Leveraging COUNT Information in Sampling
Hidden Databases

Arjun Dasgupta #, Nan Zhang *, Gautam Das #

University of Texas at Arlington

{arjundasgupta,gdas} @ uta.edu ,

Abstract— A large number of online databases are hidden
behind form-like interfaces which allow users to execute search
queries by specifying selection conditions in the interface. Most
of these interfaces return restricted answers (e.g., only top-k of
the selected tuples), while many of them also accompany each
answer with the COUNT of the selected tuples. In this paper, we
propose techniques which leverage the COUNT information to
efficiently acquire unbiased samples of the hidden database. We
also discuss variants for interfaces which do not provide COUNT
information. We conduct extensive experiments to illustrate the
efficiency and accuracy of our techniques.

I. INTRODUCTION

A. Hidden Databases

A large portion of data available on the web is present in
the so called “deep web”. The deep web consists of private
or hidden databases that lie behind form-like query interfaces.
These query interfaces allow external users to browse these
databases in a controlled manner. Typically users provide
inputs in the form interface which are then translated into SQL
queries for execution and the results provided to the user on
the browser. Databases with such public web-based interfaces
are present for many commercial sites, as well as government,
scientific, and health agencies.

We focus on two of the simplest and most widely prevalent
kind of query interfaces. The first kind of interfaces allows
users to specify range conditions on various attributes -
however, instead of returning all satisfying tuples, such
interfaces restrict the returned results to only a few (e.g.,
top-k) tuples, sorted by a suitable ranking function. Along
with these returned tuples, the interface may also alert the
user if there was an “overflow”, i.e., if there were other tuples
besides the top-k that also satisfied the query conditions but
were not returned. We refer to such interfaces as TOP-k-
ALERT interfaces. Examples include MSN Stock Screener
(http://moneycentral.msn.com/investor/finder/customstocks.asp)
which has k& = 25 and Microsoft Solution Finder
(https://solutionfinder.microsoft.com/Solutions/SolutionsDirect-
ory.aspx?mode=search) which has k = 500. The second kind
interfaces that we consider are similar to the above, except
that instead of simply alerting the user of an overflow, they
provide a count of the total number of tuples in the database
that satisfy the query condition. We refer to such interfaces
as TOP-k-COUNT interfaces. An example is MSN Careers
(http://msn.careerbuilder.com/JobSeeker/Jobs/JobFindAdv.aspx)
which has k& = 4000.

, *George Washington University

*

#* nzhanglO@gwu.edu

B. The Problem of Sampling from Hidden Databases

There has been interesting recent focus on the problem of
sampling from hidden databases [1]: given such restricted
query interfaces, how can one efficiently obtain a uniform
random sample of the backend database by only accessing the
database via the public front end interface? Database sampling
is the process of randomly selecting tuples from a database
and is useful in gathering statistical information about the
data. Likewise, random samples from hidden databases can
be extremely useful to third-party applications in obtaining
insight into the hidden data. However, sampling from hidden
databases presents significant challenges as the only view
available into these databases is via the proprietary interface
that allows only limited access. Thus traditional database
sampling techniques that require complete and unrestricted
access to the data (e.g., [2], [3]) cannot be easily applied. In
[1] an interesting approach named HIDDEN-DB-SAMPLER
was proposed for sampling from hidden databases with TOP-
k-ALERT interfaces. The approach was based on a random
drill-down over the space of all queries executable via the form
interface, starting with an extremely broad (therefore over-
flowing) query, and iteratively narrowing it down by adding
random predicates, until a non-overflowing query is reached.
Once such a non-overflowing query is reached, one of the re-
turned tuples is randomly picked for inclusion into the sample.
This process can be repeated to get samples of any desired
size. The paper proposed several variants of HIDDEN-DB-
SAMPLER, depending on whether the database consisted of
only Boolean attributes or also included categorical attributes.
While much of the paper was devoted to sampling from TOP-
k-ALERT interfaces, a simple approach for sampling from
TOP-k-COUNT interfaces was also proposed.

C. Outline of Technical Results

In this paper we revisit the hidden database sampling
problem, and present vastly superior sampling techniques than
those proposed in our preliminary work [1]. Unlike our earlier
work, our main focus here is on the TOP-£-COUNT interface.
However, we also show how a novel hybrid technique can
be utilized to also extend our techniques to TOP-k-ALERT
interfaces. We briefly describe our new contributions below.

There are two main objectives that any hidden database
sampling algorithm should seek to achieve:

o Sample bias: Due to the restricted nature of the interface,
it is challenging to produce samples that are truly uniform
random samples. Consequently, the task is to produce

samples that have small bias, i.e., samples that deviate as
little as possible from uniform.

o Efficiency: We measure efficiency of the sampling process
by the number of queries that need to be executed via the
interface in order to collect a sample of a desired size.
The task is to design an efficient sampling procedure that
executes as few queries as possible.

Our Algorithm for TOP-k-COUNT Interfaces: We first
discuss our results for TOP-k-COUNT interfaces. As was
briefly described in [1], it is fairly straightforward to design
a random drill-down procedure that produces samples without
any bias. However, the procedure suffers from poor efficiency
- it has to execute an inordinate number of queries before
obtaining reasonable sized samples. In the current paper we
have carefully investigated this problem, and have designed
COUNT-DECISION-TREE, a vastly more efficient algorithm.
This is one of the principal results of our paper.

The new procedure COUNT-DECISION-TREE is based
on two main ideas. The first idea is to continuously log
the query history while the sampling is in progress - i.e.,
record (as materialized views) all executed queries and their
returned counts. We then design a sampling procedure that
tries to leverage the query history as much as possible, where
in preparing the next query to execute, preference is given
to queries that already appear in the query history, thereby
replacing a costly query execution with a fast local look-up
at the client’s end. In fact, utilization of query history offers
opportunities of query inference in addition to simple reuse -
the former refers to queries that may not have been directly
executed in the past, but whose counts can be inferred from
the ones that have been executed. In the paper we carefully
explore our idea of logging query history, and provide both
a theoretical analysis of the number of queries saved by
this approach, as well as substantial experimental evidence
to corroborate our analytical findings.

The second idea is to generalize the notion of attribute
ordering used in [1] to that of a decision tree. In the earlier
work, the random drill-down procedure was guided by an
ordering of the attributes, such that each new predicate selected
for narrowing the query involved a random value of the
next attribute present in the attribute order. For the case of
TOP-k-COUNT interfaces, it was suggested that any specific
attribute order was adequate for obtaining unbiased samples.
In the current paper, we make non-trivial enhancements to
this simplistic scheme to obtain unbiased samples, but with
significant performance improvements. Our new approach may
be considered as the execution of multiple random drill-down
procedures (where each such procedure results in the selection
of a random sample tuple) except that we always adhere to
following paths down a decision tree. In this paper, a decision
tree over the database tuples is a tree where all internal
nodes are attributes, all leaf nodes are tuples, and each edge
leading out of a node is labeled with a unique value from
that attribute’s domain, along with a transition probability
proportional to the number of leaf tuples that can be reached by
following that edge. This transition probability is used to select
the edge during random drill-down. Each path from the root
to a leaf encounters a subset of the attributes in the interface,

but the same attribute is never repeated along a path.

Clearly the use of a decision tree is a generalization over
using any fixed attribute order - the latter essentially refers to
a decision tree that has the same attributes at any given level
of the tree. More importantly, while any legitimate decision
tree can be used to obtain unbiased samples, the challenge
is in designing a decision tree that achieves the maximum
efficiency. This problem is complicated by the fact that this
tree cannot be created in its entirety, as complete access to all
database tuples is impractical; thus this tree has to be built and
used on-the-fly, i.e., while the sampling is in progress. Thus if
we take a snapshot at any time during the sampling process, we
will essentially have created a partial decision tree, with only
a few paths extending all the way to the leaves (corresponding
to those tuples that have been included in the sample thus far).

Our investigations of such an optimal decision tree-based
approach led to several interesting technical results. A theoret-
ical study revealed interesting connections with the seemingly
unrelated NP-hard problem of entity identification in the
design of interactive question-answering systems [4]. Thus
we show that drawing samples in an optimal manner using
the decision tree approach is computationally intractable.
However, our COUNT-DECISION-TREE algorithm is based
on a carefully designed heuristic for incrementally building an
efficient decision tree while the sampling is in progress, with
the goal being that the remaining samples can be obtained
in as few queries as possible. This heuristic is based on
the online computation of a savings function that attempts
to select new queries that: (a) leverage the query history
and try to reuse as many past queries as possible, and (b)
have the best chance of reaching a random tuple as quickly
as possible. Although primarily a heuristic, we are able to
provide important analytical arguments as to why such a
heuristic is expected to do well. Our experiments corroborate
our conceptual and analytical arguments to show that COUNT-
DECISION-TREE is an order of magnitude more efficient than
the previous algorithm presented in [1] for drawing random
samples from a TOP-k-COUNT interface.

Our Algorithm for TOP-k-ALERT Interfaces: We next
discuss our results for TOP-k-ALERT interfaces. Unlike TOP-
k-COUNT interfaces, it is quite difficult to draw a random
sample from a TOP-k-ALERT interface without introducing
bias into the resultant sample. In fact, bias and efficiency
are contradictory goals, and the earlier algorithm HIDDEN-
DB-SAMPLER in [1] is actually a parameterized procedure
which trades off bias against efficiency. In the current paper
we propose a new parameterized procedure, ALERT-HYBRID,
for drawing random samples from a TOP-k-ALERT interface
which is significantly better than HIDDEN-DB-SAMPLER.
This is second main algorithm presented in our paper.

We provide a brief outline of the idea of ALERT-HYBRID.
The algorithm consists of two phases. The first phase consists
of a drawing a fairly small random sample with very small bias
(henceforth called a pilot sample) using the earlier HIDDEN-
DB-SAMPLER algorithm. Then in the second phase, the
remaining desired number of samples is drawn from the
alert interface, except that we use our COUNT-DECISION-
TREE algorithm to draw the remaining samples. Although

the interface does not have the capability to provide count
information for queries, we use the pilot sample to estimate
count information for queries. This is done using standard
approximate query processing techniques [5]-[7] by executing
each query locally on the pilot sample and appropriately
scaling the result to estimate the count for the entire database.
Interestingly, the “hybrid” idea of using a small amount of
pilot samples to bootstrap COUNT-based sampling is inspired
by similar sampling approaches considered in other unrelated
contexts [8], [9]. Because the counts are only estimates, we
are not able to completely remove bias from the resultant
sample, however our experiments show that ALERT-HYBRID
is significantly better than HIDDEN-DB-SAMPLER for draw-
ing random samples from a TOP-k-ALERT interface - for
the same bias (same efficiency), it produces samples more
efficiently (with less bias).
In summary, the main contributions of this paper are:

o We revisit the problem of random sampling from hidden
databases with proprietary form interfaces.

o We present COUNT-DECISION-TREE, an efficient al-
gorithm for drawing random samples without bias from
hidden databases with TOP-k-COUNT interfaces. The
algorithm is based on two ideas: (a) the use of query
history, and (b) the use of a decision tree. We provide
several theoretical insights into the behavior and perfor-
mance of this algorithm.

o We present ALERT-HYBRID, an efficient algorithm for
drawing random samples with small bias from hidden
databases with TOP-k-ALERT interfaces. The algorithm
is based on using a pilot sample to bootstrap the COUNT-
DECISION-TREE algorithm to draw the samples.

o We provide a thorough experimental study that demon-
strates the significance of our theoretical results and the
superiority of our algorithms over previous efforts.

The rest of this paper is organized as follows. We briefly
review the existing sample algorithms for hidden databases
in Section 2. In Sections 3 and 4, we introduce our two
major algorithms, COUNT-DECISION-TREE and ALERT-
HYBRID, respectively. Section 5 presents the experimental
results. Related work is reviewed in Section 6, followed by
final remarks in Section 7.

II. PRELIMINARIES
A. Models of Hidden Databases

We restrict our discussion in this paper to categorical data
- we assume a simple discretization of numerical data to
resemble categorical data. Apparently, different discretization
will lead to different performance of sampling. How to design
an optimal discretization scheme is left as an open problem.

Consider a hidden database table D with m tuples
t1,...,t, and n attributes Ay,..., A, with respective do-
mains Domy, ..., Dom,. The table is only accessible to users
through a web interface. We assume a prototypical interface
where users can query the database by specifying values for
a subset of attributes. Thus a user query Qg is of the form:

SELECT « FROM D WHERE A; = v;, .. A;,
where vy, is a value from Domi].

= Ui57

Let Sel(Qs) be the set of tuples in D that satisfy Qg.
As is common with most web interfaces, we shall assume
that the query interface is restricted to only return & tuples,
where k£ < m is a pre-determined small constant (such as
10 or 50). Thus, Sel(Qs) will be entirely returned only if
|Sel(Qs)| < k. If the query is too broad (i.e., [Sel(Qs)| > k),
only the top-k tuples in Sel(Qg) will be selected according
to a ranking function, and returned as the query result. The
interface will also notify the user that there is an overflow, i.e.,
that not all tuples satisfying (g can be returned. At the other
extreme, if the query is too specific and returns no tuple, we
say that an underflow occurs. If there is neither overflow nor
underflow, we have a valid query result.

For the purpose of this paper, we assume that a restrictive
interface does not allow the users to “scroll through” the
complete answer Sel(Qg) when an overflow occurs for Q.
Instead, the user must pose a new query by reformulating some
of the search conditions. We argue that this is a reasonable
assumption because many real-world top-k interfaces (e.g.,
Google) only allow “page turns” for limited (100) times before
blocking a user by IP address.

Based on the response provided by the interface when
there was an overflow, we classify the interfaces for hidden
databases into two categories: TOP-k-ALERT and TOP-k-
COUNT. If the interface only issues a Boolean alert i.e.,
whether there were other tuples besides the top-k that also
satisfied the query conditions but were not returned, then the
interface is TOP-k-ALERT. If the interface also provides a
count of the total number of tuples in the database that satisfy
the query condition, we call the interface as TOP-k-COUNT.

B. A Running Example

Table I depicts a simple dataset which we will use as a
running example throughout this paper. There are 8 tuples
and 7 attributes, including 3 Boolean and 5 categorical with
domain size ranging from 4 to 8.

TABLE I
EXAMPLE: INPUT TABLE

fun
»
IS
ot
(=]
3

&
»&www»—u—nooﬁ>
o | | =| of of =| o B
»—Al—lOO»—‘OOOEJ>
| | | of | | of of 2>
OJOJ[\DM[\’))—‘[\’)O:>
O(’.\.’)l\'))—'OOOO:>
NQW%WMHO:;

C. Prior Sampling Algorithms

In this subsection we review three variants of HIDDEN-DB-
SAMPLER, the sampling algorithm presented in our earlier
work [1] for obtaining random samples from hidden databases.

1. ALERT-ORDER: We first describe a variant that was
designed for TOP-k-ALERT interfaces (for the rest of this
paper we refer to this variant as ALERT-ORDER). Assume
a specific fixed ordering of all attributes, e.g. Aj,...,A,.

Consider Figure 1 a) which represents an attribute-order tree
over the database tuples, where all internal nodes at the ¢th
level are labeled by attribute A;. Each internal node A; has
exactly |Dom;| edges leading out of it, labeled with values
from Dom,;. Thus, each path from the root to a leaf represents
a specific assignment of values to attributes, with the leaves
representing possible database tuples. Note that since some
domain values may not lead to actual database tuples, only
some of the leaves representing actual database tuples are
marked solid, while the remaining leaves are marked empty.

The ALERT-ORDER sampler executes a random walk in
this tree to obtain a random sample tuple. To simplify the
discussion, assume k£ = 1. Suppose we have reached the
ith level and the path thus far represents the query A; =
n&...&A;1 = wv;—1. The algorithm selects one of the
domain values of A; uniformly at random, say v;, adds the
condition A; = wv; to the query, and executes it. If the
outcome is an underflow (i.e., leads to an empty leaf), we
can immediately abort the random walk. If the outcome is a
single valid tuple, we can select that tuple into that sample.
And only if the outcome is an overflow do we proceed further
down the tree.

This random walk may be repeated a number of times to
obtain a sample (with replacement) of any desired size. One
important point to note is that this method of sampling intro-
duces bias into the sample, as not all tuples are reached with
the same probability. Techniques such as acceptance/rejection
sampling are further employed for reducing bias (see [1] for
further details).

For this scheme, clearly the order of the attributes can play
an important role in the efficiency of the sampling process. It
was suggested in [1] that the attributes be ordered from largest
to smallest domain sizes.

2. ALERT-RANDOM: For the special case of Boolean data,
since the domain sizes are the same for all attributes, it
was suggested that instead of using a specific fixed attribute
order, a fresh random ordering of attributes be used before
every random walk. It was shown that such a scheme helps
reduce the bias more than any fixed order attribute scheme.
Henceforth we refer to this variant as ALERT-RANDOM.

3. COUNT-ORDER: We now turn our attention to TOP-
k-COUNT interfaces. It was pointed out in [1] that, when
COUNT information is returned for each query, a random
walk scheme can be designed to generate completely unbiased
samples. Thus, no bias reduction techniques need to be used
later. Henceforth we refer to this variant as COUNT-ORDER.
For a given node in the attribute-order tree, instead of choosing
edges with uniform probability, COUNT-ORDER chooses an
edge with probability proportional to the COUNT of that edge
(i.e., proportional to the number of actual tuples that can be
reached following that edge). For example, suppose we have
reached the ith level and the path thus far represents the query
Ay = v&... &A;_1 = v;_1. Let the current attribute under
consideration, A;, have | Dom;| = b; edges labeled with values

vk vf ‘. Then, the random walk follows edge v{ (i.e., adds

Gyt

| © Internal node @ valid query QO underflow |
A1
Py 9 P @ eo'e
o000 A3 MR

......
@---- O------ A4 t 2 t3 t4 t5 t6

a) An attribute-order tree b) A decision tree

Fig. 1. Attribute-Order Tree vs. Decision Tree

A; = vf to the query) with probability equal to
COUNT(Al =V1y.-- 7141'_1 = Vi—1, Az = ’Uf)

COUNT(Al =V1y..- ,Ai,1 = ’Uifl)

Consider the impact of this approach to the bias of the
obtained samples. The probability that a random walk hits
a tuple ¢t = (v1,...,v,) in the database is

P(vj) =

7

t) = H Pr{v; is chosen for A4;} ()
i=1
f[COUNT A1 =V1y.-- Ai—l = Vi—1, Ai = 1}7;)
i COUNT(Al = V1y... ,Ai,1 = ’Uifl)
2
1
== 3)
m

where, recall that m is the number of tuples in the database
and COUNT(A1 = V1y... 7Ai—1 = Ui—l) = COUNT(*) =m
for ¢+ = 1. Thus, the count-based sampling generates unbiased
samples.

IIT. COUNT-DECISION-TREE

In this section we present the main ideas of COUNT-
DECISION-TREE, our algorithm for sampling a hidden
database with TOP-k-COUNT interface.

A. Motivation

Although the simple COUNT-ORDER algorithm explained
in Section II can generate unbiased samples, it also introduces
a significant challenge, as the number of queries required
for sampling categorical databases may increase dramatically
compared with both TOP-k-ALERT algorithms. To understand
this, consider a random walk from a node to one of its b
successors in the tree. In both TOP-k-ALERT algorithms, an
edge is chosen uniformly at random from [1,b], and only one
query corresponding to the chosen edge needs to be issued.
However in COUNT-ORDER, the counts of all edges must be
first determined in order to compute their respective transition
probabilities, after which an edge is randomly selected to
follow. This requires b — 1 queries'. Thus, COUNT-ORDER

IThe remaining count can be inferred from these b— 1 counts and the count
of the current node.

may require a large number of queries for sampling categorical
databases, especially for attributes with large domains.

The rest of this section is devoted to techniques for improv-
ing the efficiency of sampling TOP-k-COUNT interfaces.

We first introduce a generalization of an attribute-order tree
to a decision tree on the hidden database. The key extension
of a decision tree is that it allows each level of the tree to
contain different attributes. Figure 1 a) and b) illustrates both
types of trees for the database in Table I for the case k =
1. Random walks over decision trees are likely to be more
efficient than over attribute-order trees, as by leveraging the
flexibility of selecting multiple attributes for nodes at the same
level, a compact decision tree features a shorter depth and a
smaller total number of possible queries. For the example in
Figure 1, when one sample tuple needs to be collected, the
decision tree provides a saving of (1/4 x 1+1/4 x 2) = 3/4
queries in comparison with the attribute-order tree. We defer
a more thorough analysis of the advantages of decision trees
over attribute-order trees to Section III-C.

Suppose we are given the structure of a decision tree over
a hidden database - i.e., the entire tree is available, barring
the various COUNT information (or transition probabilities
associated with the edges). Figure 2 depicts a count-based
sampling algorithm that performs random walks on this de-
cision tree to collect a sample with s tuples (in the figure we
use the notation |u] to refer to the count of node (or edge) u,
i.e., the number of database tuples below u in the tree). We
would like to make several remarks regarding the algorithm.
First, this is of course a hypothetical scenario, as such a tree
is not available for hidden databases, and in fact has to be
constructed on-the-fly (which will be discussed later in the
paper). Second, queries corresponding to nodes in the upper
level (e.g., root) of the tree may be reused by many random
walks, especially if s is large. This motivates us to consider
the impact of query history in Section III-B. Third, no matter
how the decision tree is structured, the sampling algorithm
always generates unbiased samples. Fourth, the number of
queries, however, may vary significantly between different
structures. An interesting challenge is to identify a structure
which achieves the optimal efficiency. We will address this
challenge in Sections III-C.

Require: r: root node of the decision tree
1: for i =1 to s do
2: Obtain the i-th sample as DT_SAMP(r).
3: end for
4: function DT_SAMP(u)
5: > Let v have b values vy, ..., v, and edges uq, ..., up
6: Query b — 1 edges for counts of wuq, ..., up.
7 Randomly pick j € [1,b] s.t. Pr{j picked} = |u;|/|ul.
8 if |u;| < k then
9: return a random tuple from the answer to u;
10: else
11: return DT_SAMP(u;).
12: end if
13: end function

Fig. 2. Sampling TOP-k-COUNT with a Given Decision Tree

B. Improving Efficiency: Query History

We start our discussion on improving the efficiency of
count-based sampling by a simple strategy: take advantage of
the query history. That is, the sampling algorithm should only
send to the hidden database “new” queries which have never
been asked before and cannot be inferred from the history. An
example of inference is the computation of COUNT (a; = 1)
from COUNT(*) and COUNT(a; = 0).

We discuss the impact of leveraging query history to im-
prove sampling efficiency. The following theorem provides a
lower bound on the number of queries saved by consulting the
query history.

Theorem 3.1: For the algorithm in Figure 2, the number of
queries saved by consulting the query history for obtaining s
samples (s-k < m) of a hidden database of size m is at least

sQH>s~<(b—1)~10gbs—2—bb1>, 4)
where b (b > 2) is the minimum domain size of an attribute.
We omit the proof due to space limitation. An observation
from the theorem is that the saving from history is significant
when s is large. For example, obtaining 5,000 samples from
a Boolean database will lead to a saving of at least 41,438
queries. For a 100,000-tuple i.i.d. Boolean database where the
1’s and O’s are uniformly distributed with probability 0.5 each,
it implies an expected saving of at least 49.90% when k = 1
(from 83,048 to at most 41,610). The saving will be even
larger for a categorical database with b > 3. For example,
when b = 5, the saving is at least 89, 590 queries. Again, for
a 100,000-tuple i.i.d. database with each attribute following
uniform distribution on 5 values, it implies an expected saving
of 62.62% (from 143,067 to 53,317).

Theorem 3.1 provides a lower bound on the number of
queries saved by the history. Now consider an even more
important problem for leveraging history: how many unique
queries are needed to sample a hidden database with a
TOP-k-COUNT interface? We investigate this problem below.
In particular, we consider the maximum number of queries
needed in the extreme case where all branches are traversed.
The result will also form the foundation for our discussion of
building the decision tree in Section III-C.

0000000

3 t4 t8 t2 t5 t6 17

Tree B

©LY
o P 8 9
(X N NON ROR®)
213 1ttet7tsa 6B 4 B 2
Tree C
Fig. 3. Examples of Decision Trees

First, we consider a special case of decision trees referred to
as loaded decision trees. A tree is loaded iff it does not have
any empty leaves. For example, of the four trees in Figure 3
corresponding the running example database in Table I, trees
A, B, and C are loaded, while tree D is not. In the following,
we will first derive the maximum number of unique queries
required for sampling a loaded tree. After that, we extend the
result to general decision trees.

Theorem 3.2: Given the structure of a loaded decision tree,
the total number of unique queries required for obtaining s
samples through a TOP-k-COUNT interface is at most m — 1.

Proof: Let |L;| and |€;| be the number of all (internal
and leaf) nodes and internal nodes in level i, respectively
(root is level 1, let the maximum levels be h). Then, the
maximum number of queries issued for level 7 is |L; 1| —| €]
because each internal node has one query saved through
history inference. Thus, the maximum total number of queries
issued is

h—1 h h—1

D o(Lipa =) =D Ll =D | =1 =m—1. (5

i=1 i=1 i=1

This is due to two reasons. First, 7 |L;| — S2' 71] is
equal to the total number of leaf nodes because all nodes in
level h are leaves. Second, the number of leaves is m. [|

The theorem shows that given a loaded decision tree, the
maximum number of unique queries required for count-based
sampling of the tree only depends on the number of tuples
in the database, and not by the number of attributes or their
domain sizes. For example, trees A, B and C in Figure 3 all
have 7 unique queries for count-based sampling: Tree A has
1 at the level 1 and 6 at level 2; Tree B has 4 at level 1 and 3
at level 2; while all 7 queries for Tree C are at the same level.

We now consider the extension to general decision trees.
Again, we would like to remark that in practice, we will not
be provided with the structure of a decision tree; rather queries
must be issued to both construct the decision tree and sample
from it. If a decision tree is constructed without consulting the
complete database, empty branches often occur and the tree is
usually not loaded. Thus, the sampling of a decision tree that
has empty leaves is arguably a more practical scenario.

Each edge leading to an empty leaf leads to one additional
query, as we can observe from tree D in Figure 3. To analyze
the number of empty leaves, we consider an example of m-
tuple i.i.d. Boolean dataset studied in [1], where each attribute
takes the value of 1 with probability p. Let L(m, k, p) be the
expected number of empty leaves for such a dataset. We have

L(0,k,p) = 1. (6)
L(1,k,p) = 0. (7)
L(k, k,p) = 0. @®)
L(m, k,p) =

=0

(€))

Note that although L(m, k, p) appears in both the left and right
side of (9), it can nevertheless be solved from the equation.

Figure 4 depicts the relationship between the number of empty
leaves and the number of tuples when k£ = 1. The results are
computed from (6)-(9) using Matlab simulation. As we can
see, L(m, p) and m roughly follow a linear relationship. Based
on (9) and Theorem 3.2, we have the following corollary.

Corollary 3.1: Given an i.i.d. Boolean dataset where each
attribute takes the value of 1 with probability p, for all s > 1,
the total number of queries required for obtaining s samples
through a top-k interface with COUNT is at most m — 1 +
L(m,k,p).

200

——p=0.125
- - -p=0.250

= 150

(L(m, p))

100

50

Number of Empty Leaves

0 20 40 80 100
Number of Tuples (m)

Fig. 4. The number of empty leaves vs. the number of tuples when k = 1

C. Improving Efficiency: Constructing Decision Tree

1) Motivation and Hardness: Theorem 3.2 indicates that,
if a very large number of samples need to be collected, then
every decision tree without empty leaves will have the same
efficiency because the total number of queries only depends
on the size of the database. Nonetheless, the design of the
decision tree may play an important role in reality due to the
following two reasons:

e Since the number of samples required in practice is
usually much smaller than the size of the database, many
of the m — 1 queries may not be issued; thus different
decision trees may have different impact on efficiency.

o As we can see from Figure 4, the number of empty leaves
may be significant, especially when the attributes skew
towards a few values.

We now discuss the design of an efficient decision tree,
in particular the following problem: Given s, the number
of samples to be collected, design a decision tree with the
minimum sampling cost, i.e., the minimum expected number
of queries required to collect s unbiased samples.

Unfortunately, this problem is hard even if the decision tree
can be constructed with full access to the m tuples. Consider a
special case of the problem when s = 1 and k£ = 1 for Boolean
databases. The problem is essentially the same as computing
a decision tree with no empty leaves that has the minimum
average path length from root to the leaves. This is equivalent
to a well-known problem of constructing an optimal decision
tree for the entity identification problem [4], for which the

m 7 m—i . .
(i) p'(1—p) (L(i, k,p) + L(m — i, k»p)following hardness result is known from [4]:

Theorem 3.3: (from Theorem 4.1 in [4]) When s = 1 and
k = 1, it is NP-hard to construct a decision tree over a
Boolean database with the minimum sampling cost, or even
approximate it within a factor of Q(logm).

2) Basic Ideas: Due to the hardness of the problem, we
propose a heuristic greedy algorithm to construct an efficient
decision tree. We remind the reader that the tree cannot be
created in its entirety, as complete access to all database tuples
is impractical; the tree has to be built and used on-the-fly. At
any time during the sampling process, we will essentially have
created a partial decision tree, with only a few paths extending
all the way to the leaves (corresponding to those tuples that
have been included in the sample thus far).

We first discuss the intuition behind the algorithm: the

saving and expense associated with each node in the decision
tree. For the ease of understanding, we restrict our attention
to k = 1 in the discussion of intuition, but will present the
algorithm with arbitrary k.
Saving: Recall from the proof of Theorem 3.2 that, when k =
1, a decision tree without empty branch requires exactly m —1
total queries when the number of queries s — oo. Consider
these as the baseline queries for the sampling process. As we
mentioned above, the actual number of queries varies from the
baseline due to two possible reasons:

e« When s is small, a subtree may never be encountered
by a random walk. Note that a never-encountered subtree
with m tuples yields a reduction of m — 1 on the number
of queries. Let the total reduction be R(s).

o Each empty leaf leads to an increase of 1 on the number
of queries. Let the total increase be L.

Thus, the actual number of queries is m — 1 — (R(s) — L).
We say that the decision tree yields a saving of R(s) — L.

Note that unlike the number of baseline queries which is
independent of the structure of the decision tree, R(s) — L
strongly depends on the tree structure. For example, consider
trees in Figure 3. Tree C offers no saving at all, because all
possible queries will be issued to collect the first sample. When
s = 1, the saving of tree B is 3 because one of the 2nd level
nodes (A5 and A6) cannot be encountered by the random walk.

The saving also depends on s. When s increases, the saving
of tree B decreases rapidly because it is very likely that both
A5 and A6 will be encountered. Nonetheless, tree A might still
offer some saving if one of the three nodes (A2, A3, A4) are
not encountered by random walks. Thus, a critical challenge
is to construct a decision tree with maximized saving given s.

Consider the saving associated with not reaching a node
u of A; (but reaching its ancestors). Denote such saving by
R(s,u) — L(u). Consider R(s,u) first. Recall that b; is the
domain size of a;. Let u; be the edge of u which corresponds
to the j-th value of A;, and |u;| be the number of tuples below
u,;. Define

b;
R(s,u) = ZPr{uj is not traversed, u is reached} - (|u;| — 1)
j=1
Jus [\ Jul*
=20 (=)) g -1
((1-1 DY gl -1,

L(u) = {jlj € [1,bi], u;| = 0}].

b;
j=1

and

(10)

It is easy to see that R(s) = > R(s,u), L =73, L(u), and
R(s) = L= (R(s,u) — L(u)). (11)

u
We refer to R(s,u)— L(u) as the saving of u. Table II shows
the saving of the root node for trees A, B and C in Figure 3. As
we can see, tree B offers the greatest saving when s = 1, but
its saving decreases rapidly to below tree A when s increases
to > 3. As we discussed above, tree C has a saving of 0.

TABLE 11
EXAMPLE: SAVING

s 1 2 3 4 5 6
Tree A | 2.2500 | 1.6875 | 1.2656 | 0.9492 | 0.7119 | 0.5339
Tree B | 6.0000 | 3.0000 | 1.5000 | 0.7500 | 0.3750 | 0.1875
Tree C 0 0 0 0 0 0

Expense: The saving function R(s) — L concerns how many
queries are saved from the baseline m — 1 queries. Now
consider the opposite view: how many queries are executed,
starting from O queries? Let C' be this number. Note that
C=m—1-—(R(s) — L). Define

C(u) = Pr{u is reached} - (b; — 1)

((-B))

Again, we have C' =) C(u). We refer to C(u) as the
expense of u.

Intuition of Constructing a Decision Tree: The task of
constructing a decision tree is essentially to select an attribute
label for each node: first, select an attribute for the root, and
then recursively choose an attribute for each child, and so on.
During the process, we aim to increase), (R(s,u) — L(u))
and reduce), C(u). However, note that the total number of
nodes depends on the structure of the decision tree, and may
not be known during the construction. Thus, while selecting an
attribute for a node u, we propose a heuristic of maximizing
the saving per expense ratio

12)

(13)

R(s,u) — L(u)
Clu)

Due to the constraint that) (R(s,u)—L(u)+C(u)) = m—1,
limiting the ratio also limits the number of queries issued for
sampling. In particular, we have the following theorem:

Theorem 3.4: If all nodes in the decision tree satisfies
SER(s,u) > o, then the expected number of queries for
obtaining s samples is at most (m — 1)/(c + 1).

For data in Table I, Table III shows the SER of different
attributes for choosing the root node when s = 1 and s =
10. Note that A7 is not shown in the table because its SER
is always 0. As we can see, Ay will be chosen as the root
when s = 1, while A; will be chosen when s = 10. This is
consistent with our intuition discussed above.

Computation of SER(s,u): For computing SER(s, u), four
variables are needed: the number of samples s, the COUNT of
the current node |u|, the domain size b; and the branch counts
|uj|. Among them, |u| and s are already determined, while b;

SER(s,u) = (14)

TABLE III
EXAMPLE: SER FOR THE ROOT NODE

A1 A2 Ag A4 A5 AG
s=1 0.5625 | 3.0000 | 2.7500 | 2.7500 | 0.7500 | 0.5000
s =10 | 0.0422 | 0.0059 | 0.0184 | 0.0184 | 0.0197 | 0.0001

and |u;| depend on the selected attribute. b; can be learned
through domain knowledge. However, |u;| have to be queried
from the hidden database. For high-domain-size attributes,
|u;| requires a large number of queries, which jeopardize our
ultimate objective of minimizing the total number of queries.

Fortunately, the exact computation of SER(s,u) might
not be necessary for our algorithm. Note that to select an
attribute for node u, we only need to determine which attribute
returns the largest SER(s,u). An important observation is
that R(s,u) — L(u) may vary significantly between attributes
of different domain size. For example, consider the selection
between two attributes Aq, Ao for the root node. Both follow
uniform distribution with domain size by = 2 and b, = 10.
Note that when m > 10, neither of them is likely to have
L(u) > 0. Thus,

m—2 _ (m-—10)-9°
> ST 910
Clearly, in this case, a rough estimation of |u;| would be

sufficient for choosing between the two attributes.

We leverage this property of SER(s, A;) by approximating
its value with the minimum number of queries. The simplest
choice is to assume that all attributes follow the uniform
distribution, and to compute |u;| = |u|/b;. However, we found
through experiments that this approximation is oversimplified
because many attributes in real-world datasets have highly
skewed value distribution.

Thus, we propose to first issue a small number (3, b;)
of marginal queries, and then estimate |u;| based on the
conditional independence assumption: The marginal queries
are COUNT(A; = wv1), ..., COUNT(4; = vp,) for all
attributes A;. To select an attribute for node u, we estimate
the COUNT of branch u; for attribute A; by

COUNT(CLI = ’Uj)
COUNT (%)

However, note that once an attribute a; is selected, we will
actually query all |u;| in order to determine the probability
for following each branch. By doing so, we save the queries
used for constructing but not sampling the decision tree (i.e.,
queries |u;| for attributes which are not eventually chosen),
without affecting the unbiasedness of the collected samples.

D. Algorithm COUNT-DECISION-TREE

Figure 5 depicts COUNT-DECISION-TREE, our algorithm
for sampling TOP-k-COUNT interfaces. It performs the fol-
lowing alternative steps: a) determine the attribute for the
current node (Lines 1 to 3), then b) determine which branch
to follow, and so on. The estimation of SER(s,u) is used to
determine the attribute (Line 6). Note that once an attribute is
chosen for a node, it is available for reuse for future samples

SER(s,a1) = = SER(s,az).

15)

lujle = lul -

in order to leverage the query history. Determining the next
edge involves the execution of b; —1 queries (Line 8), followed
by a random picking of the next edge (Line 10).

Require: Attr(-) = () if not assigned
1: for i =1 to s do
2: Obtain the i-th sample as DT_SAMP(s — ¢ + 1, ()).
3: end for
4: function DT_SAMP(s¢, path)
5: if Attr(path) = ¢ then

6: Attr(path) = argmax((R(st,u,k) — L(u,k))
/C(u)).

7: end if

8: Query b—1 branches. (Only issue those not in history)

: Randomly pick j € [1,] s.t. Pr{j picked} = |u;|/|ul.
10: if |u;| < k then

11: return a random tuple from the answer to u;
12: else

13: return DT_SAMP(s, path||Attr(path) = v;).
14: end if

15: end function

Fig. 5. COUNT-DECISION-TREE

COUNT-DECISION-TREE also extends the previous dis-
cussion by addressing the cases with interface parameter k >
1. Clearly, the value of C(u) is unaffected. For computing
the saving R(s,u) — L(u), we define the number of baseline
queries as m/k — 1. Thus, the saving becomes

w0 - (-5)) ()

j=1
and
k—
L(u, k) = W/
j‘je[l’bi]’luj|<k

IV. ALERT-HYBRID

(16)

In this section, we present the main ideas behind ALERT-
HYBRID, our new algorithm for sampling hidden database
behind a TOP-k-ALERT interface.

A. Basic Ideas

A major problem of ALERT-ORDER, the state-of-the-art
algorithm for sampling TOP-k-ALERT interfaces, is the bias
of the collected samples. Since ALERT-ORDER chooses each
branch of a node with equal probability, those tuples on upper
levels of the tree (which require shorter walk from the root) are
more likely to be sampled. Although an acceptance-rejection
module was introduced to reduce the bias [1], not many
samples can be rejected in order to maintain the efficiency
of ALERT-ORDER. As a result, the remaining bias may still
be significant, as we will illustrate in the experiments.

On the other hand, the algorithms we just discussed for
TOP-k-COUNT interfaces generate no bias because each
branch is chosen with probability proportional to its COUNT.
As a result, each tuple is sampled with equal probability.

Clearly, the COUNT information which is absent from TOP-
k-ALERT interfaces can play an important role on reducing
the bias of collected samples.

Fortunately, the COUNT information is not completely out
of reach in TOP-k-ALERT interfaces. In particular, after a
small number of samples are collected, the COUNT of certain
queries may be estimated from the collected samples.

Thus, we propose ALERT-HYBRID, a two-phase procedure
by which the sampler first collects a small number (say s1)
of pilot samples for COUNT estimations, and then use the
estimated COUNT to facilitate the collection of the remaining
(much larger) s — s; samples. The s; samples can be sim-
ply collected by ALERT-ORDER, parameterized to produce
samples with small bias. The small bias in the s; samples
is desirable because it helps in accurate COUNT estimations
in the second phase. Although this requirement makes the
ALERT-ORDER procedure less efficient, the relatively small
number of the pilot samples required ensures that the cost of
the first phase is a modest portion of the overall sampling cost.

For the remaining s — s; samples, note that we cannot
directly use the COUNT-DECISION-TREE algorithm because
not all nodes can have COUNT accurately estimated from
a very small number (s; < m) of samples. Thus, we pro-
pose a hybrid approach which integrates COUNT-based and
ALERT-based sampling. In particular, after collecting the s;
samples, we invoke the COUNT-DECISION-TREE algorithm
until reaching a node v with COUNT in the collected samples
less than a threshold, say cg. At this node, there are not
enough collected samples to support a robust estimation of
the probability for following each edge. Thus, a natural choice
is to switch to ALERT-based sampling. In particular, ALERT-
ORDER s called to collect a sample under node u. As we can
see, this hybrid approach starts with COUNT-based sampling
at the upper levels of the tree, and then switches to ALERT-
based when there is not enough support from the collected
samples. Initially, the switch from COUNT-based to ALERT-
based sampling may occur early at the upper levels. However,
when more samples are collected (at the second phase), more
nodes will be able to support COUNT-based sampling, and
thus the switch may occur later.

There are two important parameters in the algorithm: s1, the
number of pilot samples collected for initial count estimation,
and cg, the count threshold for switching to ALERT-ORDER.
The setting of s; influences the efficiency of ALERT-HYBRID
for two reasons: First, with a small s;, the constructed decision
tree is unlikely to be optimal, and therefore may require more
queries in the second phase. Second, if s; is too large, there
will be a large number of queries spent in collecting the pilot
samples. Note that these queries are unlikely to be reused in
the second phase because COUNT-DECISION-TREE may use
a different tree from the attribute-order tree used by ALERT-
ORDER in the first phase.

The setting of cg influences the bias of the collected
samples. Note that in the count-based sampling part of the
tree, the probability of following each branch is determined
by the COUNT information estimated from the samples. Thus,
error on the estimated COUNT will lead to biased samples.
Thus, the value of cg should be large enough to enable a

stable estimation for the probability of following each edge.
Nonetheless, if cg is too large, a random walk might switch
to ALERT-ORDER at very early stage of a random walk, and
thereby introduce more bias to the samples.

We will discuss the impact of different settings of s; and cg
in greater details in the experimental results section. Nonethe-
less, we would to remark that, although the experimental
results verify the effect of s; and cg on the efficiency and
bias of ALERT-HYBRID, for the class of datasets we tested,
the efficiency and bias are not very sensitive to s; and cg as
long as the parameters are set within a reasonable range. How
to determine the optimal values for s; and cg is left as an
open problem for future work.

B. Algorithm ALERT-HYBRID

Figure 6 depicts the detailed algorithm for ALERT-
HYBRID. In the algorithm, 75 is the set of collected samples
(to which a newly acquired sample is appended); and Ts(path)
(resp. T'(path)) is the subset of tuples in Ty (resp. T') which
satisfy the selection conditions in path.

The basic steps can be stated as follows. First, the algorithm
collects s; pilot samples before using the hybrid sampling
method to collect the other samples. During the hybrid sam-
pling, ALERT-ORDER is used when the current node has
COUNT less than cg in Tg. Otherwise, COUNT-DECISION-
TREE is used, with the only difference that the counts of the
current node (i.e., |ul.) and all edges (i.e., |u;|.) are estimated
from the samples rather than queried from the database.
Clearly, the saving function R.(si,u) — Le(u) — Ce(u) is
estimated as well. Both the pilot samples and the samples
collected by hybrid sampling are returned.

for 1 =1 to s; do
Ts[i] <« ALERT-ORDER(T).
end for
for : = s; to s do
Ts[i] < HYBRID_SAMP(s — i + 1, ().
end for
function HYBRID_SAMP(sy, path)
if COUNT(Ts(path)) < cs then
return ALERT-ORDER(T (path))
else if Attr(path) = ¢ then
Attr(path) = arg max R (s, u) — Le(u)
end if
13: Randomly pick j € [1,b] with P(j) = |u;lc/|ule.
14: Query ¢ = (path||Attr(path) = v;).

_ =
T Y RN R LN

— Ce(u).

—
n

15: if ¢ is a valid query then

16: return a random tuple from the answer to ¢

17: else

18: return HYBRID_SAMP(s;, path||Attr(path) = v;).
19: end if

20: end function

Fig. 6. ALERT-HYBRID

V. EXPERIMENTAL RESULTS

In this section, we describe our experimental setup, com-
pare our two algorithms with the existing ALERT-RANDOM,

ALERT-ORDER, and COUNT-ORDER algorithms, and draw
conclusions on the impact of our three main ideas: leveraging
query history, constructing an efficient decision tree, and sam-
pling TOP-k-ALERT interfaces with ALERT-HYBRID. Note
that the existing algorithms for comparison were proposed as
the HIDDEN-DB-SAMPLER in [1].

A. Experimental Setup

1) Hardware: All experiments were on a machine with
Intel Xeon 2GHz CPU with 4GB RAM and Windows XP
operating system. All our algorithms were implemented using
C# and Matlab.

2) Datasets: We conducted the experiments on three types
of datasets: Boolean Synthetic, Yahoo! Auto, and Census. For
all datasets, we tested a TOP-k-COUNT interface with & = 10.
Boolean Synthetic: Two Boolean synthetic datasets were
generated. Both have 200, 000 tuples. The first one is generated
as i.i.d. data having 80 attributes with the probability of 1 being
25%. We refer to this dataset as the Boolean-i.i.d. dataset.
The second dataset is generated in a way such that different
attributes have diverse distribution. In particular, there are 40
independent attributes, 5 of which have uniform distribution,
while the others have the probability of 1 ranging from 1/160
to 35/160 with step of 1/160. We refer to this dataset as the
Boolean-mixed dataset.

Yahoo! Auto: The Yahoo! Auto (YA) dataset consists
of data crawled from a real-world hidden database at
http://autos.yahoo.com/. In particular, it contains 15,211 used
cars for sale in the Dallas-Fort Worth metropolitan area. There
are 32 Boolean attributes, such as A/C, Power Locks, etc, and
6 categorical attributes, such as Make, Model, Color, etc. The
domain size of categorical attributes ranges from 5 to 447.
Census: The Census dataset consists of the 1990 US Census
Adult data published on the UCI Data Mining archive. After
removing attributes with domain size greater than 100, the
dataset had 12 attributes and 32,561 tuples. It is instructive to
note that the domain size of the attributes of the underlying
data is unbalanced in nature. The attribute with the highest
domain size has 92 categories and the lowest-domain-size
attributes are Boolean.

3) Parameter Settings: The experiments involve five al-
gorithms. Among them, ALERT-RANDOM and COUNT-
DECISION-TREE are parameter-less. ALERT-ORDER re-
quires a parameter called scaling factor C' for the accep-
tance/rejection module, in order to tradeoff between efficiency
and bias. Following the heuristic in [1], for Boolean datasets,
we set C' = 1/2! where [is the average length of random
walks for collecting the samples. For categorical data, we
consider various values of C' to tradeoff between efficiency and
bias. COUNT-ORDER requires input of an (arbitrary) attribute
order. We randomly generate the order in our experiments.
Our ALERT-HYBRID approach requires two parameters: the
number of pilot samples s; and the switching count threshold
cs. We set s; = 100 and cg = 10 by default, but conducted
experiments with various other combinations.

4) Performance Measures: For each algorithm, there are
two performance measures: efficiency and bias. Efficiency of
a sampling algorithm was measured by counting the number of

queries that were executed to reach a certain desired sample
size. To measure the bias of collected samples, we use the
same measure as [1] which compares the marginal frequencies
of attribute values in the original dataset and in the sample:

E:DEV’(l'_ 52?53)2
Vi '

Here V is a set of values with each attribute contributing one
representative value, and pg(v) (resp. pp(v)) is the relative
frequency of value v in the sample (resp. dataset). The intuition
is that if the sample is unbiased uniform random sample, then
the relative frequency of any value will be the same as in the
original dataset. However, note that even for uniform random
samples, this method of measuring bias will result in small
but possibly non-zero bias.

bias =

a7

B. Comparison with Existing Algorithms

1) COUNT-DECISION-TREE: We compared the perfor-
mance of COUNT-DECISION-TREE with three existing al-
gorithms: COUNT-ORDER, ALERT-ORDER, and ALERT-
RANDOM (note: although the latter two algorithms are de-
signed for ALERT interfaces, they can sample from COUNT
interfaces by ignoring the returned counts).

For COUNT-ORDER, our direct competitor for COUNT
interfaces, we conducted the comparison on both Yahoo! Auto
and Census datasets. The number of queries issued are shown
in Figures 7. Note that both algorithms generate unbiased
samples. As we can see, our algorithm requires orders of
magnitude fewer queries than COUNT-ORDER.

For ALERT-ORDER, we conducted the comparison on the
categorical Census dataset. In particular, we tested ALERT-
ORDER with two settings of the scaling factor [1]: C' =
1/15000 and C' = 1/400000. The number of queries issued
and the bias of samples collected are shown in Figures 8 and
9, respectively. As we can see, our algorithm significantly
outperforms both settings of ALERT-ORDER in efficiency and
bias (recall that even though our measurements show non-zero
marginal bias, technically COUNT-DECISION-TREE has no
bias).

Since ALERT-RANDOM was designed for Boolean
datasets [1], we performed the comparison on the Boolean-
mixed dataset. As seen in Figures 10 and 11, our algorithm sig-
nificantly outperforms ALERT-RANDOM in both efficiency
and bias.

2) ALERT-HYBRID: We compared the performance of
ALERT-HYBRID with both existing algorithms for ALERT
interfaces: ALERT-RANDOM and ALERT-ORDER. Fig-
ures 12 and 13 shows results on the Boolean-i.i.d. dataset.
We see that ALERT-HYBRID requires significantly fewer
queries than both of the previous approaches, and produces
substantially less bias than ALERT-ORDER.

C. Effects of History and Decision Tree for COUNT-
DECISION-TREE

The above subsection illustrates the improvement of our
COUNT-DECISION-TREE algorithm over the prior algo-
rithms. The improvement comes from a combination of two

e YA: COUNT-
ORDER

— - =YA: COUNT-
DECISION-TREE

——= Census: COUNT-
ORDER

of querues (16)
O B N W » 01 O

~~~~~~ Census: COUNT-

o 200 800 1000 pECISION-TREE

400
# of Samples

600

Fig. 7. Number of queries vs. samples for

"
N
o

——COUNT-
DECISION-
TREE
ALERT-
ORDER
(High C)
ALERT-
ORDER
(Low C)

"
N B O ® O
© 0O 0 O ©

e

800

# ot QTeries (in ThoTsands)

]

(o] 200 400 600

# of Samples

1000

Fig. 8. Number of queries vs. samples for
COUNT-DECISION-TREE and ALERT-ORDER

—+e—COUNC-

8 DECISION-
OREE
o 6 ALERC-
@ 2 ORDER
High C
XLERC-)

-— ORDER (Low
C)

200 400 600 800 1000

# of Samples

Fig. 9. Bias vs. Number of samples for COUNT-
DECISION-TREE and ALERT-ORDER

COUNT-DECISION-TREE and COUNT-ORDER

0.07
0.06

6000

— ——¢———¢ —*ALERT-

20000
——— ALERT-

, 5000 —e—ALERT- RANDOM . 16000 HYBRID
-2 4000 RANDOM 0.05 2 12000
5] % 0.04 E]
& 3000 2 =3 ALERT-
P 2000 0.03 COUNT- S 8000 ORDER
= COUNT- 0.02 DECISION-
1000 DECISION- 0.01 TREE 4000
TREE ALERT-
o 0 0
RANDOM
100 2 400 500 100 200 400 500 o] 200 800 1000

00 300
# of Samples

Fig. 10. Number of queries vs. sam-
ples for COUNT-DECISION-TREE and ALERT-

300
# of samples

Fig. 11. Bias vs. Number of samples for COUNT-
DECISION-TREE and ALERT-RANDOM

400 600
# of Samples

Fig. 12. Number of queries vs. Number of
samples for ALERT-RANDOM, ALERT-ORDER,

RANDOM and ALERT-HYBRID
3000 —--— Census: YA: COUNT-
——ALSRT- & g 2500 _ k=10 ORDER (w hist)
HYBRID 8 § - Census
& 3 2000 P k=20 —— YA: COUNT-
...... ALRT- 8 i 1500 T Ej;‘;”s DECISION-TREE
ORDsR & § 1000 - ——1ID: k=10 — = Census: COUNT-
nsrr. 2 Es00 . / b ka0 ORDER (w hist)
RANDOM 0 == D k=30 6 oo avo  con  =eo o0 Census: COUNT-
o 200 ﬁag'c:)samiﬁgs 800 1000 0 200 #%%OSamsgloes 800 1000 : 0 200 #g?%anfg?es 800 1000 DECISION-TREE
Fig. 13. Bias vs. Number of samples Fig. 14. Number of queries saved by history vs. Fig. 15. Number of queries vs. Number of sam-
for ALERT-RANDOM, ALERT-ORDER, and Number of samples for COUNT-DECISION-TREE ples for COUNT-DECISION-TREE and COUNT-
ALERT-HYBRID ORDER with history.

techniques: query history and decision tree. In this subsection,
we illustrate the effect of each technique separately.

First, we consider the effect of query history on the per-
formance of COUNT-DECISION-TREE. We conducted the
experiments on both categorical (Census) and Boolean (i.i.d.)
datasets. Figure 14 depicts the number of queries saved by
considering history. As we can see, the saving is roughly linear
to the number of samples, and is not sensitive to the value of
k. This is consistent with our intuition from Theorem 3.1.

Then, we consider the effect of decision tree construction
on the performance of COUNT-DECISION-TREE. To remove
the effect of history, we added the technique of history saving
to COUNT-ORDER, and then compared its efficiency with
COUNT-DECISION-TREE. The results for Yahoo! Auto and
Census datasets are shown in Figures 15. As we can see, for
collecting 1,000 samples, we achieve 289% and 520% im-
provement on efficiency for Yahoo! Auto and Census datasets,
respectively, while providing unbiased samples.

D. Analysis of ALERT-HYBRID

We first consider the effect of using pilot samples to
bootstrap COUNT-based sampling in ALERT-HYBRID. In
particular, we compare its efficiency with ALERT-ORDER af-
ter adding the technique of history saving to ALERT-ORDER.
The result for the Boolean-i.i.d. dataset is shown in Figure 16.
As we can see, the “hybrid” technique by itself not only
reduces bias (as shown in Figure 13), but also significantly

improves the sampling efficiency (by 188% when s = 1, 000).
An interesting observation from Figure 16 is that most
queries issued by ALERT-HYBRID are for collecting the pilot
samples. After the pilot samples are collected, the number
of queries per remaining sample is much lower than that of
the ALERT-ORDER and ALERT-RANDOM algorithms. The
reason is that no query needs to be issued for a node that
enables COUNT-based sampling. Clearly, we can expect the
efficiency improvement of ALERT-HYBRID to be even more
significant as the number of samples becomes larger.

We now consider the effect of the two parameters s; and cg
on the performance of ALERT-HYBRID. Figure 17 shows the
change of efficiency and bias when s; ranges from 50 to 250
and cg is fixed at 10. As we can see, increase on s; reduces
bias, because the larger number of pilot samples delays the
switching to ALERT-ORDER which generates higher bias. On
the other hand, the greater s; is, the more queries need to be
issued because the queries used to obtain the pilot samples are
unlikely to be reused during hybrid sampling.

Figure 18 shows the change of efficiency and bias when
cs ranges from 1 to 25 and s; is fixed at 100. As we can
see, when cg is too low (e.g., 1), the bias is high because
the estimated count used for count-based sampling has a high
error. Nonetheless, when cg is too large, the bias becomes
higher again because switching to ALERT-ORDER in the
hybrid sampling phase occurs earlier which introduces higher
bias. This is consistent with our discussion in Section IV.



1800 —— ALERT-

1600 HYBRID 1350 ~&—it of Queries Skew 01 1500 —&—# of Queries Skew 0.1

1400
g 1200 g 1300 » 0.08 g 0.08
5 1000 ALERT- & 006 z B 0 / 006 =
& 800 o aa— ORDER (W & 1250 g & 2
- 600 o hist) 5 004 9 5 o / 0.04

400 | f = 1200 =

200 i/ ALERT- 0.02 0.02

o -+ RANDOM 1150 0 ) 0
[ 200 400 800 1000  (w hist)

600
# of Samplfs s1=50  s1=100

Fig. 16. Number of queries vs. Number of sam- Fig. 17.
ples for ALERT-HYBRID, ALERT-RANDOM, ALERT-HYBRID
and ALERT-ORDER with history.

VI. RELATED WORK

Crawling and Sampling from Hidden Databases: There
has been prior work on crawling as well as sampling hidden
databases using their public search interfaces. Several papers
have dealt with the problem of crawling and downloading
information present in hidden text based databases [10]-[12].
[13]-[15] deal with extracting data from structured hidden
databases. [16] and [17] use query based sampling methods
to generate content summaries with relative and absolute
frequencies while [18], [19] uses two phase sampling method
on text based interfaces. On a related front [20], [21] discuss
top-k processing which considers sampling or distribution
estimation over hidden sources. A closely related area of
sampling from a search engines index using a public interface
has been addressed in [12] and more recently [22], [23]. In [1]
the authors have developed techniques for random sampling
from structured hidden databases leading to the HIDDEN-DB-
SAMPLER algorithm. The hybrid technique used in ALERT-
HYBRID has also been used for other sampling applications
such as block-level sampling [8] and sampling peer-to-peer
networks [9].

Approximate Query Processing and Database Sampling:
Approximate query processing (AQP) for decision support,
especially sampling-based approaches for relational databases,
has been the subject of extensive recent research; e.g., see
tutorials by Das [5] and Garofalakis et al [6], as well as the
report [7] and the references therein.

VII. CONCLUSION

In this paper, we investigated techniques which leverage the
COUNT information to efficiently acquire unbiased samples
of hidden databases. In particular, we proposed the COUNT-
DECISION-TREE algorithm based on two ideas: (a) the use
of query history, and (b) the construction and use of an
efficient decision tree. We also discuss variants for TOP-k-
ALERT interfaces which do not provide COUNT information.
In particular, we presented ALERT-HYBRID based on using
pilot samples to bootstrap the COUNT-DECISION-TREE al-
gorithm draw the samples. Our thorough experimental study
demonstrates the superiority of our sampling algorithms over
the existing algorithms.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for useful
comments. This work was supported in part by the US
National Science Foundation under Grants 0845644, 0852674,
and 0852673, unrestricted gifts from Microsoft Research, and

s1=150

Number of queries and bias vs. s1 for

s1=200 s1=250 cs=1 c¢s=2 cs=5 c¢s=10 cs=15 c¢s=20 cs=25

Fig. 18. Number of queries and bias vs. cg for
ALERT-HYBRID

start-up funds from the University of Texas at Arlington. Any
opinions, findings, conclusions, and/or recommendations in
this material, either expressed or implied, are those of the
authors and do not necessarily reflect the views of the sponsors
listed above.

REFERENCES

[1] A. Dasgupta, G. Das, and H. Mannila, “A random walk approach to
sampling hidden databases,” in SIGMOD, 2007.

[2] F. Olken and D. Rotem, “Random sampling from databases - a survey,”
Statistics & Computing, vol. 5, no. 1, pp. 25-42, 1995.

[3] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on
Mathematical Software, vol. 11, no. 1, pp. 37-57, 1985.

[4] V. T. Chakaravarthy, V. Pandit, S. Roy, P. Awasthi, and M. Mohania,
“Decision trees for entity identification: approximation algorithms and
hardness results,” in PODS, 2007, pp. 53-62.

[5] G. Das, “Survey of approximate query processing techniques (tutorial),”
in SSDBM, 2003.

[6] M. N. Garofalakis and P. B. Gibbons, “Approximate query processing:
Taming the terabytes,” in VLDB, 2001.

[7] D. Barbara, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M. Hellerstein,
Y. E. Ioannidis, H. V. Jagadish, T. Johnson, R. T. Ng, V. Poosala, K. A.
Ross, and K. C. Sevcik, “The new jersey data reduction report,” [EEE
Data Engineering Bulletin, vol. 20, no. 4, pp. 3-45, 1997.

[8] S. Chaudhuri, G. Das, and U. Srivastava, “Effective use of block-level
sampling in statistics estimation,” in SIGMOD, 2004.

[9] B. Arai, G. Das, D. Gunopulos, and V. Kalogeraki, “Efficient approxi-

mate query processing in peer-to-peer networks,” TKDE, vol. 19, no. 7,

pp- 919-933, 2007.

E. Agichtein, P. G. Ipeirotis, and L. Gravano, “Modeling query-based

access to text databases,” in WebDB, 2003.

A. Ntoulas, P. Zerfos, and J. Cho, “Downloading textual hidden web

content through keyword queries,” in JCDL, 2005.

K. Bharat and A. Broder, “A technique for measuring the relative size

and overlap of public web search engines,” in WWW, 1998.

S. Raghavan and H. Garcia-Molina, “Crawling the hidden web,” in

VLDB, 2001.

S. W. Liddle, D. W. Embley, D. T. Scott, and S. H. Yau, “Extracting

data behind web forms,” in ER (Workshops), 2002.

M. Alvarez, J. Raposo, A. Pan, F. Cacheda, F. Bellas, and V. Carneiro,

“Crawling the content hidden behind web forms,” in ICCSA, 2007.

J. P. Callan and M. E. Connell, “Query-based sampling of text

databases,” ACM Transactions on Information Systems, vol. 19, no. 2,

pp- 97-130, 2001.

L. G. Panagiotis G. Ipeirotis, “Distributed search over the hidden web:

Hierarchical database sampling and selection,” in VLDB, 2002.

Y.-L. Hedley, M. Younas, A. E. James, and M. Sanderson, “A two-

phase sampling technique for information extraction from hidden web

databases,” in WIDM, 2004.

——, “Sampling, information extraction and summarisation of hidden

web databases,” Data and Knowledge Engineering, vol. 59, no. 2, pp.

213-230, 2006.

K. C.-C. Chang and S. won Hwang, “Minimal probing: supporting

expensive predicates for top-k queries,” in SIGMOD, 2002.

N. Bruno, L. Gravano, and A. Marian, “Evaluating top-k queries over

web-accessible databases,” in ICDE, 2002.

L. Barbosa and J. Freire, “Siphoning hidden-web data through keyword-

based interfaces,” in SBBD, 2004.

Z. Bar-Yossef and M. Gurevich, “Random sampling from a search

engine’s index,” in WWW, 2006.

[10]
(11]
[12]
[13]
(14]
[15]

[16]

(17]

(18]

[19]

[20]
[21]
[22]

(23]



