Ranking Objects Based on

Relationships and Fixed

Associations

Albert Angel
University of Toronto

albert@cs.toronto.edu

Surajit Chaudhuri
Microsoft Research
surajitc@microsoft.com

Gautam Das
University of Texas at Arlington
gdas@cse.uta.edu

Nick Koudas
University of Toronto
koudas@cs.toronto.edu

ABSTRACT

Text corpora are often enhanced by additional metadatahwisic
late real-world entities, with each document in which susctities
are discussed. Such relationships are typically obtaihemlgh
widely available Information Extraction tools. At the satirae,
interesting known associations typically hold among theséies.
For instance, a corpus might contain discussions on hatiiss
and airlines; fixed associations among these entities nwyda:
airline A operates a flight to city C, hotel H is located in oty

A plethora of applications necessitate the identificatitassoci-
ated entities, each best matching a given set of keywordssiGer
the sample query: Find a holiday package in a “pet-friendliytel,
located in a “historical” yet “lively” city, with travel opeated by an
“economical” and “safe” airline. These keywords are uriike
occur in the textual description of entities themselveg.(¢he ac-
tual hotel name or the city name or the airline name). Coresettyu
to answer such queries, one needs to exploit both relafjosble-
tween entities and documents (e.g., keyword “pet-friehdbcurs
in a document that contains an entity specifying a hotel néine
and the known associations between entities (e.g., hotelddated
in city C).

In this work, we focus on the class of “entity package finder”
queries outlined above. We demonstrate that existing tquba
cannot be efficiently adapted to solve this problem, as thealte
ing algorithm relies on estimations with excessive runtene/or
storage overheads. We propose an efficient algorithm toepsoc
such queries, over large corpora. We devise early prunidgem
mination strategies, in the presence of joins and agg@ua(iex-
ecuted on entities extracted from text), that do not dependny
estimates. Our analysis and experimental evaluation drareh
synthetic data demonstrates the efficiency and scalabflibyr ap-
proach.

1. INTRODUCTION

In many application domains, such as e-commerce, social
working sites, digital libraries and collaborative knodde repos-

net

Permission to copy without fee all or part of this materiagyianted pro-
vided that the copies are not made or distributed for direntroercial ad-
vantage, the ACM copyright notice and the title of the pudtien and its
date appear, and notice is given that copying is by permissicthe ACM.
To copy otherwise, or to republish, to post on servers or distebute to
lists, requires a fee and/or special permissions from thigher, ACM.
EDBT 2009 March 24-26, 2009, Saint Petersburg, Russia.

Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

itories, to name a few, metadata relate (unstructuredyaéxtoc-
uments to the real-worldntitiesdiscussed in them. For instance,
in Wikipedia, the well-known collaborative encyclopaediz un-
structured document of an article about a person is relatesht
tities such as the person, a birthplace, past employmetituins
tions etc. In other domains, such as news articles, blogpest.
such document-entity relationships can be obtained threddely
available Information Extraction tools ([4], [1]), whichuomati-
cally identify named entities discussed in a document @egson,
City, Company, Product).

Such entities are related viixed associationgypically known
among them. For instance, a table in a relational databasa
ciate neighbourhoods, houses for sale, and schools, \irddha-
tion, thus giving rise tpackage®f associated entities (in this case,
home-neighbourhood-school packages). Such informaaonbe
retrieved from several sources, e.g. from corporate dataha col-
laborative public knowledge repository such as Freebakes{8.
Moreover, it can be eithestatic(e.g. school A is located in neigh-
bourhood B) odynamic(e.g. flights X and hotel Y are currently
offered as a discounted holiday package).

In several instances, the goal is to identify packages whote
ties each best match a given set of keywords. For instana®y us
comments from real-estate listings, blogs, etc., one ma wo
identify a “Victorian”, “3 bedroom” house for sale, locatéd a
“low-crime”, “safe” neighbourhood, that has a school withilih-
gual education” and a renown “swimming team”. As another ex-
ample, using reviews from a travel planning site, one migishw
to identify a holiday package, consisting of a destinatioat tis
generally considered to be “historical” and “lively”, a bbthat
is “pet-friendly”, and travel operated by an airline renofen its
“economical” and “safe” flights. Let us examine this motiagt
example of finding personalized holiday packages in grefgezil.

Consider a corpus of reviews taken from a travel-plannitey si
shown in fig. 1. We assume that entities, such as hotelss citid
airlines, have been automatically identified in individuaVviews,
using a Named Entity Extraction tool. Moreover, we assuneda r
tion containing known associations between entities,taag.hotel
H is located in city C, or that airline A flies to city C. This agion
can be available as a database table in the travel-planit@ig ia-
frastructure, or it can be retrieved from some externals®(e.g.
[8]). Furthermore, some parts of it might change very rarnélst
all (e.g. hotel H is located in city C), whereas others canuigest
to frequent updates (e.g. a discount holiday package contpa
flight by airline A, and a stay at hotel H, is currently beinfpoéd).
Our database thus consistgdoicumentsrepresenting reviews, and
entities of threetypes Hotels, Cities and AirlinesRelationships
between documents and entities are represented by thies tdb

S8 -

Reviews (Documents) Hotels (Entities)

Document-Entity

Relationships
M

u Hotels R
4. " very I
' elegant hotel..” Docld |Hotelld
P d e T
4. “-isarelaxed, R
? seaside resort”

Hotelld HotelName

1 e
h
€. " " 4

— Cities (Entities) | Hotelld
d4 e]Z "

® landscapes..." T Cityld CityName | /¢
- Cities u
4. .. hotelis pet- - " = -1l €1 Cancun e,

4 triendly.but noisy’ Docld [Cityld 1
1 &2 Mexico City - 12

e, Wl
Airlines (Entities) -

Docld Document Text

N Entity Associations
(R)

Cityld | Airlineld

e]l
e
e
e

ezl
e
e
e

ell

4. " stunning

22 31

21 31

21 32

“... reputable,
modern fleet...”

d

s

4. “safe,comfortable

° flight...stunning..

v Airlineld AirlineName |/,

€, Aeromexico [

e

Cityld
5 e32 - 7
e

32 United Airlines

31

Figure 1: Data model

(Docld, Entld) tuples, one table for each entity type. (For in-
stance, a tupléd, e) in table Hotels signifies that the review with
id d discusses the hotel with ie - i.e. e has been extracted as
a topic of discourse from the text @f. Moreover, knownasso-
ciationsbetween entities can be represented in a variety of ways,
e.g. three tables denoting pairwise associations, etc. DAzt
their representation by assuming a vi&wver them. R contains
(e1, e2, e3) package tuplessignifying that hotek, city e2 and air-
line es are associated, i.e. hotel is located in cityes, airline es
flies to city ez, and a flight with airlinees can be combined in a
holiday package with a stay at hotgl. In fig. 1, a user might want
to poll the public opinions, expressed in reviews, to find bday
package in a city that is “historical”, yet “lively”, with aay at a
hotel that is “pet-friendly”, and with travel operated by ‘@to-
nomical” and “safe” airline. These descriptive terms arékaty

to occur within the names of cities, hotels, or airlinesstetandard
keyword search techniques cannot be used to answer sudbsjuer
Moreover, a user is not likely to be interested in all pogsidh-
swers to their queries, but would prefer to be presented witly

a small number of the most relevant results. We term this tfpe
queries agntity Package Findequeries (EPF). The necessary data
to support such queries is a collection of:

1. Documents, which are searched by keywords;

2. Entities each having a Type attribute (e.g. in fig. 1 Hotel
Presidente is an entity of type Hotel);

. Relationshipshbetween documents and entities, expressed as
document-entity pairs, and denoting that a document refers
to an entity; they can be static or dynamic; and

. Associationsamong entities of different types, expressed as
a relation containing tuples of entities; we refer to sugds
aspackages

The aim in entity package finder queries is to identify the lstmo
relevant packages of entities, with respect to each erggyatch-
ing a given set of keywords. This gives rise to the need toescor
packages, entities and documents with respect to the giggn k
word query. The score of a document wrt. a keyword query can be
assessed using standard Information Retrieval techniguef as
textual similarity [17]. Note that entities are typicallptndirectly
related to keywords; for instance, named entity extractiom a
document is typically based on more complex features thasith-
ple presence of certain keywords [4]. For this reason, wesaif
that an entity matches a keyword query if it is related to doents
that match the query. The quality of this match will depenthtom

the number of documents matching the keywords, that artecktla
to the entity, as well as on the strength of the match betwaeh e
such document and the given keywords. Thus, the score ofthe e
tity will be an aggregate of the scores of all documents niatch
the given keywords that are related to it. For example, inffighe
score ofe12 (Hotel Supremo) wrt. keyword query “relaxed” will be
an aggregate of the scores of documefitsds wrt. the keyword
“relaxed”. Finally, to capture the notion that relevant keges are
those that contain, overall, relevant entities, packagesseored
based on an aggregate of their entities’ scores (e.g. in fighel
score of the holiday packadei1, e21, es1) wrt. some query will

be an aggregate of the scoreseef, e21 andes; wrt. the query).

In this work we use a scoring framework that encompasses @ wid
class of scoring semantics.

The essence of the entity package finder problem is to find the
top-k packages with the highest scores, that result fromesayp
gregationsover documents matching a given query, and subsequent
joins between entities of different types, according to a set @ffix
associations. The techniques we propose are applicablgefor
eral entity finder queries, on any domain where documentdean
searched by keywords (e.g. textual corpora, multimediatuetes,
medical databases etc.). In the following, solely for tyeof pre-
sentation, we will restrict ourselves to the case of texpora.

Whereas this problem can be solved using standard RDBMS
technology, the resulting solution would be highly ineffiti. This
is due to the fact that, in such a scenario, the precise sobms
ery entity and package would need to be calculated, follobyed
a selection of the top-k packages. Instead, early ternainatind
pruning techniques can be used, to drastically reduce tessary
processing effort.

Adapting existing such techniques to this problem alsoddad
inefficient algorithms, as they require estimations withpieacti-
cal runtime and/or storage overhead (see sec 3). To overttime
difficulty, we utilize the following intuition: Top scoringpackages
are expected to receive most of their score from top sconng e
tities, which, in turn, are expected to receive most of tisemre
from top scoring documents. In our approach, documentsrare p
cessed in descending score order, with respect to the gayemdrd
query. Using document-entity relationships and entitpaisgions,
the aggregate scores of entities and packages are comimaes,
mentally, and in a rank-aware fashion. Periodictitijit boundson
these scores are computed, and used to prune entities dtabpac
that cannot rank among the final top-k. Thus, our algorithabie
frequently to terminate after processing only a small foacof the
input.

Our main contributions in this paper can be summarized as fol
lows:

e We introduce the Entity Package Finder type of queries, able

to answer useful questions with intuitive semantics.

We formalize the EPF problem in a threshold algorithm frame-
work, and demonstrate that existing techniques cannot-be ef
ficiently adapted to solve this problem, as the resulting-alg
rithm relies on estimations with impractical overhead {run
time, storage).

We propose a complementary early pruning/stopping approac
which interleaves rank-join and aggregation, and overcsome
the need for such estimates. Our approach exploits all-avail
able knowledge regarding possible entity packages to pro-
vide tight bounding on package scores, leading to increased
pruning efficiency.

We analytically and experimentally evaluate the perforoean

of our algorithm, on both real and synthetic data, and demon-

strate its efficiency and scalability.

The rest of the paper is organized as follows: We formalize th
EPF problem, and provide a threshold algorithm frameworkitfo
in section 2. We demonstrate the inapplicability of exigtiach-
nigues (section 3), and propose an efficient algorithm iticed.
We discuss extensions to our algorithm and problem in sedtip.
The efficiency and scalability of our algorithm is demonstdaby
analysis (section 5.1), as well as thorough experimengdliation
(section 5.2), on both real and synthetic data. We reviewrat
lated work in section 6, and conclude in section 7.

2. AFRAMEWORK FOR EPF

Given the entity package finder class of queries introdubede
we subsequently formalize our problem, and describe alibteés
algorithm framework for processing such queries.

2.1 Datamodd

Every document(e.g. review, blog post, etc.) in the corpus, is
associated with a documentdd Every document contairsearch
terms(keywords) (e.gd; in fig.1 contains keywords “very”, “ele-
gant” and “hotel”, among others), and every document-teamip

associated with a score. These scores capture the impetatiee

2.2 Query and Result Model

An entity package findequeryis ann-ary tuple containing sets
of search terms, i.e. a tuple of the fornji¥y, Wa,--- , Wy),
where every; is of the formW; = {w1, w2, - - - }. For example,
in the holiday package case, a query could fpdt-friendly”},
{"historical’, “lively” }, {“safe”}), meaning that the user would
like to find a package with a “pet-friendly” hotel, a “histoai”
and “lively” city, and a “safe” airline.

An answer to such a query is a valid package, such that each
of its entities, s, is related to at least one documei)tcontain-
ing some keyword irf¥;. More formally, an answer is a tuple
(e1,€2,-+ ,en) € Rsuch that, forali € {1,2,---,n}, there
exists a document containing a termw € W, such thatd, e;) €
Mr,. For instance, in fig. 1(e11, e22, e31) is a valid answer to the
query ({“elegant’},{“stunning},{"safe”}). Of course, the more
keywords fromW; d contains, and the more such documents each
entity e; is related to, the higher the relevance of the answer to the
query. Additionally, since users are typically interestedy in see-
ing a small numberk, of the most relevant answers to a query, the
need to score answers arises.

2.3 Scoring Answers

Answer scoring proceeds in two levels: Firstly, entitiesthod
same type need to be scored, based on the degree to which the

term in the document, and can be derived using standard IR mea documents that are related to them, match the given searols.te

sures [17]. We assume the availability of emerted indexover
the document corpus, i.e., for every search term, therésexisef-
ficient way to retrieve all documents containing it, in destiag
score order.

Additionally, real-worldentitiesare represented in our corpus.
Every entity has an entity id, and belongs to one of a number of
typesTy,Ts,--- ,T,. For instance in fig.1 Hotel Presidente is an
entity of type Hotel. In additionp relational tables\/z, contain
the relationshipsholding between documents and entities of type
T;. For example, in fig.1, tabl&/y,:.;s contains tuples of the form
(d, e), signifying that documeni mentions hotet.

Finally, fixedassociationdetween entities are available. Asso-
ciations can be stored in a variety of ways (e.g. one or mdee re
tional tables), and can be either static, or dynamic (i.eqdently
updated). In either case, we assume the existence of aRiewer
this data. R is ann-ary relation, with domairil; x --- x Ty,
and describes the union of all valid query answers: everletup
(e1,- -+ ,en) € R, termed goackage contains associated entities.
E.g.,infig.1, entitieg11, e21 andes; form a valid holiday package.
As R might not be materialized in its entirety, we only requiratth
it be accessible through a restricted API, able to efficjergturn
the packages containing a given entitin a given typeT'.

In the following, we assume that alllr, tables, as well as the
information necessary to provide acces&tdit into main memory,
noting that our algorithms can be extended to handle casesewh
these assumptions do not hhld

This is a reasonable assumption, even for large-scale @orgo
typical document discusses a small number of entities, anevF
ery such relationship we only need to maintain a documentdd a
an entity id. Thus, the total memory overheaddt, tables will
be a small multiple of the number of documents. This is coests
with our empirical observations on a large scale corpusalfdata
(see sec 5.2REAL corpus), where the memory overhead\dt,
tables was, on average, under 10 bytes per document. Moreave
expect the base information behitito fit in main memory, due
to the semantics of the entity package finder problem. Tus,t
is consistent with our empirical observations; tR&A L corpus,
for instance, contained 110K associations, requiring uaM¥B of
main memory.

Thereafter, packages need to be scored, based on the stires o
entities they consist &f

Entities are scored using two functiorS,gg- and Feoms. Faggr
is used to aggregate the scores of multiple documents tinédioo
a specific search term and that are related to an enfity,,, is
then used to combine the aggregated scores of an entity Ifor al
search terms. For example, in fig. 1 assume that documgntig
contain the term “stunning”, with associated scasess., respec-
tively, and documendls contains the term “safe”, with associated
scoress. Since both these documents are related to entity Mex-
ico City, its score wrt. keywords “stunning” and“safe” witle
Feomp (Fagg'r‘(sly 32)7 Fuggr(s?;))-

In the following, we assume thdt,,. is distributive over ap-

pend (i.e. Faggr(s1, 82, y8n) = Fuggr(Faggr (51,82, , 8i),
Faggr(sit1,-++ ,8n))) and subset monotonic (i.€s1,--- ,s;} C
{s1, -+ 85} = Fager(s1, -+ ,8i) < Faggr(sh,---,55)), and
that Fo.mp is monotonic (i.eVis; < s; = Feomp (51,82, , Sn)

< Feom (81,85, -+, sn)). These properties are by no means re-
strictive, as they hold for most scoring functions used iacfice
(e.g. sum, weighted sum, max, etc.).

We note that scoring can also proceed with - being applied
on the results off:,,.,; this can be efficiently reduced to query
processing in the framework initially described, by utilig the
TA-NRA algorithm ([10]). Using these frameworks, we areebl
to capture most interesting and practical semantics fatirsg@n-
tities; for instance, we can require that each query keywairs
in at least one document matching an entity, or that all suchid
ments be considered as a single pseudo-document for thegaurp
of scoring the entity.

For the second task, of scoring packages based on their enti-
ties’ scores, following common practice, we employ a monito
function Fy,. For instance, if for a given query the score of en-

2packages are only scored based on the scores of their corgpris
entities, because, in the EPF setting, packages have béardle
as embodyingertainknowledge. Although our setting can be ex-
tended to “fuzzy packages” with an attached confidence yalug
corresponding changes to the scoring framework, we do bt
discuss such extensions in this work.

Associations|

Hotel CitylAirline

e [& & Top-k
Known [T& & e, Answers

(R) Rank-Aware Join

SeenHotels|

I Aggregation
‘SeenCities‘ Partial Results
y (SeenEnts)

SeenAirlines|

Document-
Entity
Relationships

[d,]e
EAEY

Inverted
Lists

“pet-fﬁendly“ “historical” “Ii\}ely"

Figure 2: Execution Framework

tity Hotel Presidente igq, the one of Cancun is., and that of
Aeromexico isss, the score of the resulting holiday package will
berkg(sl, S2, 83).

2.4 A Threshold Algorithm Framework

We now present a general framework for processing entitii-pac
age finder queries (fig.2).

As seen in fig. 2, processing is driven by sequential accesses

on inverted lists one for every keyword in the query. A list cor-
responding, e.g. to keyword “safe”, consists of documestfia
every document containing the word “safe”, along with ssdtet
denote their relevance to “safe”, in descending score oteeery
document id encountered is used to probe in-mentmgument-
entity relationshiptables (cf. M aiine in fig. 2), S0 as to retrieve
the entities related to the document. The document scoreeand
lated entities are used to update the current known boundstiy
scores. Such information is maintained in the Aggregatiartidl
Result Tables, termefeenEnts for brevity (cf. SeenAirlines in
fig. 2); we describe their functionality shortly.

Using the available score bounds on entities, a partiarorgen
them can be determined (e.g., if entity has a score ifil, 2], and
the score ot; is in the interval2.3, 3.5], then clearlye; will have
a higher score than;). Whenever a query processing algorithm
decides that sufficient information wrt. entity scores igitable
(e.g. the top-3 Airlines, top-2 Cities and top-5 Hotels, dhelir
scores are known), it can use this information to try andutate
the k top-scoring packages. This is done by essentially perform-
ing a multi-way join among the top entities of each type, gsin
probes to the in-memorknown associationgiew, R, to evaluate
the join condition. To avoid superfluous processing effamquery
processing algorithm should use a rank-aware join ope(Htiy),
allowing for earlier termination, without the need to catesi all
top-scoring entities. Such approaches are described in3sand
sec. 4.

Computing Entity Aggregate Scores. For every entity typd’,
we maintain a table&eenEntr (cf. SeenCities in fig. 2), which
captures the current level of knowledge wrt. the most promis
entities inT". Specifically, for every entitye, SeenEntr main-
tains lower and upper bounds on its final scat3(andU B, re-
spectively). These bounds are used as in the Threshold i&igor
([20]), for pruning entities guaranteed not to be part offthal an-
swer, and for early termination. For reasons of efficielSeyp Entr
is indexed by entity id.

Computing Lower Bounds: In order to compute lower bound
information, SeenEntr additionally records, for every entity the

number of times a document relatedetbas been encountered on
every inverted listlist;, NumSeen;, and the score that has re-
ceived up to now from all documents @ist;, AgScore,. Put dif-
ferently, AgScore, is the score that would obtain from the key-
word corresponding tdst;, if no other documents matchingare
found onlist;. AgScore; is a lower bound on the final score ef
wrt. the keyword corresponding {ést;, and the full final score of
e is lower bound byL B = Feoms (AgScore,, AgScore,, - -).

Computing Upper Bounds: In order to calculate an upper bound,
U B, on the score of entity, we utilize, for every inverted ligtst;,
the following items of information. Firstly, the score ofttast doc-
ument retrieved fronkist;, maxUnseen;; this is an upper bound on
the score that any document, not yet retrieved fidity, can have.
Secondly, we require knowledge of the maximum number of docu
ments inlist; that can influence the score @fwhich we term the
cardinality of e in list;, card(e, list;); we shortly discuss ways of
calculating it. The maximum further scorean obtain froniist; is
mazFurther; = Faggr(mazUnseens, - - - , mazUnseen;), where
Flogqr is applied orcard (e, list;) variables with valuenaz Unseen;.
The maximum score can obtain frondist; is mazTotal; = Faggr(
AgScore,, maxFurtheri). Finally, an upper bound on the score of
eiSUB = Feoms(mazTotaly, mazxTotalz, -+).

Computing Entity Cardinalities: Let us how discuss how the
cardinality of an entitye in a list list; can be calculated, by judi-
ciously materializing information about certain entitida a pre-
processing phase, we scan all inverted lists, and calcalatetore
the ids and scores wrlist; of the X entities with the highest car-
dinalities in list;, as well as an upper bounehazCard;, on the
cardinality of all other entities ifist; . By using this information
at query time, for every entity and listlist; we have knowledge
of either i) a useful upper bound on the cardinalityeoin list;
(namely,mazCard;), or ii) the precise score efwrt. list; (in this
case, we record the score in the relevApénEnt table, and set
the relevantNumsSeen; to the special value “ALL"). This enables
the calculation of the maximum scor&{axzUnseenr, obtainable
by any entitye of typeT that has not yet been seen (exploiting the
the monotonicity properties QF,gygr, Feoms). MazUnseen can
be used to compute an early termination criterion. We natetttis
preprocessing has a low overhéad

2.4.1 Access Primitives

Given the structures above, we define two forms of access that
a query processing algorithm can use to access data: Sejuent
Accesses (SAs), and Batch Accesses (BA's) (the latterespond
to standard TA Random Accesses, optimized for the entitiqpe
finder setting).

A SA on an inverted list (alg. 1) essentially retrieves a kfoc
of document ids from the list (line 1), looks up entities tethto
these documents (line 2), and updates bounds on the scdresef
entities (lines 3-8). At some point of time, an algorithmetetines
that a superset of all necessary entities of a tfgeas been iden-
tified (i.e., any entity that does not have a correspondirtgyen
SeenEntr is not needed to identify the query answer). Thus, the

38X is a small number, so that storing these entities and theiesc
requires a negligible amount of storage; for instance, imeaperi-
ments we materializeti’ of all entities, resulting in an additional
storage overhead of less thaud1% the size of inverted lists.

“For instance, on a large, real dataset we used in our expesme
(see sec. 5.2, corpusE A L) this preprocessing requires on average
less than a second per inverted list per entity type; sintilamds
were observed on larger synthetic datasets.

SFor reasons of efficiency, and following common practice;udo
ments are retrieved in blocks, as opposed to one-at-a-time.

Algorithm 1 Sequential Access

Algorithm 3 Layered Algorithm

Input: Aninverted listlist;, corresponding to search term and an entity
typeT
. Retrieve next block of documents and scores fidsty;
. Lookup entities related to these documents usifig (In-memory join
of document ids with\/7)
: for each entity e found, whose related document’s score o
if an entry fore exists in SeenEntr, with NumSeen; #"ALL"
then
Incremente’s NumSeen;
Updatee’'s AgScore; with Fogqr(AgScore;, s), and update its
LB usingFeomp
dseif e has not been pruned fro8een Ent then
Create an entry fore in SeenEntp, with NumSeen; =
1,AgScore; = Fagqr(s), and calculate itd. B

N U R MR

Algorithm 2 Batch Access

Input: Aninverted listlist;, corresponding to search term and an entity
typeT
1: Let M} = My Xgnera SeenEnty (M. is not necessarily material-
ized)
. Retrieve next block of documents (along with their scoresnfizst;
. Lookup entities related to these documents usifig (In-memory join
of document ids with\//.)
: for each entity e found, whose related document’s score o
if e's NumSeen; #£"ALL" then
Incremente’s NumSeen;
Updatee’s AgScore; With Fuggr(AgScore;, s), and update its
LB usingFeomp

only necessary actions are to discover the actual scordseakt
quired top entities, and to prune away the remaining ones.

For this purpose, Random Accesses on the scores of all aiadid
entities are needed. However, if one were to perform indizid
Random Accesses on the score of an entitgne would need to i)
retrieve all documents related ¢pand ii) scan them to determine
their score wrt. all query keywords. These operations weuld
tail a large number of disk random seeks. For instance, in@uso
of real data we used in our experiments (sec 5.2, cofplid L),

Input: QueryW, Number of desired answeks Necessary number of top
entities per typeD1,--- , Dp,

Output: The topk packages wrtlW

1: for each entity typeT" do

2. performBA = false

3: while The topD entities of typel” have not been identifiedo

4: if performBA then

5: Perform a BA on every inverted list for typi

6: ese

7. Perform a SA on every inverted list for tyfie

8: UpdateU B's in SeenEntp, and prune nonviable entities

9: if minKp > MazUnseent then

10: performBA = true

11: loop

12: for each entity typeT do

13: Retrievee, the next best entity of type T’

14: Retrieve fromR all packages? containinge

15: for each packagep € P do

16: Retrieve the scores of all entities in

17: if the score of some entity inis not knownthen

18: Continue with the next package i

19: Calculates = the score op

20: if s > minK then

21: Remove the tog:'th package form the priority queue, and
enqueus in its place

22: if minK > MaxzUnseenPkg (see eqn. 1)hen

23: return the current toge packages

More specifically, the Layered algorithm (a high-level melof
which is shown in alg. 3), maintains a priority queue for gven-
tity type T3, containing theD; entities with the currently largest
LB’s. LetminKr, be the smallesLB among these. Every en-
tity of type T; with UB < minKr, can safely be pruned from
SeenEntr,, as it is certainly not among the tdp; entities of its
type (line 8). Using this pruning criterion, Layered perfar SA's
on every inverted list until a superset of the tbp entities of each
type T; have been identified (line 9); thereafter it performs BA's
instead (line 10), until the top; entities are identified.

Subsequently, a rank-join ([11]) algorithm is used to cht

on average 17-40 documents would have been read from disk perthe top packages (lines 11- 23). Layered iterates over ety

Random Access, depending on the entity’s type. Hence, tame R
dom Accesses are not a feasible option in our setting. Dusetet
performance considerations, we instead process Randoesses
in batches, using an access primitive we term Batch Accea} (B
(shown in alg. 2).

A BA on an inverted list follows the steps we outlined above
for SA's; however, it ignores documents that do not corresipm
entities encountered so far. Thus, the result of a serieg\sfdh a
list is precisely the same as that of performing random a&sesn
the scores of all entities wrt. the list, at a fraction of tlestc

3. THELAYERED ALGORITHM

Given the above framework, we present theyeredalgorithm
(shown in alg. 3), a baseline approach for solving the epiyk-
age finder problem.

We defineD; as the number of top-scoring entities of a tyfie
that are needed to identify the top-scoring packages. Asgshat
D; are known, for alk (We will subsequently argue that this is an
unrealistic assumption, and show how to alleviate it.).iRstance,
in fig. 2, assume it is known that, given the tbp Hotels, the top
D, Cities and the topDs Airlines, along with their scores, it is
possible to calculate the tdpholiday packages. Then, the tép
packages can be calculated by first identifying thefgntities of
each typer;, and then using these to compute the kqeackages.

type T, selecting the next best entigyof type T" (line 13). It then
usese to probe the known associations tahle, and retrieve the
packages containing(line 14). For every such packaggsif the
scores of all entities ip are known, Layered calculates the exact
score ofp (using Fyi,) (lines 16-19). Layered also maintains the
current topk packages in a priority queue, and the score of the
current topk’'th packagemink.

At any point of time, in order to decide whether the priority
gueue contains the true tdppackages, and thus it is safe to ter-
minate processing, Layered utilizes the following obsgova due
to the monotonicity off,,. Lets;(b) be the score of the tolith
entity of typeT;. After having examined the tafp entities of type
T;, the best score obtainable by a package that has not yet been
encountered is

MazUnseenPkg = maz{Fprg(s1(b1),s2(1), s3(1), -, sn(1)),
Frg(s1(1), 82(b2), s3(1), -+, s (1)),
Forg(s1(1), -+ 5 8n-1(1), 8n(bn)) } @)

Layered terminates wheninK > MaxzUnseenPkg (line 22).

3.1 Execution example

To better illustrate the workings of Layered, we presentftite
lowing execution example. We will utilize the sample corphewn
in table 3.1, and the following scoring functionB; ¢ (z1, - - - , z;) =

(@) Inverted List (b) Inverted List (c) Inverted List

for keywordw; for keywordws for keywordws
Docld Score Docld Score Docld Score

ds 1.0 dy 1.0 dis 0.7

ds 0.8 dr 0.9 dis 0.5

dg 0.5 dy 0.6 dis 0.2

ds 0.2 do 0.2 dis 0.1

dr 0.2 do 0.1 d1o 0.1

(e) Doc - Entity
(d) Doc - Entity relationshipgglationships, (f) Known as-

M, Ty sociations,R
Docld Entld| Docld Entlid| | Docld Entld| | Entity type
(contd) dio « n T
d1 b d6 e dm Yy b «
d2 b d7 a d13 0% a vy
ds a dr C d1s Y b ﬂ
d4 a dg b d16 0% e ﬁ
d5 a dg C d18 ﬁ
ds b do c
dﬁ C d9 e
(g) Layered execution exampl8eenEntr,
Step| Entld NumSeen AgScore NumSeen AgScore LB UB
w1 w1 w2 w2
1 a 1 1 0 0 0 3
b 1 1 1 1 1 3
a 2 1.8 1 0.9 0.9 2.6
2 b 1 1 1 1 1 26
c 0 0 1 0.9 0 24
a 2 1.8 2 15 1.5 2.1
3 b 1 1 1 1 1 2
c 1 0.5 1 0.9 05 1.5
e 1 0.5 0 0 0 1.5
a 2 1.8 2 1.5 1.5 1.7
4 b 2 1.2 2 1.2 1.2 14
c 2 0.7 1 0.9 0.7 0.9
e 1 0.5 0 0 0 0.6
Table 1: Sample corpusand Layered execution example
Say, Feomp (21, -+ ,x5) = man(x), Fprg(x1,- -+ ,2n) = > xy

if min(z;) > 0, and0 otherwise. For the sake of clarity, we assume
that, during preprocessing, no entity scores were maiezland
the bound computed on the maximum cardinality of all erdtitiet.
any listis 3 (i.e., in this corpus, the score of every entén be in-
fluenced by at most 3 documents). Moreover, we assume that SA
access inverted lists one document id at a time, even thoygfiac-
tice, for performance considerations, document id’s aréered in
larger batches.
Assume we want to identify the top 1 package wrt. qugry ,
wa }, {ws}); i.e., the top package where the first entity (of tya¢
is most relevant to keywords: andws, and the second entity (of
type T>) is most relevant tavs. Moreover, assume Layered has
somehow determined th&l, = 3 and D, = 2 top entities of each
type,T1 andTx, are needed in order to determine the top 1 package.
Layered will first identify the topD; = 3 entities of typeT:
(lines 3-10). A SA is performed on both inverted listswof and
ws (line 7). This results in documents andd; being retrieved.
By probing Mr,, Layered discovers that they are related to en-
tities a, b and b, respectively. Entries for andb are created in

SeenEntr, ; information regarding how many times they have been
encountered on every list, and their aggregate score weaty dist,

is recorded.a initially has lower boundLB = Feoms(1,0) = 0,
since, at this point, it is possible that its score wit; will be 0
(recall Feomp = min). Upper bounds for all entries ifleen Entr,

are then calculated, (line 8) using their curréitScore’s, and ev-
ery mazUnseen; (which is currently 1, for both lists). The state
of SeenEntr, after these operations is shown in table 0(g), step 1.
This procedure is repeated another three times (tab. Géps -

4). Moreover, after step 4, the best score that emtitgn possibly
obtain / B = 0.6) is less than the worst possible score that any of
the top-3 entities, b or ¢ can obtain; as only 3 top entities need to
be calculatede is pruned (line 8). Independently, since no further
entity yet unseen can become part of the top-3 (line 9), Leayer
proceeds by performing BA's on all lists, until the final sesrof
a,bandc (1.5, 1.2 and0.9, respectively) are discovered. Similarly,
Layered identifies that the tap. = 2 entities of typel, area and

5, with scored).9 and0.5, respectively.

Layered then proceeds by joining the identified top entities
typesT; andT>, using known associations talfie in a rank-aware
fashion (lines 11-23). Using, after processing entitias, b and
«, Layered determines that« is the currently top package, with
score2.1. Moreover, the next best entities of each type have scores
0.9 and 0.5, respectively. Thus, assuming they were associated
with the top entities of the other type, the resulting paesagould
have scored’,;,(0.9,0,9) = 1.8 and Fy,x4 (1.5, 0, 5) = 2, respec-
tively. Since none of these is better than the score of thigupe
b, a, Layered concludes that it is the top 1 package, and terasnat
processing (line 22).

3.2 Estimating b,

The Layered algorithm crucially depends on knowing the pre-
cise value of allD; (the number of entities of every tygg that
are needed, in order to identify the tbpackages). Clearly, this is
an unrealistic assumption, as in general one would needstougx
the entity package finder query in its entirety in order ted®aine
these values. Thus, a realization of the Layered algorittouldv
call for anestimationD; of D;. Let us now examine the implica-
tions on query processing, by showing how fhgestimation can
be performed using state-of-the art techniques.

This estimation problem is strongly related to the Depthinkzst
tion problem in the context of a rank-join algorithm ([16[)deed,
[16] proposes techniques that could be readily adaptedstonat-
ing D;. However, this adaptation necessitates a strong assumptio
namely that sufficient statistics are known about the distidon of
the scores of packages wrt. any given query. The statidtmsld
be detailed enough to provide the following informationaasu-
rately as possible:

Given a tuple of entity scorgs1, s2, -+ , Sn),

e How many valid package&e, ez, - - ,e,) exist, such that
the score of each; is preciselys;? and

e For everyi, what is the largest numbet such thats;, <
si, and there exists at least one valid package with score
(517 oy Si—1, 5;7 Sit+1," " 7Sn)?

In order to provide such statistics, one has essentiallydpro
tions. Firstly, one can materialize in a preprocessing @hés
every entity of every type, the precise distribution of theres of
its related documents wrt. every inverted list. These ithistions
can then be used, in conjunction with the known associataile,
to estimate the score distribution of packages at runtinsvéyer,
materializing all this information has an enormous spaeztwad,

on the order of the corpus size itelf

The second option, is to estimate the score distributiorackp
ages by sampling (assuming the API availablgenables such an
operation, e.g. in the case of dynamic known associati@cif-
ically, at runtime, one can select some packages at randuhtad-
culate exactly the scores of all their entities, wrt. theegiquery.
Unfortunately, these calculations have a very high runtover-
head, as they requif@andom Accessems the scores of a number
of entities, which are unfeasibly expensive operationsunset-
ting’). Moreover, in order to ensure that the sampling produces a
reasonably small estimation error, a sizeable fractionntities’
scores would need to be calculated. Hence, the runtime eadrh
of this option is clearly too high to be used in practice.

Summarily, using state-of-the art techniques for estingafd;
in the context of the Layered algorithm, will either have anes-
sive storage and/or runtime overhead, or will entail sifeand
unpredictable estimation errors. These errors will largdfect the
performance of the Layered algorithm. If, for someD; > D;,
Layered will be forced to perform more processing than resgs
Even worse, if for some, D; < D;, Layered will not be able to
identify the topk packages; thus it will need to perform some addi-
tional processing (including re-doing some processingipusly
performed), to first identify a numbep, > D of top entities of
type T;, and then resume the rank-join process.

It should thus be clear that an efficient realization of Lager
is not possible, due to the significant overheads imposechéy t
estimation procedure. To address this issue, we subséyguent
troduce Interleaved, an efficient algorithm for the entigckage
finder problem, thatioes not relyon knowledge or estimations of
D;. Despite not using such estimates, we show that Interleiaved
as efficient as a hypothetical, idealized instantiatiorhefltayered
algorithm, that would have freely available accurate kremge of
all D;.

4. THEINTERLEAVED ALGORITHM

The essense of the Interleaved algorithm is to incremgntzdin-
tain score information on the package level. To do so, wltisns
ning inverted lists, Interleaved keeps updating the scotmbs of
both entities, as well as packages (by interleving the ajoers of
rank-aware aggregation and rank-join). Using this knogtedt
is able to prune non-promising entities and packages, amltth
terminate early. The high efficiency of Interleaved orig@saprin-
cipally from two novel features: thimterleaved pruningf enti-
ties, and theight boundingof package scores. Both these features
are designed to exploit the distribution of fixed assocretjcand

®In a large-scale, real dataset utilized in our experimeses ec.
5.2, corpusREA L), storing such information incurs an additional
average space overhead of 15% per entity type. The corpus con
tains 9 entity types, so these statistics require moreggdizn the
corpus itself. A similar space blowup was observed in thefstic
corpora we utilized in our experiments.

"With respect to the cost of Random Accesses, note that, i&rord
to calculate the score of a single entity, one would needtteve

all documents in the corpus that are related to the entity,saan
them to determine their score wrt. all query keywords. Thiis,
calculation entails a number of disktndom seekesqual to the car-
dinality of the entity (i.e. the number of documents relatiedt);

in a corpus of real data we used in our experiments (sec 52uso

REAL), this was on average 17-40 documents per entity (depend-

ing on the type of the entity). Note also that such Random gses
cannot be performed in batches - i.e. using Batch Accessedhisa
would result in redundantly executing a large part of thergite
self in a preprocessing phase, solely for the purpose ofrobta
estimates.

Algorithm 4 Interleaved Algorithm

Input: QueryW, Number of desired answeks
Output: The topk packages wrtlW
1. whilethe topk packages have not been identifigal

2. performBA = false

3: for each entity typeT do

4. if performBA then

5: Perform a BA on every inverted list for typg

6: ese

7. Perform a (modified) SA on every list for type

8: UpdateU B's in SeenEntr

9: for each entity typeT do

10: UpdateU B’s in Cand, using information fronSeenEntp

11: Prune packages wittUB < minK, and decrement the
refCounts of all their entities

12: Update LB’s in Cand in packages with entities whoseB's
have been updated

13: Prune entities withrefCount = 0

14: if minK > MaxUnseenPkg (see egn. 2)hen

15: performBA = true

are subsequently explained in detail. Through carefulrereging,
this added functionality is achieved with only moderateakbok-
keeping effort.

Interleaved maintains a few additional data structuresjdes
those detailed in section 2.4. FirstlyGandidate Packageable,
Cand, which contains all promising packages (i.e. those thahinig
rank among the final top-k). Entries i@land are of the form
(e1,e2, -+ ,en, UB, LB), wheree; denote pointers to the entry
of entity e; in the respectiveSeenEntr, table; UB and LB are
bounds (upper and lower, respectively) on the final scorehef t
package. Interleaved also maintains a priority queue @unta
the £ most promising packages (based on thHel’s), as well as
minK, theL B of thek'th top package. Finally, entries BeenEnt
tables are augmented withreference counfield, refCount (this
field is used for interleaved pruning, and is described §hort

Let us now examine the operation of Interleaved (picturealdn
4) in detail. Until the topk packages have been identified, Inter-
leaved does the following (line 1). First, it performs som&sS
on every inverted list, for every entity type (line 7). Thegailithm
for SA's it uses is slightly modified from the alg. 1. Specifiga
whenever an entity is first encountered (line 7 in alg. 1), entries in
Cand are created for all the packageparticipates in. This is done
by probing the known associations tahke, for packages contain-
ing e, and creating”and entries for every such package. If needed,
placeholder entries are createdSeenEnt tables for other entities
in these packages; subsequently, thfCounts of all entities in
these packages are incremented.

Having performed these modified SA’s, Interleaved updapes u
per bound information irbeenEnt tables (line 8). Using this in-
formation, it then updates upper bounds in the Candidatkdgac
table (line 10). Interleaved prunes packages that areigecdanot
rank among the final top-k, based on their score upper bountt, a
decrements their entitiesefCounts (line 11). Interleaved also up-
dates lower bound information ifland (line 12); for the sake of ef-
ficiency, it only updates packages containing entities wetdently
updatedL B’s (this is recorded in a separate flag).

In line 13, the feature of interleaved pruning manifestslit€En-
tities that do not participate in any promising package avaed.

In this manner, a large number of entities can be prunedpge
dently of how high their score is, just by exploiting the dist-
tion of known associations. This leads to a significant desmeén
processing effort, as there are fewer entities to keep tofcnd
to earlier termination. Moreover, by keeping track of thenter

of packages an entity participates in (throughrt&€Count), inter-
leaved pruning is very efficient, and imposes but a mininaisgte
overhead.

Finally, in line 14, Interleaved decides whether a supesktie
final top k answers has been identified, and SA's can therefore be
replaced by BA's. Another significant feature of Interledwie an
improved condition for making this decision. Adapting stard
rank-join techniques ([11]), as in the case of Layered,Iltesuan
overly conservative bound on the maximum score of a package n
yet encountered. Specifically, let(b;) be the best score obtain-
able by an entity of typ&; that has not yet been encountered, and
let s;(1) be the overall best score obtainable by an entity of type

T;. Then, the bound on the best score obtainable by a packatge tha

has not yet been encountered is given by eqgn. 1. This bound cor
responds to assuming that a package may exist, contairgngph
entity of each type but one, and an entity yet unseen on tpat ty
Interleaved, on the other hand, by maintaining bounds oadbees

of all packages that contain at least one seen entity, h&ssado
more information; namely that any package notland can only
consist of entities not yet encountered. Hence, Inter:ages the
following upper bound on the score of a package no€imd in

line 14:

MazUnseenPkg = Fppy(MazUnseenty, - -+ , MazUnseent,)

@)

This bound, which exploits known associations, is in fatght
boundingscheme on package scores (in the spirit of [15]); in a
sense, this is the tightest possible bound that can be grdviMore
formally, there always exists a set of documents that copjgbar
later on some inverted lists, and a set of their relatiorstopen-
tities in the corpus, such that the most promising packageure
rently in Cand obtains a final score equal 8dazUnseenPkg. This
is in contrast to the bound employed by Layered and by raink-jo
algorithms, which can be significantly looser. The tight hding
scheme significantly boosts the pruning power of Interldave

To summarize, in Interleaved we have effectuated an eauly-pr
ing and termination strategy, that is entirely independzfnany
estimates, and has a very moderate bookkeeping overhedd. En

SeenEntr, SeenEntr, Cand
Step| Entld LB UB | Entld LB UB | Entld; Entld; LB UB
1 a 0 3 |« 07 21|b a 1.7 51
b 1 3 |p 0 211|b Jé] 0 51
¥ 0 21 |a y 0 5.1
2 a 09 26|« 0.7 1.7|b a 1.7 43
b 1 26| 05 15|b Jé] 15 41
c - - 0% 0 15 |a 5 0 4.1
e 0 24 e Jé] 0 39
3 a 15 21|« 0.7 13|b o 1.7 33
b 1 2 |p 05 09 (b 164 15 29
e 0 15|~y 02 06 |a vy 1.7 27
e 164 0 2.4
4 a 15 17|« 0.8 09 (b o 2 23
b 12 14|p 05 0.7(b Jé] 1.7 21
e 0 0.6 [~ 02 04 |a y 1.7 21
e Jé] 0 15

Table 2: Interleaved Execution example

Note that entitye was pruned (line 13), as it does not participate in
any package. After 2 more steps, in step 4, packagkis ascer-
tained to not be the top package, and itis pruned. This wesuibhe
pruning of entitye as well. In the final step (not shown), package
scores are fully disambiguated, and package is determined to
be the top package with score 2.1.

4.2 Extensions

Informed Access Scheduling: The Interleaved algorithm de-
scribed above is very efficient, without requiring any estiions.
However, it is still not optimal. Consider a problem instamhere,
in order to identify the top 5 packages, 500 SA's are requiredne
inverted list, and only 10 on all the others. Since Interéshper-
forms SAs in a round robin fashion, 500 SA's will be perforane
on all lists before the algorithm terminates. It could thetpiper-
formance if accesses were scheduled taking propertieseddirth
derlying data distribution into account, so that fewer ases are
performed till termination.

ties are now pruned based on whether they might be part of some Techniques for scheduling accesses in an informed manwer ha

top package, rather than their current score alone, by e m-
terleaved pruningolicy that exploits the distribution of packages.
Moreover, in contrast with standard rank-join algorithpackage
scores argightly boundedbased on the best score they can actu-
ally achieve. These features offer the Interleaved algariaddi-
tional opportunities for improved performance, compa@dlay-
ered, without relying on potentially erroneous and expanssti-
mations.

4.1 Execution example

To illustrate the workings of Interleaved, we show how it-pro
cesses the scenario previously discussed in sec. 3.1; weteef
table 3.1 for the corpus used. In table 4.1 we provide a trateeo
contents of theCand table at every execution step (i.e., at every
iteration of line 1). Moreover, as the functionality SéenEnt ta-
bles has been demonstrated in sec 3.1, we only provide a symma
thereof, containind. B’s andU B’s for every entry. In step 1, a SA
is performed on every inverted list (line 7), afeenEnt tables are
populated. Moreover, entries concerning all packagescibratiain
an entity in someSeenEnt table are inserted iCand. Finally,
empty entries are inserted SeenEnt tables, concerning entities
that are mentioned in some package(nnd, but do not have a
SeenEnt entry (e.g. 3,v). This procedure is repeated in step 2.

been proposed in [7], in the context of standard top-k queoy p
cessing. It is only natural to investigate the extent to Wwtdach
methods may be beneficial to our setting as well. Utilizinghsu
techniques, one could try to effectively allocate SA's teeirted
lists, so as to reduce the total number of required accetsisg
statistics on i) the score distribution of every invertest &nd ii)
the distribution of documents on every inverted list maighév-
ery entity, one may try to adapt the KBA framework from [7] to
the entity package finder setting. Periodically, the adhptBA
framework can be used to estimate the “Benefit” that some eamb
of SA's on a given list will have on processing, and selectrtiost
“beneficial” allocation of SA's to inverted lists (“Benefitiere is a
quantity highly correlated with the remaining processifigrg i.e.
highly “beneficial” SA's lead to shorter expected proceggimes).
Optimizing the schedule of SA's requires posing a number of
queries over the materialized statistics. Due to our ggitivolving
aggregation, compared to the setting in [7], informed satied re-
quires that orders of magnitude more such queries be poseit-M
over, it requires that additional independence assumphiermade,
leading to lower accuracy; hence it is expected to be ledsilise
reducing processing overhead. These expectations arestamts
with our empirical observations, on our adaptation of KBA &v-
erage, more than half of query time was spent on informeddhe

ing, as opposed to actual query processing; moreover, tiogirsm
of query processing effort was not significantly reduced. these
two reasons, we do not further pursue an informed schedalirg
proach in this work. Further details on our adaptation of K&
be found in [3].

Further extensions: More generally, we note that Interleaved
is amenable to further extensions of the entity package ffipiéo-
lem, such as taking into account individual user prefergnoe
discuss such extensions in [3].

5. EVALUATION
5.1 Analysis

As introduced, the Interleaved algorithm has two potestakces

of performance benefitsnterleaved pruningof entities andight
boundingof package scores. In this section, we propose two mod-
els that capture the intuition behind these sources, apdmebm-
paring Interleaved with Layered. To effectuate this corigoer, we

use a hypothetical, idealized instantiation of the Layetdgdrithm,

by providing it with an oracle for the exact values of Alj for the
query being processed. To highlight this fact, we referi®ahacle
instantiation of Layered as Layergd

5.1.1 Benefits of interleaved pruning

To capture the benefits of interleaved pruning, we introdhee
notion of anentity-package ranking coefficieof a dataset. Most
top-k query processing approaches (recast in entity packader

cessing per result package. In genesalill depend on many fac-
tors, such as the corpus, the query being processed, andrttizen
of top packages requested.

Let P(W, k) be the probability that queryy’ is issued, request-
ing a numberk of top packages (this probability may be derived
from a known querylog, or via a uniformity assumption). We de
fine theentity-package ranking coefficieaf our entire dataset’,
as a random variable, distributed according to the follgndistri-
bution:

Prob(C = z) = % S POW,k) - [lei(Ts, Wi k) = @]
VT, W,k

where [|A]] = 1if Ais true, and0 otherwise

Given the discussion presented above wrt. interleavedmyun
we expect that in every dataset, the relative performandstef-
leaved versus Layeré&d to be positively correlated with the ex-
pected value of”. That is, for larger expected values 6f we
expect the performance gains of Interleaved versus thdizdda
Layered to increase, due to the effects of interleaved pruning.
We validate this trend in sec. 5.2, usingcro-experimentsvhich
measure local expected values(din a dataset.

5.1.2 Benefits of tight bounding

We subsequently introduce the notiorewttity association prob-
ability, that illuminates the performance benefits due to tight deun
ing. Entity association probability embodies a notion obkn as-

terms) assume that top packages tend to be composed of top ent sociation “density”, i.e. what fraction of possible assoicins in

ties. The entity-package ranking coefficient embodies, $ersse,
the quantitative relationship between these; i.e. how ntapyen-
tities are needed for every top package. As we will shorts; Has
relationship strongly affects the effectiveness of irtavied prun-

ing.

fact hold. We shortly discuss how this measure capturesetferp
mance benefits of tight bounding.

Recall that Interleaved utilizes known associations tovioi®
tight bounds on the maximum score a package not yet enceanter
can have MaxUnseenPkg. Tight bounding results from ensuring

Whereas top packages tend to be composed of top entities, thethat the best package not yet encountered only consistgtitieen

converse is clearly not true; an entitywith a mediocre score can
be part of a top package, and an entityof the same type, with
a higher score thaa, might not be part of any. LeF; denote the
set of all entities of the latter kind wrt. a query (i.e. togiges of
typeT;, which nevertheless do not participate in any top package).
Layered expends unnecessary effort to fully process entities in
E; , by computing the tofD; entities of each typédependently
of the resulting packages. Interleaved pruning, howeveiges
Interleaved the ability to avoid this overhead. We therefexpect
that, the more entities in alf; that exist wrt. a query, the greater
the performance improvements due to interleaved pruning- O
serve that the number of such entities is strongly corrélatith
the total number of top entitied);, that need to be examined, as
only a fraction of all entities examined will participatesome top
package. Finally, note that al); are positively correlated with the
number of top packages required, since the more top packiages
need to be identified, the more entities will have to be exathin
Thus, we can quantify the effects of interleaved pruning xane-
ining the expected number of entities that need to be exahpee
answer package identified, i.e. the expected valu%of

We quantify this value as follows: For a given corpus, and for
every entity package finder quel¥, let £ be the number of top
packages requested bl. As per definition, the rank of the lowest
scoring entity of typd’; that needs to be computed, in order to iden-
tify the topk packages, i®;. We define the entity-package ranking
coefficient for this case;; (T3, W, k), asc; (T3, W, k) = DT Es-
sentially, ¢; provides a measure of the number of entities of type
T; that need to be calculated, in order to identify an additito@
package; in other words, a measure of the necessary amaont-of

not yet encountered. Thus its score will be an aggregateeof th
scores,MazUnseent,, of these entities (eqn. 2), as opposed to
an aggregate of the scores of thest entities of each ty@nd one

of MazUnseent, (eqn. 1). The tightness of these bounds, and
hence the effectiveness of the tight bounding scheme, depen
the probability, P.ssoc, thatn arbitrary entities of different types
are associated (i.e. form a valid package). As this likelthin-
creases, the value of information obtainable by known aagons
decreases, and tight bounding approaches the boundingneche
used by Layeredi. To illustrate this point, observe that knowing
which packages are valid is not very useful for bounding Hrgé
fraction of possible packages are valid. Note that, by d@jimj
Passoc = {# of known associationd11; {# of entities of typeT; }

On the other hand, Layer&d boundsMaz UnseenPkg in a con-
servative manner, as it cannot exploit known associatidhsre-
over, the number of top entities it calculates per tyipg,is not de-
pendent on the resulting packages. Thus, by increaBing., the
only component affected in LayerBdis the rank-aware join oper-
ation. The latter is expected to terminate earlier for lalg;o.,
as P,ssoc COrresponds to the join selectivity.

Thus, we expect the relative performance of Interleaveduger
Layered’ to be negatively correlated WitR,....; i.e. for smaller
values of P.ss0c, We expect the performance gains of Interleaved
versus the idealized LayerBd to increase, in part due to tight
bounding. We validate this trend in sec. 5.2.

5.2 Experimental Evaluation

The Interleaved algorithm processes entity package findeniep
without relying on knowledge or estimatesiOf. Layered requires

5 120 Y 60
87 T 1104 % &
2= & 100f V_ o 58
28 55 o 90 ~ £
= ~N d —
g% 3 v E 80 Layere S 56
-~ f > 70 h N~ @
g2 05 g 60 - S 54+
© £ S o
05 5 O 50 [J]
3 o Interleaved 524
ES o 40 j=2}
F & -4.5 © ©
8 g % O
g€ 200 450 700 950 < 200 400 600 < 1 2 3 4 5
< Average C Probability of association (ppm) Number of Relationships (M)
(a) Comparison to Layeréd overC' (b) Comparison to Layerétl over P.qsoc (c) Scalability vs # document-entity rela-
tionships
’g 275+ < 3004 800 -
2 8 2759 S 700
o 2504 o 250 9
= £ 225 2 600+
S 2254 <, 2004 £ 5004
> g 1754 Y 4001
9 1 © 300
o 175 & 100 2
o)) = I 2004
o g 754 .
g 150 * * * < 501 ; ‘) 100 ‘ ‘ ‘ ‘
Z 2 4 6 8 50 100 150 200 2 4 6 8 10

Number of keywords in query

(d) Scalability vs # keywords

Number of documents (M)

(e) Scalability vs # documents

Number of Entity Types
(f) Scalability vs # entity types

Figure 3: Experimental Evaluation

these values, and their estimation, as shown in sec. 3.8rsinc
an unreasonably high runtime and/or storage overhead. féo-ef
tuate a comparison between the two algorithms, and denadestr
the performance benefits of our proposed techniques, wea@up
Interleaved with Layeréd, an idealized instantiation of Layered
(i.e. Layered with an oracle for the exact values of/j). In order

to implement the latter, the exact valuesaffor every query were
precalculated in a brute force manner.

Our experiments, on large-scale synthetic datasets staivirth
terleaved is about as efficient, and in practical cases ewea @ffi-
cient, than this idealized instantiation of Layered, thushifesting
the effectiveness of our techniques. Moreover, they vididhe
trends predicted in sec. 5.1. Further experiments denaiadne
efficiency and scalability of our approach, on both real aymt s
thetic datasets.

In order to stress our algorithm on large-scale datasetgewer-
ated large-scale synthetic corpora, denatédVTH. Unless oth-
erwise noted, al6 YNTH corpora contained 50M documents, two
types of entities, 10K entities of each type and 5M docuneertity
relationships per entity type. Every keyword appeared iarging
fraction of all documents, ranging in 0.5-0.05. The queadlosed,
unless otherwise noted, consisted of 50 queries with 1-@éeys
per entity type, requesting the top 1-10 answers. For géngra
these corpora, all data distributions (document scoresjrdent-
entity relationships, entity associations, query siz&s) gere uni-
form. Our experiments used static entity associations elrewwe
note that using dynamic associations, as described in.$eto2s
not affect our results; this is due to entity associationsdeac-
cessed via the same API, regardless of whether they are etati
dynamic.

To demonstrate the applicability and efficiency of our apptg
we also experimented on a large corpus of real datdAL. We
utilized data from BlogScope ([6]), an analysis and viszatlbn
tool for the blogosphere, currently monitoring over 28Mdsdand

in languages other than English), resulting in over 3.7Mudoents.
From these documents, we extracted 600K Named Entities of 9
different types, using an Information Extraction tool deped in-
house at the University of Toronto. In this way we extractedro
4.1M document-entity relationships. Entity associatiorese de-
termined to hold between pairs of entities with statistjcaignifi-

cant co-occurences in these blog posts, for a total of 118Kcas-
tions. WhereaR FAL represents only a 10 day sample of discus-
sions in the blogosphere, it serves to demonstrate thatppuoach

can be efficiently applied on real-world, large-scale ceapo

We implemented both Layer&d and Interleaved in Java 1.6.
As scoring functions (sec. 2.3) we uséty, = >, Feomy =
min, Fpy, = > this choice of scoring functions favors pack-
ages with entities that are, on average, most relevant tgualty
keywords. We note that other choices of scoring functions; e
bodying different semantics, are possible (subject todbed con-
straints detailed in sec. 2.3); experiments with differstring
functions yielded similar performance trends. Our implatagon
maintained document-entity relationships and known assons
in main memory; as discussed in sec 2.1 this is a reasonable as
sumption, even for very large corpora. All our experimentsav
executed on a machine with an Intel Core2 Duo CPU, operating a
2.93GHz, and 4GB of memory; our experiments utilized onlg on
CPU core. In all experiments we report query running timeaime
sured from the moment a query is issued until answers aretegpo
to the user. We do not take into account the small runtime-over
head of system initialization, as it occurs only once, relgss of
the number of queries processed.

For validation purposes, we also compared our algorithntls wi
an approach that used only RDBMS technology. Specificaley, w
stored theSYNTH corpus as indexed tables in a relational database
(MySQL 5.5), and wrote our entity-package finder queries@iS
We expect this approach to be highly inefficient, as it needst-
culate precise scores of every entity and package, folldwed

over 400M blog posts. We used all indexed posts made in the 10- selection of the top-k packages. Indeed, when executingestir

day period between June 11th and 21st (excluding spam, atsl po

queries, this approach had average query execution time ap t

order of magnitude larger than our proposed Interleaveatisifgn,
depending on query parameters. For this reason, we do ribefur
consider such RDBMS-based approaches, but focus insteap-on
proaches with early termination and pruning propertiete(laaved
and Layereff?).

5.2.1 Comparison with Layeréd

We first present an evaluation of the relative performanda-of
terleaved and an instantiation of Layered utilizing an &rag ob-
tain preciseD; values, termed Layer&d. We stress that this al-
gorithm (Layered+) is provided as a point of comparison, and is
not practically realizable (in practice, obtaining precislues of
D; is not possible, and estimating them incurs unreasonabte st
age and/or runtime overheads, see sec.3.2). In our firstaemp
ative experiment, we varied the number of known association
the SYNTH corpus, from 2.5K to 500K, corresponding Bssoc
of 25-107% to 500 - 107%, and executed a queryload of 50 queries,
each with 1-5 keywords per entity type, using both Interdeinand
Layered (Recall thatP,..,. denotes the probability that arbi-
trary entities of different types are associated. Due tsataantics,
we expect it to have very low values in practice. To providersge
of perspective with respect to the valuesif,.. tested, we note
that observed values faP.ssoc in REAL, the real-world corpus
we used, ranged fromt.2 - 107% to 21 - 1075, Thus, this experi-
ment stresses Interleaved well beyond the operationahpsess
we typically expect to encounter.). In fig. 3(b) we show aver-
age query time for both Layer&d and Interleaved. As one can
see, Interleaved outperforms Layefedor all practical values of
Passoc, With performance gains of up to 76%. Moreover, one can
observe the trends predicted in sec. 5.1.2, namely thatetferp
mance of Interleaved increases, and that of La;/édreibcreases,
for lower values ofP,s.., due to the effects of tight bounding. Fi-
nally, we observe a roughly equal performance (Interledeidg
0.18% slower than Layeréd), for Passoc = 500 - 107¢. Even
though this is an unreasonably high value (in view of the olesk
Pussoc € [4.2-107%,21 - 107%) in REAL, as discussed above),
we subsequently focus on it, to evaluate the performancefiten
of interleaved pruning.

In our second comparative experiment, we evaluate the perfo
mance benefits of interleaved pruning. We expect Intertbavesl-
atively outperform Layered due to interleaved pruning, in cases
with higher entity-package ranking coefficiert, i.e. when top
packages also require entities that are not among the tepsése
5.1.1). To validate this expectation, we utilized th& NTH cor-
pus, and executed a queryload of 500 queries, each with -5 ke
words per entity type, using both Interleaved, and LayBred\s
previously noted, the paramet@,,,. was chosen to ensure a roughly
equal performance, on average, of Interleaved and Lafferdghch
query execution is micro-experimentwhere local expected values
of C'in the dataset can be measureddas, (2), where averages
are computed over all entity typ&s, for the given query). We
measured the performance benefits of interleaved prunifgnees
Gained, which we define g®xecution time using Interleavid-
{execution time using Layer&d}. We grouped our observations
using an equi-depth histogram on the local measured valu€s o
and report average Time Gained per query in fig. 3(a). We wbser
the trend predicted in sec. 5.1.1, thus validating our previanal-
ysis. As a note, recall that we s&ts,. to a “break-even” point
between Interleaved and Layeféd had we set it to a lower value,
such as observed in real data, fig. 3(a) would be completetyrfa
able towards Interleaved.

5.2.2 Scalability

Having shown significant performance benefits of our progose
algorithm, Interleaved, over the oracle baseline Lay@reabe next
evaluate its scalability and efficiency, using large-sclethetic
corpora. Note that these are significantly larger, wrt. p#rating
parameters, than corpora one would expect in practice; asutre
sequently demonstrate, using a real dataset, performapcadtice
is orders of magnitude better (sub-second average quegy-toh
sec. 5.2.3).

Number of document-entity relationships: The number of doc-
ument - entity relationships in a corpus is an importantfaaffect-
ing query processing performance, as it influences the pauky-
ing/termination capabilities of Interleaved, wrt. docurhecore
aggregation. To test the scalability of our approach, ia &xiperi-
ment we varied the number of document-entity relationsinipse
SYNTH corpus, from 1M to 5M per entity type, and executed our
typical query workload using Interleaved. We show averagey)
execution time in fig. 3(c), and observe that Interleavedefidly
scales to a large number of document-entity relationships.

Number of keywordsin query: In this experiment we used the
SYNTH corpus, and executed four query workloads of 50 queries
each, using Interleaved. We varied the number of keywordgs@h
query from 1 to 4 keywords per entity type (i.e. between 2 to 8
keywords per query). Average query execution time, showfigin
3(d), demonstrates that Interleaved scales gracefullynegpect to
the number of keywords in a query. We note that, typical usgr k
word queries involve a small number of keywords, a trend wet
expect carries across to entity-package finder queries;aictipe,
we expect a typical workload to involve fewer keywords pesryu
than in this experiment.

Number of documents: The number of documents contained in
a corpus naturally affects performance, but is less crtcipérfor-
mance than other parameters. Observe that, all other thizigg
equal, scaling the number of documents in a corpus will esee
1/0 overhead, and the number of probes to document-entiy re
tionship tables, but will not significantly affect other querocess-
ing components (e.g. rank-aware aggregation or join). Wiywe
this trend by varying the number of documents in$§&NTH cor-
pus, from 50M to 200M per entity type, and executing our tgpic
query workload using Interleaved. Fig. 3(e) shows averageyg
processing time, demonstrating a graceful, near-linedesp trend
with respect to the number of documents in the corpus. Taigltr
validates our expectations that Interleaved can effigiesthle up
to very large document collections.

Number of entity types: In this experiment we varied the num-
ber of entity types in th& YNTH corpus, from 2 to 10, and exe-
cuted our typical query workload using Interleaved. We oleg:a
near-linear scaleup in average query execution time (shiovig.
3(f)), demonstrating the scalability of our approach wre humber
of entity types involved in a query. Note that, intuitivel actual
user query is expected to involve only a small number of tyaed
certainly fewer than 10; as in previous experiments, we €hos
stress our algorithm with operating parameters signifigdatger
than in practice, to observe its trends wrt. scalability.

5.2.3 Experiments with real data

To demonstrate the applicability of our techniques on resd
we also utilize theREA L corpus described above. For every differ-
ent kind of pairwise entity associations (e.g. Person Aseeisited
with Company C, e.g.2 Band B is associated with Person D), we
executed a query workload containing 200 queries, each wgh
keywords per entity type, using both Layetedand Interleaved.
Query keywords were randomly chosen from a list of adjestive
most commonly used in English.

The relative performance of Layerédand Interleaved on real
data validates our expectations from synthetic data (fig)) 3Specif-
ically, given that theR EA L corpus exhibits values df,sso. signif-
icantly lower than those shown in fig. 3(b), we expect Intarksl
to outperform Layered: by a large margin. Indeed, when executed
ontheREAL corpus, Interleaved was more than one order of mag-
nitude faster than Layer&d.Moreover, Interleaved processed each
query inunder 1.5 sec; average execution time ranged frafns@c
to 0.5 sec per query, depending on the scenario of pairwgEas
ations being tested. Overall, average query processing usmg
Interleaved was under 0.34 sec. We observe that our profadsed
gorithm is able to efficiently answer entity package findegreps
on large, real-world corpora, validating our observatiobtained
from experimentation on synthetic corpora.

6. RELATED WORK

The entity package finder problem, presented in this work, be
longs to the general area of top-k query processing. Howstear-
dard top-k techniques (e.g. [10]) do not apply, due to theidwnt
score aggregation that needs to take place. [9] and [5] pexbo
algorithms for calculating top-k over aggregation; howetkese
do not consider joins, and hence cannot be used for solvingrih
tity package finder problem. Moreover, the techniques mitese
therein cannot be efficiently adapted to our problem, asdhelt-
ing algorithm would rely on estimations with very high rung
and/or storage overhead. Such estimation problems, abmitich
simpler settings, are discussed in [16]. The techniquesgsed in
this work cannot be efficiently applied in the entity packéigeer
setting; the reason is that document score aggregatioodintes
an added complexity for providing the requisite statisfasesti-
mation. Another related work is [2], which discusses meshiod
efficiently estimating properties of joins. However, thesethods
only apply to primary key-foreign key joins, and cannot thngs
applied to our estimation problem, which involves a moreggah
kind of joins.

Another related line of works deals with rank-aware joincalg
rithms (e.g. [11], [15]), that efficiently compute top-k @\eins.
Our approach extends the scope of these frameworks, todiclu
rank-aware aggregation. General rank-aware query procesgs-
tems have been extensively studied in the literature (&4, and
its extensions [12], [18]). These works, however, do notuts ag-
gregation, and cannot thus be applied in the entity-packager
setting. A rank-aware query processing system capablepek to
query processing over joins and aggregation is proposediniut
the techniques it presents assume that joins occur befgregar
tion (e.g. as is typically the case in SQL queries). Theseaséios
are not compatible with the entity package finder problemefeh
joins need to be performed on top of aggregated results)trend
techniques proposed in this work cannot be efficiently &optd
our setting.

Scheduling accesses in an informed, data-adaptive mafoner,
increased performance, has been investigated in [7], iodhgext
of the Threshold Algorithm ([10]). An adaptation of suchhec
nigues to our setting is not practical, as it has a large mmtver-
head, due to properties of our setting.

7. CONCLUSIONS

In this work, we introduced the class of entity package finder
queries. We examined algorithms resulting from adaptatioh
previous work, and we proposed Interleaved, an efficierréign
to process such queries, by devising early pruning and hextion
strategies, in the presence of joins and aggregations dthabt

depend on any estimates. We demonstrate the efficiency atad sc
bility of our approach analytically and by experiments, othoreal
and synthetic large-scale data.

8. REFERENCES

[1] Opencalais. http://www.opencalais.com. Retrievedone
23, 2008.

[2] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy.
Join synopses for approximate query answeringI@BMOD
Conferencepages 275-286, 1999.

[3] A. Angel, S. Chaudhuri, G. Das, and N. Koudas. Ranking
objects based on relationships and fixed associations.
Tech.report, 2008. Available at
http://www.cs.toronto.edu/ albert/docs/acdk-edbt8.p

[4] D. E. Appelt and D. Israel. Introduction to information
extraction. InlIJCAI Tutorial, 1999.

[5] N. Bansal, S. Guha, and N. Koudas. Ad-hoc aggregations of
ranked lists in the presence of hierarchiesSIGMOD
Conference2008.

[6] N.Bansal and N. Koudas. Blogscope: A system for online
analysis of high volume text streams.\lh DB, pages
1410-1413, 2007.

[7] H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and
G. Weikum. lo-top-k: Index-access optimized top-k query
processing. I'VLDB, pages 475-486, 2006.

[8] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph da&ab
for structuring human knowledge. BIGMOD Conference
pages 1247-1250, 2008.

[9] K. Chakrabarti, V. Ganti, J. Han, and D. Xin. Ranking
objects based on relationships.3tGMOD Conference
pages 371-382, 2006.

[10] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. IRODS 2001.

[11] I. F. llyas, W. G. Aref, and A. K. Elmagarmid. Supporting
top-k join queries in relational databasesMIbDB, pages
754-765, 2003.

[12] I. F. llyas, W. G. Aref, A. K. ElImagarmid, H. G. EImongui,
R. Shah, and J. S. Vitter. Adaptive rank-aware query
optimization in relational databaseSCM Trans. Database
Syst, 31(4):1257-1304, 2006.

[13] C. Li, K. C.-C. Chang, and I. F. llyas. Supporting ad-hoc
ranking aggregates. IBIGMOD '06: Proceedings of the
2006 ACM SIGMOD international conference on
Management of datgages 61-72, New York, NY, USA,
2006. ACM.

[14] C.Li, K. C.-C. Chang, I. F. llyas, and S. Song. Ranksql:
Query algebra and optimization for relational top-k querie
In SIGMOD Conferengepages 131-142, 2005.

[15] K. Schnaitter and N. Polyzotis. Evaluating rank joinishw
optimal cost. IPPODS pages 43-52, 2008.

[16] K. Schnaitter, J. Spiegel, and N. Polyzotis. Depthnaation
for ranking query optimization. INLDB, pages 902913,
2007.

[17] A. Singhal. Modern information retrieval: A brief owgew.
IEEE Data Eng. Bull. 24(4):35-43, 2001.

[18] M. A. Soliman, I. F. llyas, and K. C.-C. Chang. Top-k quer
processing in uncertain databaseslGbE, pages 896905,
2007.

