A lower bound for approximating the geometric minimum weight matching

Gautam Das* Michiel Smid†

January 6, 1999

Abstract

Given a set S of $2n$ points in \mathbb{R}^d, a perfect matching of S is a set of n edges such that each point of S is a vertex of exactly one edge. The weight of a perfect matching is the sum of the Euclidean lengths of all edges. Rao and Smith have recently shown that there is a constant $r > 1$, that only depends on the dimension d, such that a perfect matching whose weight is less than or equal to r times the weight of a minimum weight perfect matching can be computed in $O(n \log n)$ time. We show that this algorithm is optimal in the algebraic computation tree model.

Keywords: Minimum weight matching, lower bounds, computational geometry.

1 Introduction

Let S be a set of $2n$ points in \mathbb{R}^d, where $d \geq 1$ is a (small) constant. We consider sets of edges having the points of S as vertices. Such a set M is called a perfect matching of S, if each point of S is a vertex of exactly one edge in M. In other words, a perfect matching is a partition of S into n subsets of size two. The weight $\text{wt}(M)$ of a perfect matching M is defined as the sum of the Euclidean lengths of all edges in M. The minimum weight matching $\text{MWM}(S)$ of S is the perfect matching of S that has minimum weight.

*Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, USA. E-mail: dasg@msci.memphis.edu.

†Department of Computer Science, University of Magdeburg, D-39106 Magdeburg, Germany. E-mail: michiel@ig.cs.uni-magdeburg.de.
The best known algorithm that computes a minimum weight matching is due to Vaidya [6]; its running time is bounded by $O(n^{5/2}(\log n)^4)$ if $d = 2$, and $O(n^{3-1/c^d})$ if $d > 2$, for some constant $c > 1$.

Rao and Smith [5] considered the easier problem of approximating the minimum weight matching. Let $r > 1$ be a real number. A perfect matching M of S is called an r-approximate MWM, if $wt(M) \leq r \cdot wt(MWM(S))$. Rao and Smith have shown that an r-approximate MWM, for

$$r = c \cdot \exp(8 \cdot 2^{1-1/(d-1)} \sqrt{d})$$

where c is a constant, can be computed in $O(n \log n)$ time.

In this paper, we will show that Rao and Smith’s algorithm is optimal in the algebraic computation tree model. That is, we will prove the following theorem.

Theorem 1 Let $d \geq 1$ be an integer. Every algebraic computation tree algorithm that, when given a set of $2n$ points in \mathbb{R}^d and a real number $r > 1$, computes an r-approximate MWM, has worst-case running time $\Omega(n \log n)$.

Note that this lower bound even holds for dimension $d = 1$. Moreover, it holds for any approximation factor r, even one that depends on n. For example, computing a 2^{2n}-approximate MWM has worst-case running time $\Omega(n \log n)$.

Our proof of Theorem 1 uses Ben-Or’s theorem [1]. The proof technique that we use is related to those used in Chen, Das and Smid [2], and Das, Kapoor and Smid [3].

2 The proof of Theorem 1

In this section, we prove Theorem 1 for the case when $d = 1$. Clearly, this implies an $\Omega(n \log n)$ lower bound for any dimension $d \geq 1$.

We assume that the reader is familiar with the algebraic computation tree model. (See Ben-Or [1], and Preparata and Shamos [4].) Our lower bound will use the following well known result.

Theorem 2 (Ben-Or [1]) Let V be any set in \mathbb{R}^n and let B be any algorithm that belongs to the algebraic computation tree model and that accepts V. Let $\#V$ denote the number of connected components of V. Then the worst-case running time of B is $\Omega(\log \# V - n)$.

2
Let \mathcal{A} be an arbitrary algebraic computation tree algorithm that, when given as input a sequence of $2n$ real numbers x_1, x_2, \ldots, x_{2n} and a real number $r > 1$, computes an r-approximate MWM for the x_i’s. We will use Theorem 2 to prove that \mathcal{A} has worst-case running time $\Omega(n \log n)$.

Note that algorithm \mathcal{A} solves a computation problem. In order to apply Theorem 2, we need a decision problem, i.e., a problem having values YES and NO. Below, we will define such a decision problem; in fact, we will define the corresponding subset $V \subseteq \mathbb{R}^{2n}$ of YES-inputs.

Fix the integer n and the real number $r > 1$. We define an algorithm \mathcal{B} that takes as input any sequence of $2n$ real numbers. On input sequence x_1, x_2, \ldots, x_{2n}, algorithm \mathcal{B} does the following.

Step 1. Check if $x_i = i$, for all i, $1 \leq i \leq n$. If not, output NO, and terminate. Otherwise, go to Step 2.

Step 2. Let $\epsilon := 1/(2rn)$. Run algorithm \mathcal{A} on the input $x_1, x_2, \ldots, x_{2n}, r$.

Let M be the r-approximate MWM that is computed by \mathcal{A}. Check if all edges of M have length ϵ. If so, output YES. Otherwise, output NO.

Let $T_\mathcal{A}(n)$ and $T_\mathcal{B}(n)$ denote the worst-case running times of algorithms \mathcal{A} and \mathcal{B}, respectively. Then, it is clear that

$$T_\mathcal{B}(n) \leq T_\mathcal{A}(n) + cn,$$

for some constant c. Therefore, if we can show that $T_\mathcal{B}(n) = \Omega(n \log n)$, then it follows immediately $T_\mathcal{A}(n) = \Omega(n \log n)$.

Let V be the set of all points $(x_1, x_2, \ldots, x_{2n})$ in \mathbb{R}^{2n} that are accepted by algorithm \mathcal{B}. We will show that V has at least $n!$ connected components. As a result, Theorem 2 implies the $\Omega(n \log n)$ lower bound on the running time of \mathcal{B}.

Lemma 1 Let π be any permutation of $1, 2, \ldots, n$, and let $\epsilon = 1/(2rn)$. Then the point

$$P := (1, 2, \ldots, n, \pi(1) + \epsilon, \pi(2) + \epsilon, \ldots, \pi(n) + \epsilon)$$

is contained in the set V.

Proof. Let M^* be the MWM of the elements $1, 2, \ldots, n, \pi(1) + \epsilon, \pi(2) + \epsilon, \ldots, \pi(n) + \epsilon$. Since $0 < \epsilon < 1/2$, it is easy to see that M^* consists of the edges $(i, i + \epsilon), 1 \leq i \leq n$.

3
Consider what happens when algorithm \(B \) is run on input \(P \). Clearly, this input “survives” Step 1. Let \(M \) be the \(r \)-approximate MWM that is
computed in Step 2. We will show below that \(M = M^* \). Having proved this,
it follows that algorithm \(B \) accepts the input \(P \), i.e., \(P \in V \).

Suppose that \(M \neq M^* \). Then \(M \) contains an edge of the form \((i, j)\),
\((i, j + \epsilon)\), or \((i + \epsilon, j + \epsilon)\), for some integers \(i \) and \(j \), \(i \neq j \). (We consider
edges to be undirected.) Since \(0 < \epsilon < 1/2 \), it follows that this edge and,
also the matching \(M \), has weight more than 1/2. Clearly, the optimal
matching \(M^* \) has weight \(nc = 1/(2r) \). Therefore, \(wt(M) > 1/2 = r \cdot wt(M^*) \).
This is a contradiction, because \(M \) is an \(r \)-approximate MWM.

Lemma 2 The set \(V \) has at least \(n! \) connected components.

Proof. Let \(\pi \) and \(\rho \) be two different permutations of \(1, 2, \ldots, n \). Consider
the points

\[
P := (1, 2, \ldots, n, \pi(1) + \epsilon, \pi(2) + \epsilon, \ldots, \pi(n) + \epsilon)
\]

and

\[
R := (1, 2, \ldots, n, \rho(1) + \epsilon, \rho(2) + \epsilon, \ldots, \rho(n) + \epsilon).
\]

in \(\mathbb{R}^{2n} \). By Lemma 1, both these points are contained in the set \(V \). We will
show that they are in different connected components of \(V \).

Let \(C \) be an arbitrary curve in \(\mathbb{R}^{2n} \) that connects \(P \) and \(R \). Since \(\pi \) and
\(\rho \) are distinct permutations, there are indices \(i \) and \(j \) such that \(\pi(i) < \pi(j) \)
and \(\rho(i) > \rho(j) \). Hence, the curve \(C \) contains a point \(Q \),

\[
Q = (p_1, p_2, \ldots, p_n, q_1, q_2, \ldots, q_n),
\]

such that \(q_i = q_j \). We claim that \(Q \) is not contained in \(V \). This will prove
that \(P \) and \(R \) are in different connected components of \(V \).

To prove the claim, first assume that there is an index \(k \), \(1 \leq k \leq n \), such
that \(p_k \neq k \). Then point \(Q \) is rejected by algorithm \(B \) and, therefore, \(Q \not\in V \).
Hence, we may assume that

\[
Q = (1, 2, \ldots, n, q_1, q_2, \ldots, q_n).
\]

Let us see what happens if we run algorithm \(B \) on input \(Q \). This input
“survives” Step 1. Let \(M \) be the \(r \)-approximate MWM that is constructed
in Step 2.

If \(M \) contains an edge of the form \((p_k, p_\ell) = (k, \ell)\), then algorithm \(B \)
rejects point \(Q \), because such an edge has length more than \(\epsilon \). Hence, we
may assume that each edge of \(M \) has the form \((p_k, q_\ell) = (k, q_\ell) \). Let \(a \) and
\(b \) be the integers, \(1 \leq a, b \leq n \), such that \((a, q_i) \) and \((b, q_j) \) are edges of \(M \).
Since (i) \(a \) and \(b \) are distinct integers, (ii) \(q_i = q_j \), and (iii) \(0 < \epsilon < 1/2 \), one
of these two edges must have length more than \(\epsilon \). Hence, algorithm \(B \) rejects
point \(Q \). This completes the proof. ■
References

