Episode Matching

Gautam Das' Rudolf Fleischer? Leszek Gasieniec?
Dimitris Gunopulos® Juha Karkkiinen*

! Dept. of Mathematical Sciences, The University of Memphis, Memphis TN 38152,
USA; dasg@mathsci.msci.memphis.edu
2 Max-Planck Institut fiir Informatik, Im Stadtwald, Saarbriicken D-66123, Germany;
{rudolf,leszek}@mpi-sb.mpg.de
% IBM Almaden RC k55/B1, 650 Harry Rd, CA 95120, USA;
gunopulo@almaden. ibm. com
4 Dept. of Computer Science, P.O. Box 26, FIN-00014 University of Helsinki,
Finland; juha.karkkainen@cs.helsinki.fi

Abstract. Given two words, text T' of length n and episode P of length
m, the episode matching problem is to find all minimal length substrings
of text 1" that contain episode P as a subsequence. The respective op-
timization problem is to find the smallest number w, s.t. text T has a
subword of length w which contains episode P.

In this paper, we introduce a few efficient off-line as well as on-line al-
gorithms for the entire problem, where by on-line algorithms we mean
algorithms which search from left to right consecutive text symbols only
once. We present two alphabet independent algorithms which work in
time O(nm). The off-line algorithm operates in O(1) additional space
while the on-line algorithm pays for its property with O(m) additional
space. T'wo other on-line algorithms have subquadratic time complexity.
One of them works in time O(nm/logm) and O(m) additional space.
The other one gives a time/space trade-off, i.e., it works in time O(n +
s+ nmloglog s/log(s/m)) when additional space is limited to O(s).
Finally, we present two approximation algorithms for the optimization
problem. The off-line algorithm is alphabet independent, it has superlin-
ear time complexity O(n/e + nloglog(n/m)) and it uses only constant
space. The on-line algorithm works in time O(n/e 4+ n) and uses space
O(m). Both approximation algorithms achieve 1+ e approximation ratio,
for any € > 0.

1 Introduction

In [6], Mannila et al. introduced the problem of finding frequent episodes in
event sequences. An episode is a collection of events that occur within short time
interval. Given a long sequence of events, e.g. alarms from a telecommunication
network, it can be useful to know what episodes occur frequently in the sequence.

A simplified version of this problem in string matching terms is: Given a text
T, a window width w and a frequency threshold ¢, find all strings (episodes) P
that satisfy the condition:

Episode Condition 1. The text 7" has (at least) ¢ different substrings of length
w that contain P as a subsequence.

The problem of finding frequent episodes was also considered in [5], but with a
different definition of “frequent” based on minimal substrings. A substring con-
taining P is minimal if no proper substring of it contains P. The corresponding
episode condition is

Episode Condition 2. The text T has (at least) ¢ different minimal substrings
of length at most w that contain P as a subsequence.

Obviously, Condition 2 implies Condition 1, but not vice versa.

In this paper, we consider problems rising from the episode conditions when
both T and P are given. We call these episode matching problems. OQur main
problem is the following.

Problem 1. Given a text T and an episode P, find all minimal substrings of T'
that contain P as a subsequence.

From the set of minimal substrings it is easy to compute the smallest w for
any t or the largest ¢ for any w that satisfies the episode condition. Only linear
time is needed whether the first or the second condition is used. We will give
four algorithms for this problem. In addition, we will give two approzimation
algorithms for the problem of finding a minimal w when ¢t = 1:

Problem 2. Given a text T and an episode P, find the smallest w such that T
has a substring of length w that contains P as a subsequence.

Some of our algorithms are alphabet independent, that is, the only char-
acter operation needed is the comparison for equality or inequality. The other
algorithms may need an alphabet transformation. Let (P) denote the number of
different characters in the episode P. The alphabet transformation maps charac-
ters appearing in P bijectively into the set {1,2,...,(P)} and all other charac-
ters into 0. Applying this transformation to P and T changes the alphabet into
{0,...,(P)} but does not change the solutions to our problems. With general
alphabets allowing only equality comparisons, the transformation needs O(nm)
time, where n = |T'| and m = |P|. With ordered alphabets allowing order com-
parisons, the transformation can be done in O(nlogm) time. In practice, array
indexing, hashing or other techniques can be used for making the transformation
in linear time.

The properties of our algorithms for Problem 1 are summarized below.

Algorithm A Alphabet independent, O(nm) time, O(1) additional space.

Algorithm B Alphabet independent, on-line, O(nm) time, O(m) additional
space.

Algorithm C On-line, O(nm/logm) time, O(m) additional space.

Algorithm DB On-line, O(n+s+nmloglog s/ log(s/m)) time, O(s) additional

space.

The approximation algorithms for Problem 2, both achieving 1+ ¢ approximation
ratio for any € > 0, are summarized below.

Algorithm AA Alphabet independent, O(n/e+nloglog(n/m)) time, O(1) ad-
ditional space.
Algorithm AB On-line, O(n/e+ n) time, O(m) additional space.

The time and space requirements for the alphabet dependent algorithms do not
include the alphabet transformation but assume that it has been made. No other
assumptions are made about the alphabet.

As was mentioned in the beginning, the episode conditions are a simplification
of the situation described in [6]. The text T is actually a sequence of events, each
of which has a type and an occurrence time. The window width w refers to a
time window instead of the number of characters in a substring. Our algorithms
for Problem 1 are easily modified to handle this generalization, but the approx-
imation algorithms for Problem 2 lose either their approximation guarantee or
their running time guarantee when the events are unevenly distributed in time.

Another generalization given in [6] concerns the episodes. The episode P as
described above is called a serial episode because the characters (or events) must
occur in a fixed order in the substring or time window. A parallel episode gives a
(multi)set of characters that can occur in any order. A general episode specifies
an arbitrary partial order on the characters. At least Algorithms A, B, AA and
AB can be modified to handle general episodes. Further generalizations to the
concept of episodes are described in [5].

An even more general class of patterns are regular expressions. The problem
of finding minimal substrings matching a regular expression was described and
solved in [1, Sect. 9.2.]. Our Algorithms A, B, AA and AB can be generalized
even for regular expressions. In fact, the generalization of Algorithm B is exactly
the solution given in [1].

Another related pattern matching problem is approximate string matching
which looks for those substrings of the text T that can be transformed into
the pattern P with at most k edit operations. When deletion is the only edit
operation allowed and we choose k£ = w — m, the problem is equivalent to finding
all substrings of T of length at most w that contain P as a subsequence. Qur
Algorithm B is closely related to the classical O(nm) time dynamic programming
algorithm for approximate string matching [8,9].

There are more advanced variations of the dynamic programming algorithm,
including O(nk) time [3,2] and O(nm/logn) time [7,13] algorithms. Due to dif-
ferent properties of the dynamic programming table, most of these algorithms
are not directly applicable to episode matching. The general techniques in those
algorithms, however, can be useful. OQur algorithm D is based on the “Four Rus-
sians” technique also used in [7,13]. In [11], Ukkonen describes an automaton
approach to approximate string matching and suggests that a part of the dy-
namic programming table could be computed with the automaton and the rest
with a simpler method. This is very similar to the idea of our Algorithm DB.

There are a couple of reasons why episodes have not drawn attention before.
One is that while episodes are very useful in event sequences, it is not easy to

find natural applications in normal strings. The other is the apparent triviality
of subsequence matching. For example, the agrep package [12] can find all lines
or records that contain the given pattern as a subsequence, which is trivial,
indeed. The new twist that makes the problem nontrivial is to look for matching
substrings whose length is minimal or limited.

2 Minimal Substrings

Let T' = t1ty...t, be the text and P = pips...pm, the episode. A substring
T[i..j] =t;...t; contains P if there exist a sequence 1 < iy < iy < -+ < iy < j
such that ¢;, = px for all & = 1,...,m. The sequence i1,..., ¢y, is called an
occurrence of P in TTi..j]. The substring 77i..j] is minimal if i1 =i and i, = j
for all occurrences of P in TYi..j], i.e., no proper substring of T7[i..j] contains
P. The following lemma gives an important property of occurrences in minimal
substrings.

Lemma 3. Letiy,..., i, and iy, ..., i, be occurrences of an episode P in min-
imal substrings T[iy..in,] and T[i..ip,] with iy < i} orip < iy,. Then ij41 <4}
forj=1,....m—1.

Proof. Suppose ij11 > i for some j. Then #y,...,4},i;41,...,ip is an occur-
rence, which contradicts T[7;..7,,] and T[#..i},] being minimal. O

Let ms(P,T) denote the number of minimal substrings of 7' that contain P.
Particularly, with a single character ¢, ms(e, T') is the number of occurrences of
cin 1. We will need the following results in the analysis of our algorithms.

Lemma 4. Forany j=1,...,m, ms(P,T) < ms(p;,T).

Proof. If i1,... iy and 1}, ... i are occurrences in two different minimal sub-
strings, then by Lemma 3, i; # 23 That is, the same text character cannot serve
as the jth character of an occurrence in two different minimal substrings. There-
fore, the number of p;’s in 7" must be at least ms(P,T'). O

Lemma 5. The sum of the lengths of the minimal substrings of 1" containing P
15 at most nm.

Proof. Let 1 < i < mnand 1 < j < m. By Lemma 3, there exists at most one
minimal substring with an occurrence iy, ..., 4y, such that i; <i < i;4¢ (where
im+1 = @m + 1). Therefore, at most m different minimal substrings can contain
the text character ¢;. Summing over all text characters gives the result since the
length of a substring is the number of characters it contains. O

3 Algorithm A

The following simple algorithm finds all minimal substrings containing P.

Algorithm A
Let 7 ¢ 0 and repeat until 7" ends during the forward scan:

1. [Forward Scan] Starting from position i 4+ 1 scan text T first looking for p;,
then the next ps, and so on until p,, is found at position j.

2. [Backward Scan] Starting from position j scan text T' backwards first looking
for pm, then the next p,,_1, and so on until p; 1s found at position i.

3. Report a minimal occurrence at T7[i..j].

The algorithm is alphabet independent and requires only O(1) additional space.
The running time of the algorithm is clearly ©(n + s), where s is the total length
of the minimal substrings, which by Lemma 5 is O(nm).

Theorem 6. The time complexity of Algorithm A is O(nm).

Algorithm A can be improved by removing unnecessary characters from the
text during the scan. When a forward scan is looking for p; 11 or a backward scan
is looking for p;, all encountered characters not in {p1,...p;} can be removed.
This makes later scans faster, although the algorithm still needs ©(nm) time in
the worst case.

Algorithm A is easily modified to handle other kinds of patterns, including
general episodes and regular expressions, by doing the forward and backward
scans with suitable automatons for the pattern.

4 Algorithm B

Our second algorithm for finding all minimal substrings is closely related to the
basic dynamic programming algorithm for approximate string matching [8,9]. The
algorithm could also be derived from a minimal substring algorithm for regular
expressions [1]. Essentially the same algorithm was also described in [6], and in
more detail in [10], as a part of an algorithm for finding all frequent episodes.

The algorithm computes a table S[0..n,0..m], where S[i,j] is the largest
value k such that T'[k..i] contains P[l..j]. Then, for every ¢ and j such that
k = S[i,j] > S[i — 1,7], T[k..4] is a minimal substring containing P[1..j].
In particular, T[S[i, m]..7] is a minimal substring containing P if and only if
S[i,m] > S[i — 1, m]. The table S can be computed by dynamic programming
using the recurrence relation

Sli—1,7—1]if t; = p;
S[i — 1, j] otherwise.

Sl = {

with the initialization S[0,j] = 0 for j = 1,...,m and S[¢,0] = i + 1 for ¢ =
0,...,n. The recurrence relation in the basic dynamic programming algorithm

for approximate string matching reduces to exactly this form when deletion is
the only edit operation allowed.

In practice, the algorithm maintains a table s[0..mm] while scanning the text.
After reading t;, s[j] = S[i, j] for all j. To quickly find the entries of s that need
to be updated, the algorithm maintains for every character ¢ the set warrs|c] of
those entries that need to be updated if the next text character is ¢. The resulting
algorithm is as follows.

Algorithm B

for j + 0 to m do s[j] + 0
for each c € ¥ do wairs[e] « 0
for i + 1 to n do
s[0] « 4; WATITS[p1] ¢ WAITS[p1| U {1}
Q — wWAITS[t;]; WATTS[t;] < 0
for each j € @ in descending order do
s[i] sl — 1]
if j = m then report minimal substring T7[s[m]..i]
else WAITS[p;j41] ¢ wAITS[pj 1] U {j + 1}

O 0 =~ O O i W N —

Theorem 7. Algorithm B works correctly and has time complexity O(n + X+
pms(P, T)), where

m

pms(P,T) =Y ms(P[1.4],1).
j=1

Proof. The following invariant holds just before executing line 5.

For j = 1,...,m, s[j] is the largest value k such that T'[k..i — 1] contains
P[1..j] and j is in warTs[p;] if and only if s[j] > s[j — 1].

The invariant can be proven by induction on m; we leave the details to the
reader. The first part of the invariant shows that the value of s[j] changes when
t; is processed if and only if a minimal substring containing P[1..j] ends at i.
The second part shows that s[j] changes every time line 7 is executed. Therefore,
lines 69 are executed exactly pms(P, T) times which proves the time complexity.
The algorithm works correctly because a minimal substring is reported exactly
when s[m] changes. O

The value pms(P,T) is bounded by nm. As such, Algorithm B is alphabet
dependent and requires O(m+|X|) additional space. Combined with the alphabet
transformation described in the introduction, the algorithm is alphabet independ-
ent, and works in O(nm) time and O(m) additional space. Unlike Algorithm A,
Algorithm B works on-line, that is, it reads each text character only once and
never needs more than O(m) time to process it.

The value pms(P,T) can be further analyzed using Lemma 4. For each prefix
P[1..5], we can choose an integer 1 < ¢(j) < j. By Lemma 4,

m

pms(P,T) Z pz Gy T) = Z |{J |pl(j) = c}|ms(c,T) (1)

: ceX

no matter how we choose the £(j)’s. The following examples show some of the
applications of this result.

— TIf the character distribution of T' is even over the alphabet X, pms(P,T) <
n|P|/|X| for all P.

— If no character appears more than k times in P, pms(P,T) < k|T| for all T'.

— If P = aabcaa, pms(P,T) < Q(ms(a,T_) + ms(b,T) + ms(c,T)) < 2|T| for
all T. (Choose £(5) = 3, £(6) =4 and £(j) = jfor j=1,...,4)

The value in entry s[j] depends only on the prefix P[l..j]. When there are
several episodes to be matched to the same text, we can build a trie of them
and combine the computation of the entries that depend only on the common
prefixes. The result can be a significant saving in computation since the entries
s[j] with small j are updated more often than entries with large j. Algorithm B
for tries is given in detail below.

Algorithm B for tries
Input: Trie TR = (V, E), V is the set of nodes, E is the set of edges
Egde e € E is from node FROM[e] to node To[e] and is labeled by LABELJe].

1 for each ¢ € ¥ do wairs[c] 1]

2 for each v € V do sLEEpPs[v] « 0; s[v] « 0

3 for each ¢ € £ do add e into SLEEPS[FROM[e]]

4 for : < 1 ton do

5 s[root] « i

6 for each e € SLEEPS[root] do

7 move e from SLEEPS[root] into WAITS[LABEL[e]]

8 Q < WAITS[t;]; WALTS[t;] + 0

9 for each e¢ € () (in FIFO order) do

10 add e into SLEEPS[FROMe]]

11 s[role]] « s[FroOM[e]]

12 for each f € sLEEpPs[T0[e]] do

13 move f from sLEEPS[TO[e]] into WAITS[LABEL[f]]
14 if To[e] represents P; then

15 report minimal substring T'[s[Tole]]..7] containing P;

The values s[-] are stored with the nodes of the trie. An edge e labelled with ¢
is in the set WAITS[c] if the next occurrence of ¢ will cause an update of s[To[e]].
Otherwise, e is stored in the set sLEEPS[FROM][e]]. Let

pms(TR,T) = Z ms(sTrR(v),T) ,
veV\{root}

where sSTR(v) is the concatenation of the labels on the path from the root to the
node v.

Theorem 8. Algorithm B for tries works correctly and has time complexity

O(n+|X|+pms(TR,T)).

The proof is essentially the same as the proof of Theorem 7. Otherwise, too,
the algorithm has the same properties as the basic algorithm, including time and
space requirements with m replaced by the size of the trie.

The partial order of a general episode can be represented with a directed
acyclic graph (DAG). The idea of associating a value s[v] with each node v
generalizes for DAG’s, too. Similarly, the value s[v] can be associated with each
state v in an automaton that recognizes a regular expression. This is exactly the
idea of the method in [1, Sect. 9.2.].

5 Algorithm C

Algorithm B performs well when the episode has a lot of variation. For example,
if every character of the episode is different, Algorithm B runs in O(n) time. On
the other hand, if the episode has little variation, for example P = aaa..., the
algorithm might require @(nm) time. In this section, we describe an algorithm
that takes advantage of, on one hand, the good performance of Algorithm B for
episodes of high variation, and on the other hand, the repetitiveness of an episode
of low variation.

Algorithm C

1. Divide the episode into k distinct pieces Py, Ps, ..., Pg.

2. Build a trie T'R of the pieces and use Algorithm B for tries to find the minimal
substrings containing the pieces.

3. Combine the minimal substrings containing the pieces to find the minimal
substrings containing the whole P.

The key to the algorithm is a right choice of the pieces. OQur solution is to
make each piece P; as long as possible under the constraint

|Pi| < log(p,y m —logp,y log(p,y m,

where (P;) is the number of different characters in P;. The “as long as possible”
gives the lower bound

|Pi| > logp,y41m —log py 41 logpyprm —1
for the length of a piece P; (except possibly Pr). From this we get

|P;| = 2(log m), if (P;) = 1.

Step 2 of Algorithm C was already described in the previous section. One
additional detail is the handling of pieces P; with (P;) = 1. They are not included
in the trie TR. Instead, their minimal occurrences are found by an O(n) time
algorithm that scans the text and keeps account of the positions of the last |P;|
occurrences of the only character of P;. By (2), there are at most O(m/ log m)
such pieces, and therefore, handling them separately takes O(nm/logm) time.
The running time of the rest of Step 2 is given by the following theorem. The
proof is given in the appendix.

Theorem 9. Algorithm B for trie TR has time complexicity O(nm/logm).

Step 3 is done with a modified Algorithm B. In Algorithm B, the value s[j] is
the starting position of the latest minimal substring containing the prefix P[1..5].
Two changes are needed in the accounting of the minimal substrings. First, it
is not enough to keep only the starting position, but also the ending position is
needed. Second, keeping only the latest minimal substring is not enough. Instead,
the minimal substrings containing P; ---P; are stored into a queue @[j]. The
algorithm is given below.

Algorithm B for sequence of pieces (Step 3 of Algorithm C)

1 for j < 0 tok do Q[j] < 0
2 for i + 1 to n do
3 BEGIN(R) < ¢; END(R) < i — 1; aApPEND(Q[0], R)
4 for each P; with minimal substring S ending at ¢ do
5 if not EMPTY(Q[j — 1]) then
6 while not EMpTY(Q[j — 1]) and
END(TOP(Q[j — 1])) < BEGIN(S) do
7 R+ por(Q[j —1])
8 if j = k then report minimal substring T[BEGIN(R)..{]
9 else END(R) + i; APPEND(Q[j], R)

The minimal substrings ending at 7 (line 4) are found by Step 2 of Algorithm C.
Therefore, Steps 2 and 3 are best run in parallel, so that Step 3 immediately
processes any minimal substrings found by Step 2.

Theorem 10. Step 3 of Algorithm C has time complezity O(nm/logm).

Proof. Step 3 works in time @(n + ZZ:l ms(Py,T)). This is clear but for the
innermost loop. Every round of that loop removes an item from a queue, so the
total time spend in the loop cannot be more than the time spend elsewhere adding
items to the queues. We still need to show that

k
st(Ph,T) =0 < o >
— : logm

Let Py = Plap..bp] and let j1, ..., jp,) be a subsequence of ap, ..., by such that

{Pjis - pjp,, } is the set of (Py) characters appearing in Py. Let T'[iq, ..ip,] be

a minimal substring containing an occurrence i,,,...,%, of P,. The minimal
substring will contribute 1 to the above sum. This cost will be evenly distrib-
uted among the pairs (¢, j) where i € {3;,,.. .,ij(Ph)} and j € {ap,...,bn}. The
number of such pairs is (P)| Py|. Given a pair (7, j) that gets a share of a cost, j
uniquely identifies the piece P,. By the condition ; = p;,, 7 identifies the j; with
i = i;,. By Lemma 3, the minimal substring is then unique to (¢, j). Therefore,
no pair (%, j) can get more than one share of the cost of one minimal substring,
giving an upper bound 1/ minp((Pr)|Ps|) for the total cost assigned to a pair.
By (2) and the fact that (Py)|Pn| > |Pn|log{Pr) when (Py) > 2, the cost is
O(1/logm). Since the number of different pairs (¢, j) is nm, the total cost is
O(nm/logm). O

The additional space requirement of Step 3 can be @(n) because the queues
can grow large. However, from the trie 7R, we can get all potential starting pos-
itions of minimal substrings containing P; up to the current position. The queue
Q[j—1] needs to keep only those minimal substrings containing P; - - - Pj_y which
best match the potential starting positions. By purging the unneeded minimal
substrings from the queues when necessary, the additional space requirement can
be kept at O(m).

To summarize, Algorithm C works in O(nm/logm) time and O(m) additional
space. Like Algorithm B, it is an on-line algorithm and needs only O(m) time to
process each character.

6 Algorithms D and DB

The algorithms in the previous sections work in O(m) extra space. Faster episode
matching is possible if more space is available. Even O(n) text scanning time can
be achieved but this may need exponential space. In this section, we will describe
an algorithm that works already in moderate space but can take advantage of
what space is available. It is based on the “Four Russians” technique that is
well-known in approximate string matching [7,13].

Algorithm B computes the full table s[0..m] for every text position, even
though knowing just s[m] would be enough. The first algorithm of this section,
Algorithm D, computes the full table s[0..m] only at every hth position (for a
suitably chosen h) and just s[m] at other positions.

Let s;[j] denote the value of s[j] at position 7. Assume that s,[0..m] is known
for some k. The value s(x41)[j] must be one of the values in the nondecreasing
sequence o;[1..h + 1] = (sgnlf], sknld — 10, .-, sea[1], kh + 1, kR + 2, (k +
1)h — j + 1), and which it is depends only on the substring T'[kh + 1..(k + 1)A].
Similarly, assuming i < h < m, sgj4;[m] must be one of the values ¢*[1..i + 1] =
(skn[m], skn[m—1], ..., skn[m—1]) depending only on the substring T'[kh+1..kh+

Algorithm D starts by building a full trie of height h, that is, a trie contain-
ing all strings of length h in the transformed alphabet {0,...,(P)}. Each leaf
representing a string S stores a table ds[1..m] such that s y1y,[j] = oj[ds[J]]

for j = 1,..., m. Similarly, each internal node at depth i representing a string S
stores the value 0° such that sgjyi[m] = ¢[§°]. The size of the augmented trie
is O(mc?), where ¢ = (P)+1 is the size of the transformed alphabet. The trie
can be computed in O(mc") time.

Armed with the trie, Algorithm D then scans the text and computes the table
s[0..m] at every hth position and s[m] at every position reporting a new minimal
substring whenever s[m] changes. The scan works on-line and needs O(n+nm/h)
time.

Algorithm D

1. Build a full trie of height h.

2. Augment the trie with the § values.

3. Using the trie, scan the text computing s[0..m] at every hth position and
s[m] at every position.

The algorithm works in O(n + mel + nm/h) time and O(mch_) additional space.
If enough space is available, we can choose h = log. n — log, log, n, thus getting
an algorithm that works in O(n+nm/log, n)) time and O(nm/log.n) additional
space. If the additional space is limited to s = o(nm/log.n), the algorithm works
in O(n + nm/log.(s/m)) time.

A large alphabet size ¢ is bad for Algorithm D while it is good for Al-
gorithm B. Algorithm DB combines these two to achieve lesser dependence on
the alphabet size and better worst case time complexity. For suitably chosen [,
Algorithm D does the matching for the prefix P[1..[] and Algorithm B for the
suffix P[l 4+ 1..m].

Algorithm DB
for i+ 1 tondo

1. Execute a step of Algorithm D to compute s;[l].
2. Execute a step of Algorithm B to compute s;[l 4+ 1..m].

Algorithm B updates the entries s[l + 1..m] exactly as often as if it was
computing the whole table. Tts time complexity is, therefore,

On+ > ms(P[1.4],T)
Jj=l+1

Let ¢ = (P[1..1]). Using the technique of Inequality 1 to analyze the sum, we
can distribute the costs evenly among the ¢; different characters of P[1..l]. This
gives O(n(m —1)/¢;) as Algorithm B’s contribution to the time complexity of
Algorithm DB.

The combined algorithm works in O(n + lclh +nl/h+n(m—1)/¢) time and
O(lcl') additional space. With the time-optimal choice of h, the time is O(n +
nl/log,, n+ n(m —1)/c;). We will choose I to minimize the time. In the worst
case, we have [& m/2 and ¢; =~ logn/loglogn. This gives an algorithm working

in O(n 4+ nmloglogn/logn) time and O(nmloglogn/logn) additional space.
Similar analysis for the case where additional space is limited to O(s) gives the

running time O(n + nmloglogs/log(s/m)).

7 Approximation Algorithms for Problem 2

The problem considered in this section is to find the length w of the shortest
substring of T' that contains P. Both of the algorithms of this section return a
value @ with the approximation guarantee w < @ < (1 + €)w, for an arbitrary
e> 0.

The first algorithm, Algorithm AA; uses the simple text scan that was also
used in Algorithm A. The basic operation is sCAN(h,I) which works as follows.
Starting from every hth position of the text 7', the operation scans [characters
forward looking for the episode P. The operation returns the smallest number of
characters scanned from a starting position before finding an occurrence of P. If
SCAN(h,!) returns @, it is known that @ — h < w < @. If no occurrences were
found, it must be that w > [— h 4+ 1. The procedure works in O(nl/h) time.

In the first part of Algorithm AA, a binary search is used for finding the
j € {0,...,|log(n/m)|} for which scaN(2/m,2/+*1m — 1) finds an occurrence
but sCAN(27~'m, 2/m — 1) does not. This requires O(n loglog(n/m)) time. As a
result, it is known that 20 'm < w < 2/+'m.

Finally, Algorithm AA does scan(h, 2/t m+h —1). The return value @ then
satisfies

V- "m<w<®<w+ h.

Selecting h = 2/~1me, we get w < @ < (1+¢)w. This part requires O(n/¢) time.
Overall, Algorithm AA works in O(nloglog(n/m) + n/¢) time. Like Al-
gorithm A, it is alphabet independent, runs in O(1) additional space, and is
easily modified for other kinds of patterns.
The other approximation algorithm, Algorithm AB, is a simple modification
of Algorithm B. Let h = 1 4 |me]. Line 4 of Algorithm B is replaced with

4! if (i — 1) mod h = 0 then s[0] < i; WAITS[p;] < WAITS[p;] U {1}

In other words, s[0] is only changed at every hth position. These lines are the only
place where new values enter the table s; otherwise values are just copied from
one entry to another. Each entry s[j] is the starting position of the latest minimal
substring containing P[1..j]. With the modifications, the starting positions can
be up to h — 1 smaller than they would be in the original algorithm. As a result,
the reported minimal substrings are longer than actual minimal substrings by at
most h — 1. Thus, the algorithm has (1 4 ¢) approximation ratio.

Algorithm AB has the running time O(n + u), where u is the number of times
an entry of s changes. With the modifications, only O(n/h) different values are
entered into the table, which means that no entry can change more than O(n/h)
times. Therefore, u = O(nm/h) and the running time is O(n + n/¢).

8 Concluding Remarks

We have presented a new class of string patterns, called episodes, and given
several algorithms for two different episode matching problems. Despite their
simple formulation, episode matching problems can be quite nontrivial as our
algorithms demonstrate. Indeed, we have just scratched the surface of episode
matching problems. In addition to the various problems that can be derived from
the basic episode conditions, there are the generalizations; such as occurrence
times and general episodes, that rise from the applications to event sequences
[6,5]. Other aspects that we have mostly ignored in this paper include average
case analysis and lower bounds.

9 Acknowledgements

Discussions with Mordecai Golin, Heikki Mannila and Esko Ukkonen have been
helpful in writing this paper.

References

1. A. V. Aho, J. E. Hopcroft and J. D. Ullman: The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

2. 7. Galil and K. Park: An improved algorithm for approximate string matching.
SIAM J. Comp., 19(6) (Dec. 1990), 989-999.

3. G. M. Landau and U. Vishkin: Fast parallel and serial approximate string matching.
J. Algorithms, 10(2) (June 1989), 157-169.

4. J. H. van Lint and R. M. Wilson: A Course in Combinatorics. Cambridge Uni-
versity Press, 1992.

5. H. Mannila and H. Toivonen: Discovering frequent episodes in sequences. Proc. 2nd
International Conference on Knowledge Discovery and Data Mining (KD1D’96),
146-151. AAAT Press 1996.

6. H. Mannila, H. Toivonen and A. I. Verkamo: Discovering frequent episodes in
sequences. Proc. 1st International Conference on Knowledge Discovery and Data
Mining (KDD’95), 210-215. AAAI Press 1995.

7. W. J. Masek and M. S. Paterson: A faster algorithm for computing string edit
distances. J. Comput. System Sci., 20 (1980), 18-31.

8. S. B. Needleman and C. D. Wunsch: A general method applicable to the search
for similarities in the amino acid sequences of two proteins. J. Molecular Biol. 48
(1970), 443-453.

9. P. H. Sellers: The theory and computation of evolutionary distances: pattern recog-
nition. J. Algorithms, 1(4) (Dec. 1980), 359-373.

10. H. Toivonen: Discovery of Frequent Patterns in Large Data Collections. Ph.D.
Thesis, Report A-1996-5, Department of Computer Science, University of Helsinki,
1996.

11. E. Ukkonen: Finding approximate patterns in strings. J. Algorithms, 6(1) (May
1985), 132-137.

12. S. Wu, U. Manber: Agrep — a fast approximate pattern-matching tool. Proc. Useniz
Winter 1992 Technical Conference, 153-162. Jan. 1992.

13. S. Wu, U. Manber and G. Myers: A subquadratic algorithm for approximate limited
expression matching. Algorithmica, 15(1) (Jan. 1996), 50-67.

Appendix. Proof of Theorem 9
Let Py, Pa, ..., Py be strings over alphabet X satisfying the following conditions.

Condition 1.
|Pi|+ |P2|+ -+ |Ps| <m

Condition 2. Foralli=1,... k

(P >2 and |P;|log(P;) — loglog(P;) < logm — loglogm

or
(P)=1 and |P;] <logm — loglogm.

The pieces of P in the trie of Algorithm C satisfy these conditions.

Let TR be the trie build from the strings Py, Ps, ..., Pr. We shall prove that
Algorithm B for trie TR has time complexity O(nm/logm), where n is the
length of the text. By Theorem 8, Algorithm B for trie TR has time complexity
O(n + |X| + pms(TR,T)). After alphabet transformation, |X| < m + 1. Tt is,
therefore, enough to show that pms(TR,T) = O(nm/logm).

We will start by bounding the size |TR| of the trie.

Lemma 11. |TR| = O({TR)m/logm), where (TR) is the number of different

characters in TR.

Proof. Let Yrg be the set of characters in TR and let I' be a subset of Xyg.
Consider those strings P; that contain at least one of each of the characters in I
and no characters in Yrgr \ I'. Let mp be the total length of these strings and
let TRr be the trie build of them. Based on Condition 2, it can be shown that

mr (1 + log nT—F)

logm

|TRr| =0

Clearly, [TR| < 3 pc 9,5 [TRr|. The sum is maximized when

m m

M= S5l = 9(TR)

for all I', giving the result. O

Next, we will analyze pms(TR,T) using the amortized analysis technique
from Section 4. Since there is one-to-one correspondence between nodes V\{root}
and edges F in the trie TR, we can redefine pms(TR,T) as

pms(TR,T) = ms(str(e),T) ,
ec B

where sTR(e) is the concatenation of the labels on the path from the root to e
including the label of e itself. Let £ be a relabeling of the edges such that, for all
e € FE, £(e) € sTR(e). Then, following (1),

pms(TR,T) < 3 ms((e), T) = 3. e € B | £(c) = c}ms(e,T) . (3)

ecE ceX

Let L be the set of all such relabelings £. For all I' C Yy, let Ly C L be the
set of relabelings such that ¢(e) € I' U {LABEL[e]} for all e € E. Let L% C Lp
be the set of relabelings that maximize the number of edges e with £(e) € I".

By Lemma 11, there exists a constant b such that |TR| < b(T'R)m/log m for
large enough m. Let ¢ = [bm/log m]. Then

ITR| < (TR)q - (4)
We will prove the following lemma at the end of the appendix.

Lemma 12. There exists a nonempty subset I' of Xpr and a relabeling ¢ €
LR such that no character of I' appears more than q times in the relabelled
trie TR.

Consider now the trie TR relabelled with ¢ of Lemma 12. Since £ € L7,
every path from the root to a leaf can be divided into two parts, the first having
only labels in Xrgr \ I' and the second only labels in I". We call the latter parts
the I'-tails of trie TR.

Removing the I'-tails from T'R and the corresponding suffixes from the strings
Py, ..., Py, we get atrie TR’ build from strings P{, ..., P/. The strings P/, ..., P/
satisfy Conditions 1 and 2 since |P/| < |P;| and (F}) < (F;). Therefore, Lem-
mas 11 and 12 apply to TR, too, and there exist I'" and £’ with the properties
stated in Lemma 12.

Applying this procedure recursively until T'R is empty, we get a partition
1’ 1", ... of ¥rg and the corresponding sequence of relabelings £,¢/ ¢
Combining the relabelings by restricting each £ to the corresponding I'-tail, we
have a relabeling of T'R such that no character appears more than ¢ times in the

relabelled trie. Therefore, by (3),

pms(TR,T) < ¢ Z ms(c,T) < qn .
ceX

Since ¢ = O(m/logm), this completes the proof of the theorem.
The only thing left is to prove Lemma 12.

Proof (of Lemma 12). This proof is closely related to the maximum bipartite
matching problem. Let G be a bipartite graph (X UY, F'), where X contains a
vertex z, for each edge e in TR, and Y contains ¢ vertices 4!, yZ, ..., y? for each
character ¢ € U7 p. Vertex z. is connected to the vertices y!, ... y? iff e can be

relabelled with ¢. Note that, by (4), | X] < Y.

A matching M is a subset of F' such that no vertex is an endpoint of more
than one edge in M. Matching M is complete if it matches every & € X. Given
a matching M, let fas be the relabeling of trie TR with far(e) = ¢ if z. is
matched to one of the vertices y?, ..., y¢, and £ar(e) = LABEL [e] otherwise. If M
is complete, £, satisfies the conditions of the lemma when we choose I' = Yy g.

Given a matching M, an alternating path is a path from a vertex z € X
to a vertex y € Y, where every even-numbered edge is in M and every odd-
numbered edge (including the first and last) are in F'\ M. An alternating path
is an augmenting path if neither 2 nor y is matched in M. The classic result on
bipartite matching is that a matching M is maximal if and only if there are no
augmenting paths (see e.g. [4, Sect. 5]).

Suppose a maximal matching M is not complete. Let Y’ be the set of vertices
y € Y such that there is no alternating path to y from a non-matched vertex
z € X. All non-matched y € Y must be in Y. Y’ is nonempty, because there are
non-matched vertices in Y, since |X| < |Y].

Let X’ be the set of z € X that are connected to some y € Y’. By definition
of Y/ all x € X’ are matched in M. Assume there is 2’ € X’ that is matched
to y € Y\ Y'. By definition of X’, 2’ is also connected to some y' € Y’ and
by definition of Y \ Y’, there is an alternating path from a non-matched vertex
z € X \ X’ to y. But then we could extend the alternating path from y to z’ to
y'. This is a contradiction. Therefore every = € X' is matched to y € Y.

Let G’ be the graph G restricted to X’ UY’ and let M’ be the matching
M restricted to G’. By the above, M’ is a complete matching for G’. For any
¢ € YR, yl, ..., yd have the same connections in G and are, therefore, either all
in Y or all in Y \ Y. Let I" be the set of ¢ € Ypr with 3% in Y’. Then X'
represents the edges of T'R that can be labelled with a character in I". Since all
x € X' are matched in M', €y € LP*, and no ¢ € I appears more than ¢ times
in the trie TR relabelled with £as/. O

