Subscription Partitioning and Routing in
Content-based Publish/Subscribe Systems

Yi-Min Wang, Lili Qiu, Dimitris Achlioptas, Gautam Das, Paul Larson, and Helen J. Wang
Microsoft Research, Redmond, WA, USA

Abstract— Content-based publish/subscribe systems allow
subscribers to specify events of interest based on event contents,
beyond pre-assigned event topics. When networks of servers are
used to provide scalable content-based publish/subscribe ser-
vices, we have the flexibility of partitioning existing subscrip-
tions and routing new subscriptions among multiple servers to
optimize various performance metrics including total network
traffic, load balancing, and system throughput. We propose two
approaches to subscription partitioning and routing, one based
on partitioning the event space and the other based on parti-
tioning the subscription set, and discuss their trade-offs. Fi-
nally, we collect and analyze a set of real-world stock-quote
subscriptions and use that as the basis for our simulation study
to demonstrate the effectiveness of the proposed schemes.

I. INTRODUCTION

The World Wide Web use today predominantly follows
the polling model: a Web user either visits a page using
its URL or goes through a search engine to find pages
of interest; if the information sought is not yet available,
the user needs to periodically poll again in the future for
that same information. As an example, consider a user
who is interested to know when a new game console be-
comes available for a reasonable price at an online store
or auction site. If the Web can additionally support a stan-
dard event notification model through a publish/subscribe
(pub/sub) mechanism that stores users’ subscriptions and
notifies them when information of interest becomes avail-
able, it will greatly relieve burdens on the users and fur-
ther enhance the Web’s utility. Such event notification
services, usually known as “alerts”, have recently begun
to emerge; Yahoo! Alerts and MSN Mobile are two ex-
amples. So far, the popularity of such services has not
reached the point where scalability is a major concern.

We envision a tfuture where the event notification model
of Web access will parallel the polling model both in terms
of usage and universality. Just as Content Distribution
Networks (CDNs) have been deployed to provide scal-
able Web information dissemination, we propose build-
ing Event Distribution Networks (EDNs) to provide scal-
able event dissemination. In contrast with a centralized

pub/sub system where all events and subscriptions are
sent to a single server, an EDN will be built as a self-
configuring overlay network [15] of servers, which pro-
vides content-based event and subscription routing to op-
timize various performance metrics such as total network
traffic and overall system throughput. A geographically
distributed subset of nodes, called edge servers, are de-
ployed to provide a low-latency interface to geographi-
cally distributed subscribers and publishers. Other servers
reside inside the network and may host subscriptions or
route traffic or both. Any subscription submitted to an
edge server may be hosted locally or forwarded to another
server as needed. Any event published through an edge
server will be routed to all server nodes that host at least
one subscription matching the event.

In this paper, we consider the following EDN service
model: an end user submits her subscriptions through a
Web interface by specifying a device-independent ID as
the notification address, for example, a Yahoo! ID or
a .NET Passport ID. Every notification generated by an
event match is first sent to a notification routing service
that recognizes the address. The routing service resolves
the address and forwards the notification to the user, based
on her preference, via instant messaging, email, tele-
phone, cell phone SMS, etc. [22], [26]. The EDN and
the various notification routing services are often operated
by different service providers. The routing services them-
selves can be scalable services based on dynamic request
redirection mechanisms, and their internal network archi-
tectures are typically not exposed to the EDN.

This service model is quite different from the opera-
tional model implicitly assumed in most of the existing
pub/sub systems [1], [7], [30]. In these systems, a sub-
scriber typically submits a subscription to the “closest”
server and essentially joins the event distribution tree as
a leaf node: the notification address is an IP communica-
tion endpoint on the subscriber’s machine, to which the
server directly sends a notification when an event matches
the subscription. In contrast, in the above EDN service
model, the subscribers as well as the notification routing



services are architecturally decoupled trom the EDN. This
gives the EDN the flexibility to freely move subscriptions
around to optimize its internal network performance. In
particular, we focus on two issues resulting from this flexi-
bility in this paper: subscription partitioning and subscrip-
tion routing.

An event service provider would typically start with a
single-server, centralized architecture and then consider
an upgrade to a multi-server, distributed architecture when
the service is successful and the single server can no
longer keep up with the demands. At this point, a large
number of existing subscriptions are available and sub-
scription partitioning reters to the offline process of par-
titioning these subscriptions onto the multiple servers.
Once the existing subscriptions are partitioned and the
servers start providing service, subscription routing refers
to the process of forwarding each incoming new subscrip-
tion to a server; it is essentially an online, incremental
version of the subscription partitioning process.

In this paper, we investigate two dual approaches to
subscription partitioning and routing: Event Space Par-
titioning (ESP) and Filter Set Partitioning (FSP). The for-
mer approach partitions the event space among the servers
and replicates subscriptions if necessary, and the latter ap-
proach partitions the set of subscription filters among the
servers and may need to forward some events to multiple
servers. We show that the ESP approach is well-suited
for applications that perform content-based routing for
equality predicates. We use simulation results based on
actual stock-quote subscription data to demonstrate that
our scheme can achieve good systems and network per-
formance in terms of total network traffic, load balancing,
and system throughput. We also briefly discuss the tratfic-
reduction effectiveness of applying the FSP approach to
range predicates.

1I. NETWORK ARCHITECTURE

The following terminology will be used throughout the
paper: an event source publishes events and a subscriber
submits subscriptions for events of interest. A filter f
is any expression that defines a set of events E, and an
event e matches the filter f if e € Ey. A filter f’ is said
to cover another filter f if £y C Ep. A similar covering
relationship is defined between two sets of filters. A sub-
scription consists of a notification address and a subscrip-
tion filter that conforms to a pre-defined schema. When a
server receives a published event that matches a subscrip-
tion filter, it sends a notification through a routing service
to the corresponding notification address.

To allow the event notification model of Web access to
be as universally useful as the current browsing/polling

model, the EDN must be designed to accommodate a
large spectrum of pub/sub models, including (1) channel-
based pub/sub, where events and subscriptions are identi-
fied by flat channel names or IDs; (2) topic-based pub/sub,
where events and subscriptions are specified with topic
names from a hierarchical topic namespace; (3) attribute-
based pub/sub (commonly referred to as content-based
pub/sub [1], [7]), where events are identified by a set
of attribute-value pairs in a well-defined metadata block
and subscriptions specify equality/range/prefix predicates
on a subset of the attributes; (4) keyword-based pub/sub,
where events are documents and each subscription spec-
ifies a list of keywords to be matched against the entire
document contents; (5) similarity-based pub/sub, where
each event is a document associated with a feature vec-
tor, each subscription is a query with a feature vector, and
the matching is based on a threshold on the similarity be-
tween the two vectors [29]; and (6) pattern-based pub/sub,
where subscriptions can specity predicates on sequences
of events [13], [7].

To support scalable operations under diverse pub/sub
models, EDN provides an extensible content-based rout-
ing mechanism to achieve efficient and effective event
dissemination. Figure 1 illustrates the EDN network ar-
chitecture. For ease of presentation, we assume in the
following discussions that the servers are statically con-
figured into a tree rooted at an edge server directly con-
nected to event sources. The same concept can be ap-
plied to systems that dynamically construct trees through
either “advertisement forwarding” [7] or “SUBSCRIBE
message forwarding” [23] in a peer-to-peer routing sys-
tem.

Instead of distributing events to all servers, which then
perform local subscription matching operations, EDN al-
lows a content-based router at each server to construct
content-based route updates and propagate them upstream
to affect event routing, as shown in Step 3 of Figure 1. Es-
sentially, such updates indicate to the upstream server the
subset of events that need to reach the subtree rooted at
current node. The updates can be based on a dynamic par-
titioning of the event space or summary filters that cover
all currently hosted subscription filters. Optionally, each
server can periodically exchange route updates with other
peers, as shown in Step 4. This would allow a new sub-
scription submitted to any of the servers to be routed to the
server whose content-based routes most closely “match”
(and hopefully already cover) the new one, thus minimiz-
ing the additional event traffic handled by each server.

Two key points distinguish EDN content-based routing
trom existing systems in which each node submits some
subscriptions to its parent and draws from the parent those



Notification
Routing
Service

1. Submit subscription

2. Subscription routing

3. Content-based route updates

4. Peer exchange of route updates
5. Content-based event routing

6. Notification delivery

Fig. 1. EDN network architecture

events that match any of its subscriptions [7], [25]. First,
since the EDN content-based router is architecturally de-
coupled from the main pub/sub filtering engine, the for-
mat of route updates need not be restricted to that of sub-
scription filters. This allows the construction of compact
route updates for efficient routing. Bloom filters [10], as
discussed later, are such an example. Second, the EDN
route updates need not precisely capture the set of re-
quired events. This allows a practical trade-off between
wasted event traffic and routing efficiency, which can be
made to satisfy different performance metrics such as total
network traffic and overall system throughput. In particu-
lar, the use of “imprecise route updates” includes the fol-
lowing two approaches as two extremes of the spectrum:
at one end, the route updates are so imprecise that every
event is delivered to every server, but the routing overhead
is minimum; at the other end, the route updates are so pre-
cise that none of the servers ever receives any unnecessary
event traffic [7], [25], although this usually comes at the
expense of more heavy-weight processing for routing.

[II. SUBSCRIPTION PARTITIONING

As a first step towards understanding subscription par-
titioning and routing issues, we restrict our attention to a
flat, dispatcher-based model: all subscription servers are
connected directly to a dispatcher, which receives events
from a source and forwards each event to a selective sub-
set of servers. In this paper, we focus on the attribute-
based (i.e., content-based) pub/sub model. Let d; be the

total number of attributes. Every event e must specify a
value for each of the d; attributes, and can therefore be
represented as a “point” in the d;-dimensional space, in
which each dimension corresponds to an attribute. Ev-
ery subscription filter f is a conjunction of d; predicates
(dy < dy), each specifying a constraint on a different at-
tribute.

We consider two types of predicates: equality pred-
icates on unordered, discrete value domains with con-
straints like ”StockSymbol=GE”, and range predicates on
ordered value domains with constraints like 35 < Stock-
Price < 40”. Conceptually, we can impose an ordering
on every unordered value domain and view each sub-
scription filter as a “rectangle” [21] in the d;-dimensional
space, except that the rectangle projects into a single point
along any dimension associated with an equality pred-
icate. However, since considering ranges in an artifi-
cially ordered value domain may not be the most effective
approach for constructing summaries, our solutions give
separate treatments to equality and range predicates and
do not attempt to combine them.

For routing efficiency, it is often desirable to make
routing decisions based on only a subset of the d; at-
tributes. In the remainder of this paper, we assume
that subscription partitioning, summary construction, and
event/subscription routing are all based on a given set of d
attributes, d < d;. In practice, the set of d attributes to use
is either obvious (as in the case of stock-quote subscrip-
tions) or can be determined by entropy-based analysis for
identifying most distinguishing attributes.

In general, there are two approaches to partitioning
the overall pub/sub operations among multiple servers:
we either partition the event space or partition the set
of subscription filters. In the Event Space Partitioning
(ESP) approach, given the number of servers NNy, the
d-dimensional space is partitioned into N, disjoint sub-
spaces, each assigned to a ditferent server. A subscription
is hosted by a server if its filter (i.e., rectangle) intersects
the server’s associated subspace. An event is forwarded
only to the server whose subspace contains the point rep-
resenting the event. Summary filters can be used to further
eliminate event traffic belonging to the part of a subspace
that does not currently intersect any subscription filters.
The main advantage of the ESP approach is that it mini-
mizes event tratfic by forwarding each event to at most one
server. The main disadvantage is that, if a subscription fil-
ter intersects multiple subspaces, the subscription needs to
be replicated on multiple servers, thus increasing the total
number of subscriptions hosted by the network, as well
as complicating the task of subscription management for
subscription deletion or subscription state updates.



Filter Set Partitioning (FFSP) is a dual partitioning ap-
proach which always assigns each subscription to a sin-
gle server. Similar subscriptions, i.e., subscriptions likely
to be matched by the same events, are grouped together
and assigned to the same server to allow for the construc-
tion of compact and effective summary filters. Summary
filters from multiple servers may overlap and an event is
forwarded to every server whose summary filter contains
the event. Figure 2 illustrates the difference between the
two approaches for 2-dimensional subscription filters.

Partition 1 } Partition 2

:Pariition 2

[

Partition 1

ESP FSp

Fig. 2. (a) Event Space Partitioning and (b) Filter Set Partitioning.

A. Event Space Partitioning for Equality Predicates

We first consider equality predicates. For each event
and subscription, we use the concatenation of the d pred-
icates as its signature string. We hash the string to obtain
a more uniform distribution in the hash domain, which is
then used as the event space. We chose the ESP approach
because each subscription is represented as a point in the
hash domain and does not intersect multiple subspaces.
So we gain the advantage of sending each event to at most
one server without the drawback of managing replicated
subscriptions.

To achieve a more fine-grain load balancing, we over-
partition the hash domain into N, - R buckets, where
R is the overpartitioning ratio [16]. (Recall that Ny is
the number of servers.) The dispatcher maintains an in-
direction table that dynamically maps each bucket to a
server for event routing. It also makes the table avail-
able to all the servers for subscription routing. There are
several scenarios where run-time re-partitioning is desir-
able. For example, actual run-time server load may devi-
ate significantly from the estimated values; new subscrip-
tions with unanticipated distributions may create load im-
balance; new servers may join and existing servers may
leave. By maintaining the indirection table, the system
can support dynamic load balancing by adjusting some of
the table mapping entries at run time and migrating the
corresponding subscriptions.

Given a large set of existing subscriptions, we hash all
their signature strings into appropriate buckets and assign
to each bucket a weight that is the product of the number
of unique strings and the total number of subscriptions

falling into that bucket. The basic idea is that the first
term gives an estimate of the aggregated event rate un-
der the assumption of uniform event distribution, and the
second term corresponds to the per-event processing over-
head (for example, the overhead of preparing and sending
a notification for each matching subscription).

The problem of the optimal load-balancing assignment
of buckets to servers (i.e., minimizing the maximum load
among all servers) is NP-complete. We use a simple
greedy algorithm from the existing literature [12]: we sort
the buckets in the order of decreasing weights, and at each
step assign the next bucket in the sequence to the server
that currently has the minimum load. It has been shown
that this greedy algorithm has a good performance bound
of within (2 — N%) factor of the optimum [12]. We also
use the same algorithm to perform dynamic load balanc-
ing by redistributing buckets owned by the most heavily
loaded server to other less loaded ones.

To further reduce event traffic, the content-based router
at each server can optionally maintain a Bloom filter [3],
[17], [10] for every bucket it owns and report them to the
dispatcher to block most of the events with unmatched sig-
nature strings. A Bloom filter is a bit vector V' with length
m, which represents a set E of n elements to support
membership queries of the form: “does the given element
e belong to the set 1/?” The key idea is to choose £ in-
dependent hash functions, hq, ho, ..., by, each with range
from 1 to m. The bit vector V is initialized to all 0’s and
selective bits are set to 1 as follows: foreache; € E, 1 <
i < n, the bits at positions hi(e;), ha(e;), ..., hg(e;) are
set to 1. Given an element e, we check the bits at positions
hi(e), ha(e), ..., hx(e) and conclude that e ¢ E if any of
them is O; otherwise, we conjecture that e € E with some
false-positive probability. Analyses [3], [10] have shown
that this probability is minimized for & = In(2)-m/n and,
under this optimal k, the false-positive probability drops
exponentially as m increases.

B. Simulation study with stock-quote subscription data

To evaluate the above scheme, we obtained a snapshot
of actual end-user subscription filters from a major stock-
quote alert service provider. (To our knowledge, this is the
first study based on real data in the content-based pub/sub
literature.) The data contains approximately 1.48 million
subscriptions with 0.29 million unique filters involving
21,741 stock symbols. In Figure 3, we plot the number
of subscriptions ftor stock symbols versus their popularity
ranking on a log-log scale. As we can see, the middle part
of the curve fits quite well with a straight line with slope
-1.07, which suggests that the number of subscriptions for



a stock symbol is proportional to 7% (i.e., Zipf-like dis-
tribution). However, the head and the tail of the curve
deviate from the straight line. The deviation at the head
is quite common, as reported by several Web document
analyses, such as [4], [20]. A possible explanation for the
deviation at the tail is that the number of unique symbols
is limited, whereas Zipf-like distributions tend to exhibit
in a relatively large data set.

\—-Actual -+ | east square line fit for the middle part\

< 1000000
Q
% 100000
<
& 10000 |
[}
(<]
= 1000
c
2
E; 100
2
2 10
=}
7]
H*

1

1 10 100 1000 10000
Stock symbol popularity ranking

100000

Fig. 3.
symbols.

From the various sources on the Web, we obtained a list
of 43,734 stock-related symbols and treat the additional
43,734-21,741=21,993 symbols as less popular ones that
may appear in future subscriptions. In our simulation,
events corresponding to these additional symbols would
be generated, but they might not be forwarded to any
server until new matching subscriptions entered the sys-
tem. To generate new subscription sequences that cover
all 43,734 symbols, we “scaled up” the Zipf-like distribu-
tion in Figure 3 and used the new distribution as the basis
for generating up to 100 million new subscriptions in our
experiments. We also introduced permutation and pertur-
bation on the distribution to study the performance of our
algorithms in the presence of imperfect knowledge. These
experiments were intended to simulate the changes in rel-
ative popularity among the stocks as business and market
situation changes.

In traditional systems without content-based partition-
ing, each subscription would either be hosted by the server
that received it, or be forwarded to some other server
strictly for load-balancing purposes without regard to the
content. In the worst case, every event needs to be sent to
every server. With Event Space Partitioning, each event
only needs to be forwarded to at most one server, So it is
clearly that it can significantly reduce event tratfic. In the
following discussion, we will focus on the load balancing
aspect of the partitioning algorithm and the use of Bloom
filters to further reduce event traffic and possibly increase

Zipf-like distribution for number of subscriptions of stock

system throughput.

Load balancing: We first discuss the offline partition-
ing of the existing 1.48 million subscriptions. Figure 4
illustrates the load-balancing performance of the offline
greedy algorithm by showing the load imbalance — de-
fined as the maximum load divided by the minimum load
among all servers — as a function of the overpartition-
ing ratio £ with Ny, = 50. As R increases, the per-
formance first improves significantly but then saturates
around R = 10. Additional experiments showed that
R = 10 can achieve good load-balancing performance
by bounding the imbalance within 1.20 across a wide
range of Ny. For the remainder of this subsection, we

R &) 1N _._1 AT o N ~SN | (RPh T T [
usc 1 — 11U allu Vg — JU 1UL dll UIC CAPCTLUIICHLS ULLICeSS

otherwise noted.

2.50

2.00

0.50

Load imbalance (max-load/min-load)

0.00

0 2 4 6 8 10 12 14
Overpartitioning ratio (R)

Fig. 4. Load-balancing performance of the greedy algorithm as a
function of the overpartitioning ratio.

We next discuss the online routing of the 100 million
simulated, new subscriptions. In our experiment, we first
partition the existing subscriptions among the 50 servers,
and then we generate new subscriptions, which follow
various distributions. Figure 5 shows the potential load
imbalance caused by new subscriptions. The “Actual”
and “Anticipated” curves correspond to the cases where
the new subscriptions follow the original (i.e., 21,741-
symbol) and scaled-up (i.e., 43,734-symbol) Zipf-like dis-
tributions, respectively. Not surprisingly, the “Actual”
curve stays flat because the new subscriptions proportion-
ally increase the loads across all servers; the “Anticipated”
curve stays within a small imbalance of 1.41 because the
numbers of subscriptions of those less popular new sym-
bols are dominated by those of the existing popular ones.

We also studied the effect of distributions that deviate
trom the anticipated distribution. For the “Perturb100”
curve, we started with the “Anticipated” distribution and
perturbed the value (i.e., number of subscriptions) of each
symbol by up to £% in either direction where z = 100;
that increased the imbalance to 2.83. For the “Per-



~

RPN
) RIS
g 6 s oS
(] N
- A
E ,,/“»/
Es N
£} /
'—g ’ P - Uniform
s 4 P SEEsLl e s T - Permute?
£ ! ~e~Perturb100
g3 -+ Anticipated
E r / -+ Actual
S22}
E
10
-

0 . i : ‘ ‘

0 20 40 60 80 100 120

Number of new subscriptions (in millions)

Fig. 5. Load imbalance as a function of new subscriptions.

mute7” curve, we divided the sorted set of symbols into
y chunks where y = 7 and randomly permuted the sym-
bols within each chunk; that increased the imbalance to
4.18. The “Uniform” curve corresponds to the case where
the new incoming subscriptions follow a uniform distribu-
tion, which is unlikely to occur in practice but is included
as a test case for our online repartitioning algorithm. The
load imbalance increases to 6.66 in this case.

Figure 5 demonstrated that the load imbalance can be
significant it the distribution of new subscriptions devi-
ates significantly from that of existing subscriptions due
to, for example, changes in relative popularity of certain
stocks. Further experiments showed that the simple online
repartitioning algorithm works well: even for the “Uni-
form” case and with a low imbalance threshold of 2.0
for triggering repartitioning, the algorithm was invoked
only five times during the entire course of adding 100 mil-
lion new subscriptions; each time it involved reassigning
only three buckets from the maximum-load server to three
other servers and the number of migrated subscriptions
was around 0.7% of the total number of subscriptions at
repartitioning time.

Bloom-filter summary: We next evaluate the perfor-
mance of Bloom filters as a summary mechanism for trat-
fic reduction. With R = 10 and N, = 50, the average pro-
cessing time per event at the dispatcher is approximately
3.6 microseconds on a dual-proc 2.2GHz Pentium ma-
chine with 1GB memory. The false-positive rate across
all servers was less than 1%. Since the true positive rate
with a precise summary is 21,741 / 43,734 = 49.7%, the
use of Bloom filters reduced the event traffic by more than
100%-(49.7%+1%) = 49.3% at the end of the offline par-
titioning algorithm, compared to the case without Bloom
filters. The memory usages for Bloom filters at the server
and the dispatcher are 4.3KB and 215KB, respectively.

Note that we could have instead used a per-bucket sym-

bol dictionary as a precise summary to eliminate all false-
positive event traffic. Since the number of symbols per
bucket is small in this case and so the dictionary lookup
time is unlikely to become the bottleneck with respect to
the dispatcher’s outgoing link, minimum event traffic can
be achieved without sacrificing system throughput. This
may not be the case as the number of per-bucket symbols
increases. For example, we have measured the dictionary
lookup time involving 100,000 random symbols and 55%
true positive rate to be 653 microseconds; the correspond-
ing Bloom filter testing time ranged from 3.1 to 4.7 mi-
croseconds, with an extremely low false-positive rate. As-
suming a 100Mbps link and an average message size of
1KB, the dispatcher’s outgoing link is capable of consum-
ing one message approximately every 100 microseconds.
By using the dictionary, the dispatcher’s CPU becomes
the bottleneck and the system throughout is calculated as
1/(653%1075) = 1,531 messages per second. In contrast,
by using the Bloom filters, the link is the bottleneck and
the throughput becomes 1/(0.55 * 100 * 1075) = 18,181
messages per second, which is more than an order of mag-
nitude higher.

C. Filter Set Partitioning for Range Predicates

In the case of range predicates, every event is a point
and every subscription is a rectangle. We choose the Filter
Set Partitioning approach to simplify subscription man-
agement. We group together rectangles that are close to
each other in the event space by using an offline bulk-
loading R-tree algorithm [11]. It constructs an R-tree [2]
with all subscription rectangles residing at leaf nodes. We
force the number of children of the root node to be equal
to the number of servers, and assign each of the sub-
trees at the root node to one server. Each server picks
a level of its sub-tree, and uses the bounding rectangles
residing in the nodes at that level as the summary filter.
The content-based router at the dispatcher collects such
bounding rectangles from all servers and builds another R-
tree for routing events. (Alternatively, the dispatcher can
use a separate R-tree for each server.) Using more bound-
ing rectangles per server allows more precise summaries
with lower false-positive rates, but incurs higher load on
the dispatcher. So the maximum number of bounding
rectangles per server is often dictated by the throughput
requirement at the dispatcher. Each server also period-
ically exchanges bounding rectangles with other servers
and maintains an R-tree for similarity-based routing of in-
coming subscriptions.

Our experimental results showed that offline R-tree-
based partitioning can cut down the amount of event traf-
fic by 20% to 60%, compared to random partitioning,



Moreover, R-trees of bounding rectangles are an efficient
content-based routing mechanism: with Ny = 50 and 10
bounding rectangles per server, the average processing
time per event at the dispatcher is approximately 3.0 mi-
croseconds.

TV. REILLATED WORK

A large number of prototype pub/sub systems have ap-
peared in the literature, including Echo [9], Elvin [24],
Gryphon [1], Herald [5], Hierarchical Proxy Architec-
ture [30], Information Bus [18], JEDI [8], Keryx [28],
Ready [13], SCRIBE [23], and SIENA [7], [6]. The EDN
content-based routing was inspired by the quench expres-
sions in Elvin, the hybrid matching schemes in Ready, the
vector annotation in Gryphon, the filters poset in SIENA,
and the subscription merging in Hierarchical Proxy Ar-
chitecture. Similar ideas have also appeared outside the
pub/sub literature. For example, each sensor node in the
Directed Diffusion work [14] establishes sufficient “gradi-
ents” with its neighbors in order to draw events at required
rates; each router in the XML router work [25] forwards
to its parent the disjunction of its “link queries” received
from the child nodes. None of the above related work,
however, has explored the additional degree of freedom to
partition and route subscriptions, and studied the perfor-
mance benefits.

There have been several recent papers on using
similarity-based clustering in the pub/sub setting. But all
of them are concerned with reducing the total number of
required IP multicast addresses for notification delivery,
while the EDN subscription partitioning algorithms aim at
enabling compact summaries for event traffic reduction,
before notifications are generated. The Group Approxi-
mation Algorithm described in [19] tries to combine ac-
tual multicast groups into approximate groups, while in-
troducing the least amount of false-positive traffic. For
multi-party applications, [27] proposed using the k-means
method to group subscribers with similar sets of publish-
ers that they are interested in, so as to minimize overall
wasted event traffic. The grid-based clustering framework
in [21] partitioned the event space into cells, and associ-
ated a feature vector with each cell to indicate the set of
subscribers interested in events falling into that cell. The
cells are then clustered to minimize the expected waste of
event traffic.

V. SUMMARY

We have described the motivation for building Event
Distribution Networks (EDNs) to provide scalable event
dissemination. At the core of EDN is a content-based

routing mechanism that allows both events and subscrip-
tions to be routed based on their contents to optimize
various systems and network performance metrics. We
have proposed two subscription partitioning and routing
approaches, Event Space Parititoning (ESP) and Filter
Set Partitioning (FSP), and discussed their relative advan-
tages. We have argued that the ESP approach eliminates
the need to forward any event to more than one server
and is well-suited for content-based routing with equal-
ity predicates. Through simulation study based on actual
stock-quote subscription data, we have demonstrated that
an overpartitioning approach could achieve good load bal-
ancing both statically and dynamically, while significantly
reducing network traffic, and using Bloom filters as an ad-
ditional summary mechanism could further reduce event
traffic with little performance overhead. We also briefly
discussed the FSP approach to partitioning subscriptions
based on range predicates, and used preliminary exper-
imental results to demonstrate that R-trees of bounding
rectangles could be an efficient and effective summary
mechanism.

REFERENCES

[1] G. Banavar, T. D. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom,
and D. C. Sturman. An efficient multicast protocol for content-based
publish-subscribe systems. In International Conference on Distributed
Computing Systems, pages 262-272, 1999.

[2] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An
efficient and robust access method for points and rectangles. In Proc. of
the ACM SIGMOD Intl. Conf. on Management of Data, May 1990.

[3] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422-426, 1970.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching
and Zipf-like distributions: Evidence and implications. In Proc. of INFO-
COM. 1999.

[5] L. Cabrera, M. Jones, and M. Theimer. Herald: Achieving a global event
notification service. In Proc. of HotOS VIII, May 2001.

[6] A. Carzaniga, J. Deng, and A. L. Wolf. Fast forwarding for content-
based networking. In Technical Report CU-CS-922-01, Departinent of
Computer Science, University of Colorado, November 2001.

[7]1 A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation
of a wide-area event notification service. ACM Transactions on Computer
Systems, 19(3):332-383, 2001.

18] G.Cugola, E. D. Nitto, and A. Fuggetta. Exploiting an event-based intras-
tructure to develop complex distributed systems. In International Confer-
ence on Software Engineering, pages 261-270, 1998.

[9] G. Eisenhauer, F. Bustamante, and K. Schwan. Event services for high

performance computing. In Proc. of Ninth High Performance Distributed

Computing (HPDC-9), August 2000.

L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: A scal-

able wide-area web cache sharing protocol. [EEE/ACM Transactions on

Networking, 8(3):281-293, 2000.

Y.J. Garcia, M.A. Lopez, and S.T. Leutenegger. A greedy algorithm for

bulk loading R-trees. In Univ. of Denver Computer Science Tech. Report

#97-02., 1997.

R. L. Graham. Bounds tfor certain multiprocessing anomalies. Bell System

Technical Journal, 45:1563-1581. 1966.

R. Gruber, B. Krishnamurthy, and E. Panagos. The architecture of the

READY event notification service. In Proc. of the 19th IEEE Interna-

tional Conference on Distributed Computing Systems Middleware Work-

shop, 1999,

[10]

[11]

[12]

[13]



[14]

[151

[16]

[17]

[18]

[19]

[20]

[21]

122]

123]

124]

[25]

126]

127]

[28]

1291

[30]

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A
scalable and robust communication paradigm for sensor networks. In
Proc. of Mobile Computing and Networking, pages 56—67, 2000.

J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and W. James. Over-
cast: Reliable multicasting with an overlay network. In Proc. of OSDI,
October 2000

Hui Li and Kenneth C. Sevcik. Parallel sorting by over partitioning. In
ACM Symposium on Parallel Algorithms and Architectures, pages 4656,
1994.

J. Marais and K. Bharat. Supporting cooperative and personal surfing
with a desktop assistant. In Proc. of ACM Annual Symposium on User
Interface Software and Technology (UIST), October 1997.

B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Information Bus — An
architecture for extensible distributed systems. In Proc. of ACM SOSP,
1993,

L. Opyrchal, M. Astley, J. S. Auerbach, G. Banavar, R. E. Strom,
and D. C. Sturman. Exploiting 1P multicast in content-based publish-
subscribe systems. In Proc. of Middleware, pages 185-207, 2000.

V. N. Padmanabhan and L. Qiu. The content and access dynamics of a
busy web site: Findings and implications. In Proc. of ACM SIGCOMM,
2000.

A. Riabov, Z. Liu, J. L. Wolf, P. S. Yu, and L. Zhang. Clustering al-
gorithms for content-based publication-subscription systems. In Proc. of
ICDCS, 2002,

M. Roussopoulos, P. Maniatis, E. Swierk, and et al. Personal-level rout-
ing in the Mobile People Architecture. In USENIX Symp. on Internet
lechnologies and Systems, 1999.

A. L.'l. Rowstron, A. M. Kermarrec, M. Castro, and P. Druschel. SCRIBE:
The design of a large-scale event notification infrastructure. In Interna-
tional Workshop on Networked Group Communication (NGC), pages 30—
43, 2001.

B. Segall and D. Arnold. Elvin has left the building: A publish /subscribe
notification service with quenching. In Proc. of AUUG, 1997.

Alex C. Snoeren, Kenneth Conley, and David K. Gifford. Mesh-based
content routing using xml. In ACM Symposium on Operating System
Principles, October 2001.

Y. M. Wang, P. Bahl, and W. Russell. The SIMBA user alert service archi-
tecture for dependable alert delivery. In IEEE Int. Conf. on Dependable
Systems and Networks (DSN), 2001.

T. Wong, R. H. Katz, and S. McCanne. An evaluation on using preference
clustering in large-scale multicast applications. In Proc. of INFOCOM,
pages 451-460, 2000.

M. Wray and R. Hawkes. Distributed virtual environments and VRML.:
An event-based architecture. In Proc. of the 7 th International WWW
Conference, 1998.

I. W. Yan and H. Garcia-Molina. The SIFI information dissemination
system. ACM Transactions on Database Systems, 24(4):529-565, 1999.
H. Yu, D. Estrin, and R. Govindan. A hierarchical proxy architecture for
internet-scale event services. In Proc. of WETICE, 1999,



