> may be added as 
dummy tuples to overflow an originally underflowing query 
SELECT * FROM D WHERE a1 = 1. More generally, in our 
algorithm we choose to add dummy tuples such that all 
underflowing queries with fewer than d predicates will 
overflow, where d is a parameter. We refer to such a method as 
d-level packing. 

In our COUNTER-SAMPLER algorithm, high-level 
packing is used alongside neighbor insertion to defend against 
all multi-sample attacks. The detailed algorithm and analysis are 
provided in the next section. 

4. COUNTER-SAMPLER 
In this section, we present the detailed algorithm of 

COUNTER-SAMPLER and analyze its performance. 
 

4.1 Algorithm COUNTER-SAMPLER 
Algorithm COUNTER-SAMPLER consists of two steps: d-

level packing (Lines 1-6) and b-neighbor insertion (Lines 7-15). 
The subroutine DUMMY-ORACLE was discussed in Section 
2.4. Lines 1-6 ensure that no (d–1)-predicate (or shorter) query 
will underflow, while Lines 7-15 ensure that no (b–1)-predicate 
(or shorter) query will be valid. Thus, Algorithm COUNTER-
SAMPLER achieves d-level packing and b-neighbor insertion.  

Note that while COUNTER-SAMPLER does not require the 
hidden database D to be Boolean, for ease of discussion our 
following analysis will be restricted to Boolean databases. We 
will discuss categorical and numerical databases in Section 4.5. 
Also, for this moment, we assume b and d are parameters set by 
the hidden database owner.  How they should be determined will 
be discussed in Section 4.2. 
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4.2 Privacy Guarantee 
To provide a privacy guarantee against any sampler that 

aims to draw uniform random samples from the hidden database, 
we will first prove a lower bound on the expected number of 
search queries required for a sampler to find s uniform random 
sample tuples over a Boolean hidden database. Based on the 
bound, we will derive a (ε,δ,p)-privacy guarantee achieved by 
COUNTER-SAMPLER. 

Before formally presenting the results, we would like to 
point out that although Algorithm COUNTER-SAMPLER is 
quite intuitive, the theoretical analysis is quite challenging and 
consequently the derived bounds are rather loose. We also point 
out that the results address the class of samplers that use finding 
valid queries as a part of their sampling strategy. Our goal of 
presenting these analytical results is not to promote the tightness 
of bounds, but to demonstrate the versatility of COUNTER-
SAMPLER in defending against any arbitrary sampler. 
However, as our experiments in Section 6 show, the actual 
performance is much better in practice. 
Lemma 4.1: For a Boolean hidden database with m tuples, after 
COUNTER-SAMPLER has been executed with parameters b 
and d such that 4s(b–d)(d+1)  ≤  3d and m ≤  2d–1, any sampler 
needs at least an expected number of 4s(b–d)/3 search queries to 
find s uniform random sample tuples over the database. 

Due to space limitation, we omit the proof – it is based on 
the main ideas discussed in Section 3, and the full details are 
available at [DZDC08]. Interestingly, the bound is decreasing 
with d, which seems to suggest that d-level packing is hurting 
the defense. However, this is not true because, in order for the 
lemma to hold, d must be large enough to satisfy the two 
conditions in the lemma. The reason why the bound decreases 
with d is because a “smart” sampler (which may be aware of the 
COUNTER-SAMPLER algorithm and hence knows b and d) 
does not need to issue any queries with fewer than d-predicates. 

Based on the lemma, the following Theorem 4.2 provides 
privacy guarantees for sensitive COUNT aggregate queries. 
Recall from Section 2 that the attacking-cost limit umax is the 
maximum number of search queries that an adversary can issue. 

  
Theorem 4.2. For a Boolean hidden database with m tuples, 
when all samplers have an attacking-cost limit umax, for any 

COUNT query with answer in [x, y], the hidden database owner 
achieves (ε,δ,50%)-privacy guarantee if COUNTER-SAMPLER 
has been executed with parameters b and d which satisfy  

(a)  and  
(b)  

where erf–1(⋅) is the inverse error function. 
The details of the proof are available in [DZDC08], but in 

brief, Conditions (a) and (b) directly follow from Lemma 4.1 
and a lower bound on the number of samples required to win a 
(ε, δ)-privacy game, which can be derived via standard sampling 
theory. The theorem can be easily extended to other types of 
aggregates (e.g., SUM) by making proper assumptions on the 
distribution of the measure attribute. 

Theorem 4.2 provides guidelines on the parameter settings 
for b and d. In particular, Conditions (a) and (b) imply lower 
bounds on d and b, respectively. Note that the smaller b or d is, 
the fewer dummy tuples are required. Thus, to achieve a (ε, δ, 
50%)-privacy guarantee, for a given attacking-cost limit umax, 
we should first set d to be the minimum value that satisfies 
Condition (a), and then compute b as the minimum value that 
satisfies Condition (b). Ideally, we can follow these settings to 
make Algorithm COUNTER-SAMPLER parameter-less. 
Nonetheless, as discussed earlier, this theorem only provides 
necessary but not sufficient conditions for (ε, δ, 50%)-privacy 
guarantee. In practice, other (tighter) bounds on the b and d 
suffice, as we will demonstrate in the experimental results. 

An interesting observation is that Condition (b) depends on 
the range [x, y] of COUNT query answers. In particular, for 
given values of umax, b, d, and δ, the value of ε is maximized 
when x = y = m/2. This shows that COUNTER-SAMPLER 
provides the strongest privacy guarantee when a COUNT query 
is neither too broad nor too narrow. This is consistent with our 
objective (Section 1) of protecting fine-grained aggregates. 

It is important to note that the privacy guarantee holds for 
all COUNT queries against possible sampling algorithms. This 
renders inference-based attacks that try to infer aggregates by 
combining answers of two or more non-sensitive queries, 
useless. 

4.3 Number of Inserted Dummy Tuples 
The privacy guarantee derived above is independent of the 

interface parameter k. The number of inserted dummy tuples 
however, depends on k because, intuitively, for a larger k more 
dummy tuples are required for making underflowing or valid 
queries overflow. The number of inserted dummy tuples also 
depends on the original data distribution. For example, when the 
data is densely distributed into a few clusters, b-neighbor 
insertion requires much fewer dummy tuples than when all 
attributes are i.i.d. with uniform distribution. For d-level 
packing, the i.i.d. case requires much fewer dummy tuples than 
when the data is highly skewed (e.g., all attributes have 
probability of 99% to be 1). Because of this dependency, we will 
not attempt a theoretical analysis of the number of dummy 
tuples inserted, and instead present a thorough experimental 
evaluation in Section 6. 

4.4 Efficiency and Implementation Issues 
Given b and d, the time complexity of COUNTER-

SAMPLER is O(nCd–1·max(2d, m) + nCb–1·m), where n is the 
number of (searchable) attributes and m is the number of tuples. 
The efficiency is usually not a concern because (1) COUNTER-
SAMPLER only needs to be executed once as a pre-processing 
step for a static database, and (2) n is usually quite small for a 
hidden database with web interface. However, COUNTER-

Algorithm COUNTER-SAMPLER(b, d, k) 
// Start of d-level packing 
1:  for each set S of d – 1 attributes  
2:  KS = Cartesian product of domains of attributes in S; 
3:   DS = SELECT S FROM D; 
4:  for each tuple t in SELECT * FROM KS – DS 
5:      
6:   D = D ∪ DUMMY-ORACLE(k + 1, C); 
// Start of b-neighbor insertion  
7:  DDUMMY =  φ;  
8:  for each set S of b – 1 attributes 
9: DS = SELECT S FROM D; 
10: NS  = SELECT S, COUNT(*) FROM D ∪ DDUMMY 
   GROUP BY S HAVING COUNT(*) > k; 
11: for each tuple t in SELECT * FROM DS – NS[S] 
12:    
13:    c = SELECT COUNT(*) FROM D∪DDUMMY WHERE C; 
14:   DDUMMY = DDUMMY ∪ DUMMY-ORACLE(k+1–c, C); 
15: D = D ∪ DDUMMY; 
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SAMPLER can be slow when n is large. To address this 
problem, we present RANDOM-COUNTER-SAMPLER, a 
randomized version which replaces the enumeration of all (d–1)- 
or (b–1)-attribute sets by checking such attribute sets at random.  

 
Since the dummy tuples inserted for one attribute set may 

also overflow queries corresponding to other attribute sets, the 
number of dummy tuples required for the not-yet-chosen 
attribute sets decreases quickly. We terminate the process when 
no dummy tuple is inserted for h consecutive iterations. Thus, 
even when n is large, RANDOM-COUNTER-SAMPER is able 
to terminate quickly with a small probability of error. 

4.5 Extensions for Categorical and 
Numerical Databases 

Algorithm COUNTER-SAMPLER can be directly applied 
as-is to both Boolean and categorical databases. Nonetheless, for 
categorical data, the number of predicates of a query (e.g., b and 
d) is not an effective measure for the query’s power in helping a 
sampler prune its search space. For example, consider an 
underflowing Q1: SELECT * FROM D WHERE a1 = 1. A 
binary a1 can reduce ΘE to about 2/3 of its original size, while an 
a1 with 100 possible values can only reduce ΘE to about 100/101 
of its original size. Moreover, the number of all possible b-
predicate queries is also determined by the size of the Cartesian 
product of all involved attributes’ domains (i.e., multiplication 
of the domain sizes), rather than simply the number of 
predicates b. Thus, an extension of high-level packing and 
neighbor insertion to categorical databases is to replace d and b 
with two new parameters cd and cb, such that the Cartesian 
product size of underflowing and valid queries must be no less 
than cd and cb, respectively. Note that when the database is 
Boolean, we have cd = 2d and cb = 2b. Our experiments presented 
in Section 6 adopt this strategy for categorical databases. 

For numerical data, we can apply COUNTER-SAMPLER 
by appropriately discretizing the numerical data to resemble 
categorical data. However, different discretization techniques 
have different impact on the usability of the system. For 
example, a larger bucket size may reduce the precision of 

numerical values and affect search results usability. In contrast, 
a smaller bucket size may require a larger number of dummy 
tuples (e.g., to achieve the same cd and cb). How to choose an 
optimal discretization scheme is left as an open problem. 

5. CASE STUDIES 
The analysis in Section 4 showed that COUNTER-

SAMPLER can effectively defend against any sampler over 
hidden databases. As examples, we now illustrate how 
COUNTER-SAMPLER defends against HIDDEN-DB-
SAMPLER [DDM07] and HYBRID-SAMPLER [DZD09], two 
state-of-the-art sampling algorithms over hidden databases. 
Defense against HIDDEN-DB-SAMPLER: We start our 
discussion by a brief overview of HIDDEN-DB-SAMPLER. Its 
basic idea is to repeatedly perform random “drill-down” 
searches over the query space. Consider Figure 1(a) and 1(b) 
which shows binary query trees for Examples A and B, 
respectively. Each tree is a complete binary tree with n+1 levels 
(though we only show parts of each tree due to space 
limitations). The i-th (1≤i≤n) internal level represents attribute 
ai, and the left (resp. right) edge downward from any i-th level 
node is labeled 0 (resp. 1), representing a predicate of ai having 
the labeled value. Thus, the leaves (i.e., (n+1)-th level) represent 
all possible tuple values. Only a small proportion of the leaves 
will correspond to actual tuples; the vast majority will be empty. 

The random drill-down approach essentially performs a 
random walk down this tree. The walk starts from the root node 
and takes a random path to level a1 (by issuing a query with 
predicate corresponding to the path). If it returns overflow, then 
another step is taken to the next level (i.e., the query is appended 
by a random predicate involving a2). This drill-down process 
shall either lead to a valid query, or return empty. If a valid 
query is reached, a tuple randomly chosen from the query result 
is returned as a sample after acceptance-rejection sampling. 

HIDDEN-DB-SAMPLER has two variants, with fixed and 
random order of attributes, respectively. In the latter variant, the 
attributes order in the tree is randomly permuted before each 
random walk. For the ease of discussion, we consider a fixed 
order [a1,…,an] (as Figure 1) for a Boolean database with k = 1. 

Consider Example A. Before dummy insertion, an expected 
number of only 3 queries are needed to retrieve t1:<0,…,0,1> 
(from SELECT * FROM D WHERE a1=0 AND a2=0). To see 
how b-neighbor insertion delays the sampling, consider b = n. A 
dummy tuple t2:<0,…, 0,0> will be inserted to overflow a (b–1)-
predicate query SELECT * FROM D WHERE a1=0 
AND ⋅⋅⋅AND an–1=0. Figure 1(c) depicts the tree after dummy 
insertion. As we can see, with the insertion of t2, HIDDEN-DB-
SAMPLER needs a minimum of n queries (traveling from the 
root to the leaf) to retrieve t1 from a valid query. This is much 
more than the two queries needed before dummy insertion. 

However, b-neighbor insertion alone is insufficient, as will 
be illustrated for Example B. In this case, for any b ∈ [1, l], b-
neighbor insertion will not insert any dummy tuple. As a result, 
the sampler remains efficient as it can still detect underflows on 
levels 1 to n – l and prune a major portion (i.e., 1 – 1/2n–l) of the 
tree after issuing only n – l underflowing queries. 

Now consider the effect of d-level packing. Since there is no 
real tuple with a1 = 1, two dummy tuples will be inserted with 
a1=1 and equal values for any other d – 2 attributes, e.g., a2 to 
ad–1. Figure 1(d) depicts a tree after dummy insertion. As we can 
see, in the right half (i.e., a1=1) of the tree, there is one 
overflowing node on every level between the 1st and the (d – 1)-
th level. Consider such a node v at the x-th level. Since 
HIDDEN-DB-SAMPLER travels to left or right with equal 
probability, the probability for a sampler drawing s samples to 

Algorithm RANDOM-COUNTER-SAMPLER(b, d, k) 
1: Randomly choose a set S of d – 1 attributes  
2: Call Lines 2 – 6 of Algorithm COUNTER-SAMPLER 
3: Goto 1 until no dummy has been inserted for h iterations 
4: DDUMMY =  φ;  
5: Randomly choose a set S of b – 1 attributes 
6: Call Lines 9 – 14 of Algorithm COUNTER-SAMPLER 
7: Goto 5 until no dummy has been inserted for h iterations 
8: D = D ∪ DDUMMY; 

Figure 1. Query Trees for Examples A and B 
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reach v or its underflowing neighbor v' is p(v) = 1–(1–1/2x–1)s. 
Since p(v)>1–1/e when x ≤ log2s + 1, as long as d ≥log2s+1, the 
two inserted dummy tuples increase the expected number of 
queries by at least Σv(2p(v)) – 1 > 2(1 – 1/e)log2s – 1. 

As we can see from the examples, by inserting a few dummy 
tuples, COUNTER-SAMPLER can substantially increase the 
query cost of HIDDEN-DB-SAMPLER. 
Defense against HYBRID-SAMPLER: HYBRID-SAMPLER 
[DZD09] consists of two phases: pilot-sample collection and 
COUNT-assisted sampling. The vast majority of queries issued 
are in the phase of pilot-sample collection, where HIDDEN-DB-
SAMPLER is called to collect a pre-determined number of pilot 
samples. As we illustrated above, COUNTER-SAMPLER can 
significantly increase the query cost of HIDDEN-DB-
SAMPLER. Thus, it can also substantially delay sampling by 
HYBRID-SAMPLER. We will demonstrate such delay in the 
experimental results. 

6. EXPERIMENTS AND RESULTS 
In this section, we describe our experimental setup and 

present the experimental results. Note that the Section 4 
provides theoretical privacy guarantees against all possible 
samplers. We now carry out empirical studies for two state-of-
the-art sampling algorithms, HIDDEN-DB-SAMPLER and 
HYBRID-SAMPLER for Boolean and categorical hidden 
databases. We also draw conclusions on the individual impact of 
high-level packing and neighbor insertion on the delay of 
sampling attacks and the number of inserted dummy tuples. 

6.1 Experimental Setup 
1) Hardware and Platform: All our experiments were 
performed on a 1.99 Ghz Intel Xeon machine with 4 GB of 
RAM. The COUNTER-SAMPLER algorithm was implemented 
in MATLAB. We set h = 40 for the randomized version. 
2) Data Sets: HIDDEN-DB-SAMPLER recommends different 
strategies for Boolean and categorical databases (with random 
order of attributes for the former and fixed order for the latter). 
Thus, we consider both Boolean and categorical datasets. Note 
that in order to apply COUNTER-SAMPLER, these datasets are 
offline ones to which we have full access. 
Boolean Synthetic: We generated two Boolean datasets, each of 
which has 100,000 tuples and 30 attributes. The first dataset is 
generated as i.i.d. data with each attribute having probability of 
p = 0.3 to be 1.  We refer to this dataset as the Bool-0.3 dataset. 
The second dataset is generated in a way such that different 
attributes have different distribution.  In particular, there are 30 
independent attributes, 5 have probability of p = 0.5 to be 1, 10 

have p = 0.3, the other 10 have p = 0.1. We refer to this dataset 
as the Bool-mixed dataset. 
Categorical Census: The Census dataset consists of the 1990 US 
Census Adult data published on the UCI Data Mining archive 
[HB99]. After removing attributes with domain size greater than 
100, the dataset had 12 attributes and 32,561 tuples. It is 
instructive to note that the domain size of the attributes of the 
underlying data is unbalanced in nature. The attribute with the 
highest domain size has 92 categories and the lowest-domain-
size attributes are Boolean. 
3) Sampling Algorithms: We tested two state-of-the-art 
sampling algorithms for hidden databases: HIDDEN-DB-
SAMPLER [DDM07] and HYBRID-SAMPLER [DZD09].  

HIDDEN-DB-SAMPLER has two variations, HIDDEN-
DB-RANDOM and HIDDEN-DB-FIXED, which use random 
and fixed order of attributes, respectively. HIDDEN-DB-
RANDOM can only be applied to Boolean data, while 
HIDDEN-DB-FIXED can also be applied to categorical data. 
HIDDEN-DB-RANDOM is parameter-less, while HIDDEN-
DB-FIXED requires a parameter called scaling factor C for the 
acceptance/rejection module, in order to balance between 
efficiency and bias. Following the heuristic in [DDM07], we set 
C = 1/2l where l is the average length of random walks for 
collecting the samples. 

HYBRID-SAMPLER has two parameters: s1, the number of 
pilot samples collected for optimizing future sampling, and cS, 
the count threshold for switching between HYBRID-SAMPLER 
and HIDDEN-DB-SAMPLER. Following the settings in 
[DZD09], we set s1 = 20 and cS = 5. 
4) Performance Measures for COUNTER-SAMPLER: We 
evaluated two performance measures for COUNTER-
SAMPLER. The first is privacy protection, i.e., the delay (or 
inefficiency) forced onto the sampling algorithms by 
COUNTER-SAMPLER. This is measured by the number of 
unique queries issued by HIDDEN-DB-SAMPLER and 
HYBRID-SAMPLER to obtain a certain number of samples. 
The second measure is the loss of utility, i.e., the overhead 
incurred to bona fide users. In particular, we used the number of 
dummy tuples inserted by COUNTER-SAMPLER, as discussed 
in Section 2.5. 

6.2 Effectiveness of COUNTER-SAMPLER 
HIDDEN-DB-RANDOM: Since HIDDEN-DB-RANDOM 
only supports Boolean data, we tested the effectiveness of 
COUNTER-SAMPLER on defending against HIDDEN-DB-
RANDOM over the two Boolean synthetic datasets. We first 
applied COUNTER-SAMPLER with a fixed pair of parameters 
b = 10 (for b-neighbor insertion) and d = 6 (for d-level packing) 

Figure 2: Number of queries 
before and after COUNTER-

SAMPLER for Boolean 

Figure 3: Delay of sampling vs. 
Percentage of dummy tuples 

Figure 4: Number of queries 
before and after COUNTER-

SAMPLER for Census 

Figure 5: Delay of sampling 
vs. number of dummy tuples 
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when k = 1. In this case, COUNTER-SAMPLER inserts 29218 
and 32717 dummy tuples for the Bool-0.3 and Bool-mixed 
datasets, respectively, leading to a proportion of 22.6% and 
24.7% tuples of the final database being dummies. Figure 2 
depicts the number of queries required by HIDDEN-DB-
RANDOM to obtain 1 to 100 samples before and after 
COUNTER-SAMPLER is used. One can see from the figure 
that for both datasets, COUNTER-SAMPLER significantly 
increases the number of queries HIDDEN-DB-RANDOM has to 
issue. For example, to draw 100 samples from the Bool-mixed 
dataset, HIDDEN-DB-RANDOM requires only 1987 queries 
before COUNTER-SAMPLER is applied, but 23751 queries 
afterwards. 

We also tested the tradeoff between the delay of HIDDEN-
DB-RANDOM and the number of dummy tuples inserted by 
COUNTER-SAMPLER. To do so, we set d = 5 and vary b 
between 10, 12, and 15. Again, k = 1. Figure 3 depicts 
relationship between the percentage of dummy tuples in the final 
database and the average number of queries required by 
HIDDEN-DB-RANDOM to obtain a sample during the process 
of drawing 50 samples.  One can see from the figure that the 
sampler can be delayed by orders of magnitude with a moderate 
number of dummy tuples. For example, HIDDEN-DB-
SAMPLER requires over 700 times more queries when there are 
43.7% dummy tuples in the dummy-inserted version of the 
Bool-mixed dataset.  
HIDDEN-DB-FIXED: In [DDM07], HIDDEN-DB-FIXED is 
recommended over HIDDEN-DB-RANDOM for categorical 
data as it generally yields a smaller bias in the samples. Thus, 
we tested the effectiveness of COUNTER-SAMPLER in 
defending against HIDDEN-DB-FIXED over the Census 
dataset. We set k = 10 by default unless otherwise noted. 

Similar to the experiments on Boolean synthetic datasets, we 
first applied COUNTER-SAMPLER with a fixed pair of 
parameters cd = 50 (for high-level packing) and cb = 500 (for 
neighbor insertion). In this case, COUNTER-SAMPLER inserts 
10697 dummy tuples, leading to a proportion of 24.7% tuples of 
the final database being dummies. Figure 4 depicts the number 

of queries required by HIDDEN-DB-FIXED to obtain 1 to 100 
samples before and after COUNTER-SAMPLER is used. One 
can see from the figure that COUNTER-SAMPLER 
significantly increases the number of queries HIDDEN-DB-
FIXED needs to issue. For example, to obtain 30 samples, 
HIDDEN-DB-FIXED needs only 277 queries before 
COUNTER-SAMPLER is applied, but 1423 queries afterwards. 

We again tested the relationship between the delay of 
HIDDEN-DB-FIXED and the number of inserted dummy tuples. 
To do so, we set cd = 100 and varied cb between 500, 1000, and 
1500. Figure 5 depicts the results. As we can see, COUNTER-
SAMPLER delays HIDDEN-DB-FIXED by more than ten-fold, 
from 6.41 to 69.07 queries per sample, when 53.4% tuples of the 
final database are dummies. 

We also tested COUNTER-SAMPLER with varying cd. 
Figure 6 shows the number of queries required by HIDDEN-
DB-FIXED for each sample (while drawing 100 samples) when 
cd varies from 0 to 300. One can observe from the figure a 
pattern that holds for all three cases of cb = 500, 1000, and 1500: 
when cd increases, the number of queries required by HIDDEN-
DB-FIXED first increases, and then decreases. This verifies 
what is indicated by our theoretical results in Lemma 4.1 and 
Theorem 4.2: once the value of d (resp. cd) used by high-level 
packing reaches a threshold, the further increase of d (resp. cd) 
can only reduce, and not improve, the protection provided by 
COUNTER-SAMPLER. 

We tested COUNTER-SAMPLER with varying database 
sizes.  In particular, we constructed 10 databases with 10,000 to 
100,000 tuples by sampling with replacement from the Census 
dataset. Then, we applied COUNTER-SAMPLER with cb = 500 
and cd = 50 to all of them. Figure 7 shows the percentage of 
dummy tuples in the dummy-inserted databases. One can see 
that this percentage decreases rapidly when k increases. For 
example, the percentage is 49.11% for the 10,000-tuple database 
but only 5.77% for the 100,000-tuple database. Meanwhile, the 
privacy protection provided by COUNTER-SAMPLER remains 
effective, as demonstrated in Figure 8. 

Figure 6: Delay of sampling 
vs. cd for high-level packing 

Figure 7: Percentage of Dummy 
Tuples vs. Database Size 

Figure 8: Efficiency of 
sampling vs. Database Size 

Figure 9: Efficiency of 
sampling vs. k 

 

Figure 10: Percentage of 
Dummy Tuples vs. k 

Figure 11: HYBRID-
SAMPLER 

Figure 12: RANDOM-
COUNTER-SAMPLER 

Figure 13: High-Level Packing 
Only 
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We also studied the impact of the interface parameter k on 
COUNTER-SAMPLER. In particular, we tested cases where k 
ranges from 10 to 50. To highlight the change of sampling 
efficiency with k, we used the case where k = 10 as the baseline 
scenario, and calculated the relative number of queries required 
by HIDDEN-DB-FIXED for other values of k (for collecting the 
same number (100) of samples). Figure 9 shows the results 
before and after COUNTER-SAMPLER with cb = 500 and cd = 
50 is applied. One can see from the figure that without 
COUNTER-SAMPLER, the number of queries required by 
HIDDEN-DB-FIXED decreases rapidly with increasing k. After 
COUNTER-SAMPLER is applied, however, the number of 
queries remains stable for all values of k. This is consistent with 
the fact that our privacy guarantees derived in Lemma 4.1 and 
Theorem 4.2 are independent of the value of k. 

Figure 10 shows the change in the number of dummy tuples 
with k when cb = 500 and cd = 50. Naturally, with a larger k, 
more dummy tuples are needed to achieve the same values of cb 
and cd. Nonetheless, recall from Figure 7 that the percentage of 
dummy tuples decreases rapidly with the database size. Thus, 
for a real-world hidden database which has a very large number 
of tuples and also a large k, the percentage of dummy tuples 
inserted by COUNTER-SAMPLER should remain small. 
HYBRID-SAMPLER: To demonstrate the universality of 
COUNTER-SAMPLER on defending against any samplers, we 
tested it against another sampling algorithm, HYBRID-
SAMPLER [DZD09], over the two Boolean synthetic datasets. 
Similar to Figure 1, we set b = 10 and d = 6 when k = 1, leading 
to 29218 (22.6%) and 32717 (24.7%) dummy tuples for Bool-
0.3 and Bool-mixed, respectively. Figure 11 depicts the number 
of queries required by HYBRID-SAMPLER to obtain 1 to 100 
samples before and after COUNTER-SAMPLER is used. One 
can see from the figure that HYBRID-SAMPLER is also 
significantly delayed by COUNTER-SAMPLER. For example, 
to draw 100 samples from the Bool-mixed dataset, HIDDEN-
DB-RANDOM requires only 851 queries before COUNTER-
SAMPLER is applied, but 12878 queries afterwards. 
PREPROCESSING EFFICIENCY: COUNTER-SAMPLER 
is essentially a preprocessing step; hence its runtime efficiency 
is usually not a concern. Nevertheless, we observed that it is 
quite efficient for real-world categorical hidden databases that 
usually have a smaller number of attributes. For example, for the 
Census dataset, the deterministic version of COUNTER-
SAMPLER only requires 91.18 seconds to complete when cb = 
500 and cd = 50. We also performed experiments on Boolean 
dataset with many attributes, which represents an extremely 
inefficient scenario for the deterministic version. We tested the 
execution time of COUNTER-SAMPLER as well as 
RANDOM-COUNTER-SAMPLER on the Bool-mixed dataset 
(which has 30 attributes) when b = 10 and d = 5. Unsurprisingly, 
while the deterministic version took days to complete, the 
randomized version was much more efficient. Figure 14 shows 
the relationship between the percentage of dummy tuples 
inserted and the execution time. One can see that when h = 40, 
with 4585 seconds, RANDOM-COUNTER-SAMPLER inserts 
more than 92.84% of all dummy tuples inserted by the 
deterministic version. 

6.3 Individual Effects of Neighbor Insertion 
and High-level Packing 

We also studied the individual effects of neighbor insertion 
and high-level packing. As an example, we considered the 
HIDDEN-DB-FIXED sampling algorithm and the Census 
dataset. First, we applied only high-level packing, and then 

executed HIDDEN-DB-FIXED to collect 100 samples. Figure 
13 depicts the number of queries required by HIDDEN-DB-
FIXED and the percentage of dummy tuples when cd ranges 
from 0 to 300. One can observe that high-level packing alone 
only inserts a very small amount of dummy tuples, but is already 
quite effective against HIDDEN-DB-FIXED. For example, 
when only 3.55% tuples of the final database are dummies, high-
level packing can delay HIDDEN-DB-FIXED by a factor of 
2.50 (from 2.77 to 6.92 queries per sample). 

Second, we applied only neighbor insertion to the Census 
dataset, and then executed HIDDEN-DB-FIXED to collect 100 
samples. Figure 14 depicts the number of queries required by 
HIDDEN-DB-FIXED and the number of inserted dummy tuples 
when cb ranges from 0 to 1500. One can see from the figure that 
neighbor insertion alone imposes significant delays to HIDDEN-
DB-FIXED. For example, HIDDEN-DB-FIXED requires 13.64 
times more queries (37.10 vs. 2.77 queries per sample) after 
applying COUNTER-SAMPLER with cb = 1500. Meanwhile, 
53.01% tuples in the final database are dummies. 

To get a rough estimate on the effect of including the 
dummy tuples on usability, we sampled 1,000 queries with 
replacement from each level of the query tree on the Census 
dataset, and found very few queries returning only dummies: 
When k=10 and 24.7% (resp. 54.3%) tuples are dummies, only 
1.1% (resp. 4%) queries return only dummy tuples. 

 
Figure 14: Neighbor Insertion Only 

 

7. RELATED WORK 
There has been recent work on crawling as well as sampling 

from hidden databases. However, here we restrict our discussion 
to prior works on sampling. In [DDM07, DZD09] the authors 
have developed techniques for sampling from structured hidden 
databases leading to the HIDDEN-DB-SAMPLER and 
HYBRID-SAMPLER algorithms respectively. A closely related 
area of sampling from a search engines index using a public 
interface has been addressed in [BB98] and more recently 
[BG06, BG07]. [CC01] and [IG02] use query based sampling 
methods to generate content summaries with relative and 
absolute frequencies while [HYJS04, HYJS06] uses two phase 
sampling method on text based interfaces. On a related front 
[CH02, BGM02] discuss top-k processing which considers 
sampling or distribution estimation over hidden sources. 
[CHW+08] discusses keyword search over a corpus of 
structured web databases in the form of HTML tables. 
[MKK+08] considers the surfacing of hidden web databases by 
efficiently navigating the space of possible search queries.  

Much research on privacy/security issues in databases and 
data mining focused on the protection of individual tuples which 
is complementary to our proposed research. Traditional studies 
on access control and data sanitization are designed to limit the 
access to private data in relational databases [SCF+96, JSSS01]. 
Researchers have proposed various privacy-preserving 
(aggregate) query processing techniques, which can be classified 
as query auditing [NMK+06, KMN05] and value 
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encryption/perturbation [AES03, AS00, Swe02, MKGV07, 
AST05]. The perturbation of (output) query answers has also 
been studied [DMNS06]. More closely related to the problem 
addressed in this paper is the existing work on protecting 
sensitive aggregation information [ABE+99, VEB+04, GV06]. 
Nonetheless, to our best knowledge, all existing work in this 
category focuses on the protection of sensitive association rules 
in frequent pattern mining.  

8. FINAL REMARKS 
In this paper, we have initiated an investigation of the 

protection of sensitive aggregates over hidden databases. We 
proposed Algorithm COUNTER-SAMPLER that inserts a 
number of carefully constructed dummies tuples into the hidden 
database to prevent the aggregates from being compromised by 
the sampling attacks. We derived the privacy guarantees 
achieved by COUNTER-SAMPLER against any sampler that 
aims to draw uniform random samples of the hidden database. 
We demonstrated the effectiveness of COUNTER-SAMPLER 
against the state-of-the-art sampling algorithms [DDM07, 
DZD09]. We performed a comprehensive set of experiments to 
illustrate the effectiveness of or algorithm.  

Our investigation is preliminary and many extensions are 
possible. For example, we focused on the dummy tuple insertion 
paradigm in this paper. In the future work, we shall investigate 
other defensive paradigms, such as the integration of dummy 
insertion and query auditing, for protecting sensitive aggregates. 
We shall also investigate the techniques for the protection of 
sensitive aggregates against adversaries holding external 
knowledge about the underlying data distribution. Scenarios 
where hidden database interfaces return COUNT results 
[DZD09] also need to be explored. Another interesting future 
direction is the investigation of dynamic hidden databases and 
their impact on aggregates protection. 
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