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AbstractN A large number of online databases are hidden B. The Problem of Sampling from Hidden Databases

behind form-like interfaces which allow users to execute search h h . . f h | f
queries by specifying selection conditions in the interface. Most 1 here has been interesting recent focus on the problem o

of these interfaces return restricted answers (e.g., only tog-of Sampling from hidden databases [Wiven such restricted
the select.ed tuples), while many of them also accompany eachquery interfaces, how can one efficiently obtain a uniform
answer with the COUNT of the selected tuples. In this paper, we ,4ndom sample of the backend database by only accessing the

propose techniques which leverage the COUNT information to . . . 5 :
efbciently acquire unbiased samples of the hidden database. Wedatabase via the public front end interface? Database sampling

also discuss variants for interfaces which do not provide COUNT 1S the process of randomly selecting tuples from a database
information. We conduct extensive experiments to illustrate the and is useful in gathering statistical information about the
efpciency and accuracy of our techniques. data. Likewise, random samples from hidden databases can
be extremely useful to third-party applications in obtaining
insight into the hidden data. However, sampling from hidden
databases presents signibcant challenges as the only view
available into these databases is via the proprietary interface
A. Hidden Databases that allows only limited access. Thus traditional database
A large portion of data available on the web is present %ampling techniques that require complete an(_j unres_tricted
the so called Odeep webO. The deep web consists of prifﬁfeess. to the -data (e.g., [2], [3]) cannot be easily applied. In
or hidden databases that lie behind form-like query interfaces; an interesting approgch name(_j HIDDEN'DB'SAMPLER

s proposed for sampling from hidden databases with TOP-

These query interfaces allow external users to browse th :
databases in a controlled manner. Typically users provige LERT interfaces. The approach was based on a random

inputs in the form interface which are then translated into S r'g'r?;gén (;\t/:rrtit:e m&czgf :ﬂt?eurirelfs ke))r(gggt?tbr:gr\;% :28(:\%'2
queries for execution and the results provided to the user gﬁ ing) ’ er agnd iterativel narrogvin it down by addin
the browser. Databases with such public web-based interfa QuVIng) query, y g y 9

are present for many commercial sites, as well as governmergﬂggr:ugaeg'ﬁit:i;v:?&@i:onfgrer?sc’\pgg%h(l%ergn'z g??ﬁgii'
scientibc, and health agencies. g query X

turned tuples is randomly picked for inclusion into the sample.

Hhis process can be repeated to get samples of any desired
kind of query interfaces. The Prst kind of interfaces allowg,, Ql'he paper proposgd severalgvariantsp of HIDDI)E/N-DB-
users to specify range conditions on various attributes )

. . o AMPLER, depending on whether the database consisted of
_however, mstead of returning all satisfying tuples, sug ly Boolean attributes or also included categorical attributes.
interfaces restrict the returned results to only a few (€.Qyhile much of the paper was devoted to sampling from TOP-
topk) tuples, sorted by a suitable ranking function. Alon _ALERT interfaces, a simple approach for sampling from
with these returned tuples, the interface may also alert t &P K-COUNT inter;‘aces was also proposed
user if there was an OoverBowO, i.e., if there were other tuples '

besides the toj-that also satisbed the query conditions byt o,s1ine of Technical Results

were not returned. We refer to such interfaces as kOP- ) . . .
ALERT interfaces. Examples include MSN Stock Screener!n this paper we revisit the hidden database sampling
(http://moneycentral.msn.com/investor/finder/customstocks.asp) problem, and pr(_esent VaStI_y superior sampling FeChmques _than
which has kK = 25 and Microsoft Solution Finder those proposed in our preliminary work [1]. Unlike our earlier
(hetps://solutionfinder.microsoft.com/Solutions/SolutionsDirect- work, our main focus here is on the TO‘PGOL_JNT 'merface'
ory.aspx?mode=search) which hask = 500. The second kind Howeyer, we also show how a novel hybrid technique can
interfaces that we consider are similar to the above, excdlt Utilized to also extend our techniques to TRORLERT

that instead of simply alerting the user of an overRow, thégterfaces. We bneBy.desc_rlbe. our new contnpuhons below.
provide a count of the total number of tuples in the database'Nere are two main objectives that any hidden database
that satisfy the query condition. We refer to such interfacé@Mpling algorithm should seek to achieve:

as TOPk-COUNT interfaces. An example is MSN Careers ¥ Sample bias: Due to the restricted nature of the interface,
(hetp://msn.careerbuilder.com/JobSeeker/Jobs/JobFindAdv.aspx) it is challenging to produce samples that are truly uniform
which hask = 4000. random samples. Consequently, the task is to produce
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samples that have small bias, i.e., samples that deviatebas the same attribute is never repeated along a path.

little as possible from uniform. Clearly the use of a decision tree is a generalization over
¥ Efficiency: We measure efbciency of the sampling processing any bxed attribute order - the latter essentially refers to

by the number of queries that need to be executed via thalecision tree that has the same attributes at any given level

interface in order to collect a sample of a desired sizef the tree. More importantly, while any legitimate decision

The task is to design an efpcient sampling procedure thege can be used to obtain unbiased samples, the challenge

executes as few queries as possible. is in designing a decision tree that achieves the maximum

Our Algorithm for TOP- k-COUNT Interfaces: We brst efbciency. This problem is complicated by the fact that this
discuss our results for TOR-COUNT interfaces. As was (F€€ cannot be created in its entirety, as complete access to all
brieRy described in [1], it is fairly straightforward to desigrfl@tabase tuples is impractical; thus this tree has to be built and
a random drill-down procedure that produces samples withdtit€d on-the-By, i.e., while the sampling is in progress. Thus if
any bias. However, the procedure suffers from poor efpcientdf {ake a snapshot at any time during the sampling process, we
- it has to execute an inordinate number of queries befopdll essentially have created a partial decision tree, with only
obtaining reasonable sized samples. In the current paper W Paths extending all the way to the leaves (corresponding
have carefully investigated this problem, and have designithose tuples that have been included in the sample thus far).
COUNT-DECISION-TREE, a vastly more efbcient algorithm. Our investigations of _such an opt|mal_ decision tree-based
This is one of the principal results of our paper. approach led to seyeral interesting techmcal r_esults. A the_oret—
The new procedure COUNT-DECISION-TREE is basel§al study revealed interesting connections with the seemingly
on two main ideas. The brst idea is to continuously ldgrelated NP-hard problem ofnsity identification in the
the query history while the sampling is in progress - i.e.,d€sign of interactive question-answering systems [4]. Thus
record (as materialized views) all executed queries and th¥{¢ Show that drawing samples in an optimal manner using
returned counts. We then design a sampling procedure ithg decision tree approach is computatlonglly |r_1tractable.
tries to leverage the query history as much as possible, whEf@vever, our COUNT-DECISION-TREE algorithm is based
in preparing the next query to execute, preference is giveR a.carefully Qe5|gned hgunsﬂc for mqremer_ﬂally building an
to queries that already appear in the query history, there%SPC'e”t decision tree while the sampling is in progress, with
replacing a costly query execution with a fast local look-ufi¢ 9oal being that the remaining samples can be obtained
at the clientOs end. In fact, utilization of query history offefd @S few queries as possible. This heuristic is based on
opportunities ofguery inference in addition to simplereuse - the online computation of aavings function that attempts
the former refers to queries that may not have been directfy S€lect new queries that: (a) leverage the query history
executed in the past, but whose counts can be inferred fr@hd try to reuse as many past queries as possible, and (b)
the ones that have been executed. In the paper we careffijy® the best chance of reaching a random tuple as quickly
explore our idea of logging query history, and provide botRS p_035|_ble. Although pr!marlly a heuristic, we are able to
a theoretical analysis of the number of queries saved BfPvide important analytical arguments as to why such a

this approach, as well as substantial experimental evideritguristic is expected to dq well. Our experiments corroborate
to corroborate our analytical Pndings. our conceptual and analytical arguments to show that COUNT-

The second idea is to generalize the notion of attribuffECISION-TREE is an order of magnitude more efbcient than
ordering used in [1] to that of decision tree. In the earlier the previous algorithm presented in [1] for drawing random
work, the random drill-down procedure was guided by asgmples from a TOR-COUNT interface.
ordering of the attributes, such that each new predicate seledfagt Algorithm for TOP- k-ALERT Interfaces: We next
for narrowing the query involved a random value of theiscuss our results for TOR-ALERT interfaces. Unlike TOP-
next attribute present in the attribute order. For the case IofCOUNT interfaces, it is quite difbcult to draw a random
TOPk-COUNT interfaces, it was suggested that any speciample from a TOR-ALERT interface without introducing
attribute order was adequate for obtaining unbiased sampleisas into the resultant sample. In fact, bias and efbciency
In the current paper, we make non-trivial enhancements dce contradictory goals, and the earlier algorithm HIDDEN-
this simplistic scheme to obtain unbiased samples, but willB-SAMPLER in [1] is actually a parameterized procedure
signibcant performance improvements. Our new approach mvalyich trades off bias against efbciency. In the current paper
be considered as the execution of multiple random drill-dowme propose a hew parameterized procedure, ALERT-HYBRID,
procedures (where each such procedure results in the selectiwrdrawing random samples from a TGPALERT interface
of a random sample tuple) except that we always adherewbich is signibcantly better than HIDDEN-DB-SAMPLER.
following paths down a decision tree. In this paper, a decisidrhis is second main algorithm presented in our paper.
tree over the database tuples is a tree where all internaWe provide a brief outline of the idea of ALERT-HYBRID.
nodes are attributes, all leaf nodes are tuples, and each etige algorithm consists of two phases. The Prst phase consists
leading out of a node is labeled with a unique value fromf a drawing a fairly small random sample with very small bias
that attributeOs domain, along with a transition probabiliijenceforth called @ilor sample) using the earlier HIDDEN-
proportional to the number of leaf tuples that can be reached DB-SAMPLER algorithm. Then in the second phase, the
following that edge. This transition probability is used to selecemaining desired number of samples is drawn from the
the edge during random drill-down. Each path from the roafert interface, except that we use our COUNT-DECISION-
to a leaf encounters a subset of the attributes in the interfaG®EE algorithm to draw the remaining samples. Although



the interface does not have the capability to provide countLet Sel(Qg) be the set of tuples iD that satisfyQs.
information for queries, we use the pilot sample to estimafes is common with most web interfaces, we shall assume
count information for queries. This is done using standatbat the query interface is restricted to only retlrriuples,
approximate query processing techniques [5]D[7] by executwherek < m is a pre-determined small constant (such as
each query locally on the pilot sample and appropriateb0 or 50). Thus,Sel(Qg) will be entirely returned only if
scaling the result to estimate the count for the entire databal&el(Qs)| < k. If the query is too broad (i.e|Sel(Qg)| > k),
Interestingly, the OhybridO idea of using a small amountasfly the topk tuples inSel(Qg) will be selected according
pilot samples to bootstrap COUNT-based sampling is inspiréal a ranking function, and returned as the query result. The
by similar sampling approaches considered in other unrelateterface will also notify the user that there is arerflow, i.e.,
contexts [8], [9]. Because the counts are only estimates, Wt not all tuples satisfyin@gs can be returned. At the other
are not able to completely remove bias from the resultaextreme, if the query is too specibc and returns no tuple, we
sample, however our experiments show that ALERT-HYBRIBay that arunderflow occurs. If there is neither overf3ow nor
is signibcantly better than HIDDEN-DB-SAMPLER for draw-underf3ow, we have ealid query result.
ing random samples from a TORALERT interface - for For the purpose of this paper, we assume that a restrictive
the same bias (same efbciency), it produces samples mioterface does not allow the users to Oscroll throughO the
efbciently (with less bias). complete answeBel(Qg) when an overRow occurs fd@®g.
In summary, the main contributions of this paper are:  Instead, the user must pose a new query by reformulating some
¥ We revisit the problem of random sampling from hiddeRf the search conditions. We argue that this is a reasonable
databases with proprietary form interfaces. assumption because many real-world toprterfaces (e.g.,
¥ We present COUNT-DECISION-TREE, an efbcient alGoogle) only allow Opage turnsO for limited (100) times before
gorithm for drawing random samples without bias frorRlocking a user by IP address.
hidden databases with TGRCOUNT interfaces. The Based on the response provided by the interface when
algorithm is based on two ideas: (a) the use of que;&fre was an overBow, we classify the interfaces for hidden
history, and (b) the use of a decision tree. We providiatabases into two categories: TRALERT and TOPk-

several theoretical insights into the behavior and perfdeOUNT. If the interface only issues a Boolean alert i.e.,
mance of this algorithm. whether there were other tuples besides thekiapat also

¥ We present ALERT-HYBRID, an efbcient algorithm forsatisbed the query conditions but were not returned, then the
drawing random samples with small bias from hiddeiiterface is TOR«-ALERT. If the in.terface also provides a
databases with TOR-ALERT interfaces. The algorithm count of the tot'_at! number of tuplgs in the database that satisfy
is based on using a pilot sample to bootstrap the COUNtf€e query condition, we call the interface as TRHEOUNT.
DECISION-TREE algorithm to draw the samples. B. A Runnine E .

¥ We provide a thorough experimental study that demon- unning Lxanmpie
strates the signibcance of our theoretical results and thefable | depicts a simple dataset which we will use as a
superiority of our algorithms over previous efforts. ~ running example throughout this paper. There are 8 tuples

The rest of this paper is organized as follows. We briel‘ﬁf‘d ! att_ributes, _including 3 Boolean and 5 categorical with
review the existing sample algorithms for hidden databas gmain size ranging from 4 to 8.

in Section 2. In Sections 3 and 4, we introduce our two TABLE |

major algorithms, COUNT-DECISION-TREE and ALERT-
HYBRID, respectively. Section 5 presents the experimental
results. Related work is reviewed in Section 6, followed by

EXAMPLE: INPUT TABLE

. ) AL | Ay | A3 | A4 | As | Ag | A
bnal remarks in Section 7. Tt ool o oo oo
t2 ] 0 | 1 | 0] 0 2] 0] 1
Il. PRELIMINARIES tz | 1 0 0 1 1 0 2
ta | 1T | 0 | 1 I 2] 0] 3
A. Models of Hidden Databases i5 2 1 0] 0 2 1 4
. . L . 2 |10 1] 225
We restrict our discussion in this paper to categorical data is =1 T 1 1T 31 36
- we assume a simple discretization of numerical data to g | 4 0 1 1 3 0 7
resemble categorical data. Apparently, different discretization
will lead to different performance of sampling. How to design
an optimal discretization scheme is left as an open problen& . . .
. . . . P S ling Al th
Consider a hidden database tabl2 with m tuples m?r amp ’”‘%’ gort n?s ]
ti,...,tm and n attributesAq,...,A, with respective do-  In this subsection we review three variants of HIDDEN-DB-
mainsDom, ..., Dom,,. The table is only accessible to user€AMPLER, the sampling algorithm presented in our earlier

through a web interface. We assume a prototypical interfat49rk [1] for obtaining random samples from hidden databases.
where users can query the database by specifying values fTorALERT-ORDER: We brst describe a variant that was
a subset of attributes. Thus a user qué@y is of the form:  designed for TORALERT interfaces (for the rest of this
SELECT * FROM D WHERE A;, = v;, ... A;, = Vv,;,, paper we refer to this variant as ALERT-ORDER). Assume
wherev;; is a value fromDom;, . a specibc bxed ordering of all attributes, efg.,...,A,.



Consider Figure 1 a) which representsaixibute-order tree | © Internal node @ valid query O underflow |
over the database tuples, where all internal nodes attthe
level are labeled by attributd,. Each internal nodé\; has

exactly |Dom;| edges leading out of it, labeled with values @
from Dom;. Thus, each path from the root to a leaf represen ¢ o - @ -
a specibc assignment of values to attributes, with the leas @ € -©Q-O-O-©-------- A3 AR
representing possible database tuples. Note that since s¢ ot 4 cdeco0e0e
domain values may not lead to actual database tuples, o ggﬁO """ A 2B U s .
some of the leaves representing actual database tuples

. . - ‘ e
marked solid, while the remaining leaves are marked empt 5 16

a) An attribute-order tree b) A decision tree

The ALERT-ORDER sampler executes a random walk i..
this tree to obtain a random sample tuple. To simplify the
discussion, assumk = 1. Suppose we have reached the
ith level and the path thus far represents the query=
vi&k... &A1 = V1. The algorithm selects one of theA.
domain values ofA; uniformly at random, say;, adds the
condition A; = v; to the query, and executes it. If the b (vl COUNT(A; =Vi,...,Ap 1 =V 1,A; = V)
outcc_)me is an underf3ow (i.e., leads to an empty Ieaf),_ we v;) COUNT(A; =V1,..., A 1 = Vir 1) .
can immediately abort the random walk. If the outcome is a ] . ) ]
single valid tuple, we can select that tuple into that sample, Consider the impact of this approach to the bias of the

And only if the outcome is an overRow do we proceed furthéPtained samples. The probability that a random walk hits
down the tree. a tuplet = (vq,...,V,) in the database is

Fig. 1. Attribute-Order Tree vs. Decision Tree

= vf to the query) with probability equal to

In

This random walk may be repeated a number of times to ,
obtain a sample (with replacement) of any desired size. OnE (t) = Pr{vi is chosen forA; } )
important point to note is that this method of sampling intro- f;l
duces bias into the sample, as not all tuples are reached with ~_ *~ COUNT(A; =vy,..., Ay 1 =V 1, A = V)
the same probability. Techniques suchuaseptance/rejection o COUNT(A; =Vy,...,Ap 1 =V 1)

sampling are further employed for reducing bias (see [1] for )
further details). 1

For this scheme, clearly the order of the attributes can play “m ®3)
an important role in the efbciency of the sampling process.v\ll ere, recall thatn is the number of tuples in the database
was suggested in [1] that the attributes be ordered from Iarggﬁ CbUN1(A1 — v, Ag 1 = Vi 1) = COUNT(x) — m
to smallest domain sizes. for i = 1. Thus, the count-based sampling generates unbiased

. samples.
2. ALERT-RANDOM: For the special case of Boolean data, P

since the domain sizes are the same for all attributes, it IIl. COUNT-DECISION-TREE
was suggested that instead of using a specibc bxed attributfan this section we present the main ideas of COUNT-

order, a freshrandom ordering of attributes be used before ECISION-TREE. our algorithm for samplina a hidden
every random walk. It was shown that such a scheme heg)gtabase with TO'IR—COUNqI' interface piing

reduce the bias more than any bxed order attribute scheme.
Henceforth we refer to this variant as ALERT-RANDOM. A, Mortivation

) . Although the simple COUNT-ORDER algorithm explained
3. COUNT-ORDER: We now turn our attention to TOP'in Section Il can generate unbiased samples, it also introduces

E_ggﬁyrnég:(:;?ii;&i;tr\(/avtisr‘ngglr:‘tc)erdegléaIgu[gyth:t’ravr\:zi% signibcant challenge, as the number of queries required
: ' . for sampling categorical databases may increase dramatically
walk scheme can be designed to generate completely unblagg pared with both TOR-ALERT algorithms. To understand
samples. Thus, no bias reduction techniques need to be ?9 consider a random walk from a nodé to one of kits
later. Henceforth we refer to this variant as COUNT-ORDE Uc’cessors in the tree. In both T@RALERT algorithms, an

For a given node in the attribute-order tree, instead of choosigg : :
. ) i ge is chosen uniformly at random frdin bj, and only one
edges with uniform probability, COUNT-ORDER chooses a uery corresponding to the chosen edge needs to be issued.

gdge with prpbability proportional to the COUNT of that edg owever in COUNT-ORDER, the counts ofl edges must be
(ie., proportlor_1al to the number of actual tuples that can lI)-Jerst determined in order to compute their respective transition
reached following that edge). For example, suppose we hf})v

. r%babilities, after which an edge is randomly selected to
reached theéth level and the path thus far represents the que . : B : 3
A, = vi&.. &Ap | = Vo 1. Let the current attribute under Hllow. This requiresb — 1 queries. Thus, COUNT-ORDER

C0n5|derl‘3t'on'vo‘i! have|D0mi| = b; edges labeled W'th values 1The remaining count can be inferred from thésel counts and the count
v}, ...,v;". Then, the random walk follows edgg (i.e., adds of the current node.



may require a large number of queries for sampling categoridal Improving Efficiency: Query History
databases, especially for attributes with large domains.

The rest of this section is devoted to techniques for improgbmet_;;zg dosuarmdlﬁr(]:uss '02 s(i)r?1 'gzrt?;/t'gg 'trt]:k:fzg\l/zr:t:g gfof
ing the efbciency of sampling TORCOUNT interfaces. ping by P gy- 9

We brst introduce a generalization of an attribute-order trgée query hlstpry. That is, the sampling algquthm .ShOUId only
to adecision tree on the hidden database. The key extensi %end o the hidden database O.neWO quenes Wh'.Ch have never
of a decision tree is that it allows each level of the tree toe:rr:]g; k(e)? i?]?:r)é?cdeciasnt%? Egn;rgﬁgfig:g;négeugﬁ't?%fn
s : . . T=
contain different attributes. Figure 1 a) and b) illustrates bo fbm COUNT(+) and COUNTa, = 0).

types of trees for the database in Table | for the dase We di he i £ . hi .
1. Random walks over decision trees are likely to be more W& discuss the impact of leveraging query history to im-

efbcient than over attribute-order trees, as by leveraging ove sampling efbciency. The follpwmg theorem prow_des a
Rexibility of selecting multiple attributes for nodes at the sa gwer b(_)und on the number of quenies saved by consulting the
level, a compact decision tree features a shorter depth andug"y history. i -

smaller total number of possible queries. For the example inl/t¢orem 3.1: For the algorithm in Figure 2, the number of

Figure 1, when one sample tuple needs to be collected, fiigeries saved by consulting the query history for obtairing
decision tree provides a saving @ 4 x 1+ 1/4 x 2) = 3/4 samplesg-k < m) of a hidden database of sire is at least

queries in comparison with the attribute-order tree. We defer " b #
a more thorough analysis of the advantages of decision trees Squ>s - (b—1)-loggs—2— —— 4
over attribute-order trees to Section III-C. b—1

Suppose we are given theucrure of a decision tree over whereb (b > 2) is the minimum domain size of an attribute.

a hidden database - i.e., the entire tree is available, barrinqu omit the proof due to space limitation. An observation

the various COUNT information (or transition probabilitie rom the theorem is that the saving from history is sianibcant
associated with the edges). Figure 2 depicts a count-ba g 9 y 9

sampling algorithm that performs random walks on this d%v%Be g Osléznla(;ga?ébiosree;(ﬁng ?gtglggigooo?a;? ?(Leﬂsstflr;Sm
cision tree to collect a sample withtuples (in the bgure we 9

, eries. For a 100,000-tuple i.i.d. Boolean database where the
use the notationu| to refer to the count of node (or edge) qu = e o . o
i.e.. the number of database tuples belovin the tree). We 10s and 00s are uniformly distributed with probability 0.5 each,

would like to make several remarks regarding the algorithrﬁ.'mpI'SeBS §4n8etxpef[:ted Savlmglgf a1t_rl]eak§199% Whlfr;)k =1
First, this is of course a hypothetical scenario, as such a tI ioem f ' Ot a mosl d t b )- ihsfvénglzw' € evlen
is not available for hidden databases, and in fact has to G%Qer or a categorical database w - For example,
constructed on-the-By (which will be discussed later in the

enb =5, the saving is at least9, 590 queries. Again, for
paper). Second, queries corresponding to nodes in the up e:],O0,000—tupIe i.i.d. database with each attribute following
level (e.g., root) of the tree may be reused by many rando

niform distribution on 5 values, it implies an expected saving
walks, especially ifs is large. This motivates us to conside

62.62% (from 143, 067 to 53, 317).
the impact of query history in Section I1I-B. Third, no matter 1neorem 3.1 provides a lower bound on the number of
how the decision tree is structured, the sampling algorithﬂ‘r'

eries saved by the history. Now consider an even more
always generates unbiased samples. Fourth, the numbef"§fortant problem for leveraging historyiow many unique
qgueries, however, may vary signibcantly between differe

gueries are needed to sample a hidden database with a
structures. An interesting challenge is to identify a structu(épp'k'_COIUNT ’merfac‘?g Wehlnvestlgate this pr(l;blemfbelovy.
which achieves the optimal efpciency. We will address thi8 partlc_u ar, we consider the maximum number of queries
challenge in Sections IlI-C. needed in the extreme case where all branches are traversed.

The result will also form the foundation for our discussion of

building the decision tree in Section IlI-C.

Require: r: root node of the decision tree
1. for i =1tosdo

2. Obtain thei-th sample as DISAMP(r). PN A2
: end for o{0.0.0"® O
: function DT_SamP(u) ﬁ N o7 3 g
I Let u havebvaluesvy,...,v, and edgesiy, ..., u, o00000O oo00000O0
t1 t2 t3 t4 t5 t6 t1 t3 t4 t8 t2 t5 t6 7
Queryb— 1 edges for counts aiiy, ..., Up. Tree A Tree B

Randomly piclj € [1, b s.t. Pr{j picked} = |u;l|/|ul.
if |u;] <k then

return a random tuple from the answer tg
10: else

© 0o NoOOaAw

2 B W

11: return DT_SAMP(u;). AZS S SRR e =
12: end if l2Bw®ik6erse U B @8 2 B 6 (7
13: end function Tree C Tree D

Fig. 2. Sampling TOR-COUNT with a Given Decision Tree Fig. 3. Examples of Decision Trees



First, we consider a special case of decision trees referredrigure 4 depicts the relationship between the number of empty
asloaded decision trees. A tree is loaded iff it does not havieaves and the number of tuples whien= 1. The results are
any empty leaves. For example, of the four trees in Figurec®8mputed from (6)-(9) using Matlab simulation. As we can
corresponding the running example database in Table I, trees L (m, p) andm roughly follow a linear relationship. Based
A, B, and C are loaded, while tree D is not. In the followingon (9) and Theorem 3.2, we have the following corollary.
we will Prst derive the maximum number of unique queries Corollary 3.1: Given an i.i.d. Boolean dataset where each
required for sampling a loaded tree. After that, we extend tlgribute takes the value of 1 with probabilipy for all s > 1,
result to general decision trees. the total number of queries required for obtainmgamples

Theorem 3.2: Given the structure of a loaded decision treghrough a togk interface with COUNT is at mosin — 1 +
the total number of unique queries required for obtainsng L (m, k, p).
samples through a TOR-COUNT interface is at mosnh — 1.

Proof: Let |L,| and|Q;| be the number of all (internal
and leaf) nodes and internal nodes in levelrespectively s | TR
(root is level 1, let the maximum levels Hbe). Then, the
maximum number of queries issued for levés |L ;1| —| €]
because each internal node has one query saved through
history inference. Thus, the maximum total number of queries
issued is

n
o
S

150

1<)
S

@
=}

Number of Empty Leaves (L(m, p)

$" 1 $h $ 1 o Lo
(|I—i+1| —| Q,LD = |Lz| — |Qz| —1=m-1. (5) ° 2 NumtgrofTup?eos(m) & 10
i=1 i=1 i=1
’ ’ l% h % w1 Fig. 4. The number of empty leaves vs. the number of tuples viheri
This is due to two reasons. First, ', |L;| — ., |Q] is

equal to the total number of leaf nodes because all nodes in
level h are leaves. Second, the number of leavesiis =

The theorem shows that given a loaded decision tree,
maximum number of unique queries required for count-based!) Motivation and Hardness: Theorem 3.2 indicates that,
sampling of the tree only depends on the number of tuplésa very large number of samples need to be collected, then
in the database, antbr by the number of attributes or theirevery decision tree without empty leaves will have the same
domain sizes. For example, trees A, B and C in Figure 3 &fPciency because the total number of queries only depends
have 7 unique queries for count-based sampling: Tree A h&@8 the size of the database. Nonetheless, the design of the
1 at the level 1 and 6 at level 2; Tree B has 4 at level 1 anddgcision tree may play an important role in reality due to the
at level 2; while all 7 queries for Tree C are at the same levépllowing two reasons:

We now consider the extension to general decision treesy Since the number of samples required in practice is
Again, we would like to remark that in practice, we will not  ysyally much smaller than the size of the database, many
be provided with the structure of a decision tree; rather queries of the m — 1 queries may not be issued; thus different
must be issued to both construct the decision tree and sample decision trees may have different impact on efpciency.

from it. If a decision tree is constructed without Consulting the ¥ As we can see from Figure 4, the number of empty leaves

complete database, empty branches often occur and the tree is may be signibcant, especially when the attributes skew
usually not loaded. Thus, the sampling of a decision tree that towards a few values.

has empty leaves is arguably a more practical scenario. : . . .

Each edge leading to an empty leaf leads to one additionalWe now discuss the.de3|gn of a_n .efbment decision tree,
guery, as we can observe from tree D in Figure 3. To analyg‘ particular the following prgblem.Gw.e;'a S, the n.”mber
the number of empty leaves, we consider an examplm-of Of samp les 1o b.e CO”eCte.d , design .a.deaswn tree with the
tuple i.i.d. Boolean dataset studied in [1], where each attriburf?mmw." samp %mfl tCOSt’ l;‘e’; ;he Z.l"l";um exll) ected number
takes the value of 1 with probability. Let L (m,k, p) be the O queries required 1o cofiect S Unvrased samp-es.

expected number of empty leaves for such a dataset. We havgnfortunately, this problem is hard even if the deC|s_|on tree
can be constructed with full access to theuples. Consider a

L(0,k,p) =1. (6) special case of the problem wher= 1 andk = 1 for Boolean

L(1,k,p) = 0. (7) databases. The problem is essentially the same as computing
a decision tree with no empty leaves that has the minimum
average path length from root to the leaves. This is equivalent

tﬁ'e Improving Efficiency: Constructing Decision Tree

L(k,k,p) = 0. (8) to a well-known problem of constructing an optimal decision
$ &y e ) tree for theentity identification problem [4], for which the
L(m,k,p) = i P(=p™ *(L(ik,p)+L(m—ik Plollowing hardness result is known from [4];
=0 ) Theorem 3.3: (from Theorem 4.1 in [4]) Whers = 1 and

k = 1, it is NP-hard to construct a decision tree over a
Note that althougl. (m, k, p) appears in both the left and rightBoolean database with the minimum sampling cost, or even
side of (9), it can nevertheless be solved from the equati@pproximate it within a factor of2(log m).
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2) Basic Ideas: Due to the hardness of the problem, wét is easy to see th&(s) = ,R(s,u),L =, L(u), and
propose a heuristic greedy algorithm to construct an efbcient $
decision tree. We remind the reader that the tree cannot be R(s)—L = (R(s,u) —L(u)). (11)
created in its entirety, as complete access to all database tuples u

is impractical; the tree has to be built and used on-the-Ry. e refer toR(s,u) — L (u) as thesaving of u. Table Il shows
any time during the sampling process, we will essentially hawee saving of the root node for trees A, B and C in Figure 3. As
created a partial decision tree, with only a few paths extending can see, tree B offers the greatest saving whenl, but
all the way to the leaves (corresponding to those tuples tli&t saving decreases rapidly to below tree A wisancreases
have been included in the sample thus far). to > 3. As we discussed above, tree C has a saving. of

We brst discuss the intuition behind the algorithm: the
saving and expense associated with each node in the decision
tree. For the ease of understanding, we restrict our attention
to k = 1 in the discussion of intuition, but will present the
algorithm with arbitraryk. s 1 2 3 4 5 6
Saving: Recall from the proof of Theorem 3.2 that, whier= l:gzg é:gggg éigggg i:éggg 8:?;’83 8:;%8 8:?232
1, a decision tree without empty branch requires exauthy 1 Tree C 0 0 0 0 0 0
total queries when the number of querges— oo. Consider

these as théaseline queries for the sampling process. As we

mentioned above, the actual number of queries varies from féP€nse:The saving functiorR(s) — L concerns how many
baseline due to two possible reasons: queries are saved from the baselime — 1 queries. Now

nsider the opposite view: how many queries are executed,

TABLE Il
EXAMPLE: SAVING

. c
¥ Whens is small, a subtree may never be encounter%(?arting from0 queries? LetC be this number. Note that

by a random walk. Note that a never-encountered subtrge " = "~ -
with m tuples yields a reduction @h — 1 on the number ~ m—1-(R(s)-L). Debne

of queries. Let the total reduction (s). C(u)="Pr{uis reach%i- (b, — 1) (12)
¥ Each empty leaf leads to an increasel ain the number lul sH#
of queries. Let the total increase be = 1- 1- m (b, —1). (13)
Thus, the actual number of queriesnis— 1 — (R(s) — L). ) %
We say that the decision tree yieldsaing of R(s) — L. Agdain, we haveC = C(u). We refer toC(u) as the

Note that unlike the number of baseline queries which rﬁpense of u.

independent of the structure of the decision trieé¢s) — L tun;on t.Of Codnst_ru_ctln? a .DeCISIOI;]. H’rete: Tlhe ttask tct)f'b "
strongly depends on the tree structure. For example, consi pstructing a decision tree 1S essentially to Select an attribute
el for each node: prst, select an attribute for the root, and

trees in Figure 3. Tree C offers no saving at all, because velv ch tribute f h child. and
possible queries will be issued to collect the brst sample. Wh N recursively choose an attribute Tgf €ach child, and so on.
pring the ggrocess, we aim to increase, (R(s,u) — L (u))

s =1, the saving of tree B is 3 because one of the 2nd le d red C H te that the total ber of
nodes (A5 and A6) cannot be encountered by the random w&lld reduce , C(u). However, note that the total number o
nodes depends on the structure of the decision tree, and may

The saving also depends snWhens increases, the saving t be known during the construction. Thus, while selecting an
of tree B decreases rapidly because it is very likely that boil? ibute f d 9 h T f ecting
A5 and A6 will be encountered. Nonetheless, tree A might strfgt” Ut.e Or a nodei, we propose a heuristic of maximizing
offer some saving if one of the three nodes (A2, A3, Ad) ar&® S@ving per expense ratio

not encountered by random walks. Thus, a critical challenge R(s,u) — L(u)
is to construct a decision tree with maximized saving gisen

C(u)
Consider the saving associated with not reaching a noB%eto the constraint thgt/? (R(s,u)—L (U)+C(u)) = m—1

% ((;f SlbelJ Eur)eaéglr?‘g dI::‘SrF? (Zciitgrss)t. I?gl(;t”e ti:(t:: iza;/r:gg lPlxwiting the ratio also limits the number of queries issued for
' i ' ) sampling. In particular, we have the following theorem:

?ootmh:!rltilflilzgéfft lghgfut?f,:?ﬁfffmﬁgfgfﬁﬂrriipggﬂ ‘T‘N Theorem 3.4: If all nodes in the decision tree satisbes
J v J P SER(s,u) > ", then the expected number of queries for

SER(s,u) = (14)

uj. Depne obtainings samples is at mogim — 1)/ (" + 1).
i For data in Table |, Table Il shows the SER of different
R(s,u) = Pr{u; is not traversedi is reachedl - (|u;| — 1) attributes for choosing the root node when= 1 ands =
j=1 10. Note thatA~; is not shown in the table because its SER
;M #e o # # is always0. As we can seeA, will be chosen as the root
= 1— luil = _ 1— lul - (Juj] = 1), whens = 1, while A; will be chosen whers = 10. This is
=1 m ' consistent with our intuition discussed above.

Computation of SER(s, u): For computingSER (s, u), four

and variables are needed: the number of samp)ése COUNT of
. the current nodéu|, the domain sizé; and the branch counts

L(u)=I{ili €10 |u;| =0} (10)  |u;|. Among themJu| ands are already determined, whitg



TABLE Il

P in order to leverage the query history. Determining the next

edge involves the execution bf—1 queries (Line 8), followed
by a random picking of the next edge (Line 10).

Aq Az Az Ag As Ag
s=1 | 0.5625 | 3.0000 | 2.7500 | 2.7500 | 0.7500 | 0.5000
s=10 | 0.0422 | 0.0059 | 0.0184 | 0.0184 | 0.0197 | 0.0001 Require: Attr(-) = 0 if not assigned

1: fori =1tosdo

2: Obtain thei-th sample as DISaAMP(s —i + 1, ()).
3: end for

4: function DT_SAMP(s;, path)

and |u;| depend on the selected attribute.can be learned
through domain knowledge. Howeveu,;| have to be queried X
from the hidden database. For hguﬁ—ldomain—size attributeé,f ifAttr(path) :#ithen
|u;| requires a large number of queries, which jeopardize ouf Attr(path) = argmax((R(s;,u.k) — L(u,k))
ultimate objective of minimizing the total number of queries. fc (u))._

Fortunately, the exact computation &ER(s,u) might : end if . -
not be necessary for our algorithm. Note that to select aff Queryb—1 b_ra_nches. (Only |ss_ue_those hot in history)
attribute for noda, we only need to determine which attribute & Randomly pick < [1, b s.t. Pr{j picked; = [u;|/ul.
returns the largesSER(s,u). An important observation is 10: if u;| < k then
thatR(s,u) — L (u) may vary signibcantly between attributest return a random tuple from the answer ig

of different domain size. For example, consider the selectidf else DTS hilA h) =
between two attributeé ;, A, for the root node. Both follow 13 endr?fturn -SAMP(s;, path||Attr(path) = v;).

uniform distribution with domain sizé, = 2 andb, = 10.
Note that whenm > 10, neither of them is likely to have
L (u) > 0. Thus, Fig. 5. COUNT-DECISION-TREE
SER(s,a1) = m2$ 2« (m9 11%1 T SER(s, &). COUNT-DECISION-TREE also extends the previous dis-
. . . . cussion by addressing the cases with interface pararketer
Clearly, in this case, a rough estimation of;| would be 1 " Cjearly, the value ofC(u) is unaffected. For computing

sufbcient for chopsing between the two attributes._ . the savingR (s, u) — L (u), we debne the number of baseline
We leverage this property @ER(s, A;) by approximating 4 eries asn/k — 1. Thus, the saving becomes
its value with the minimum number of queries. The simple& 4 g
|uj|

choice is to assume that all attributes follow the uniform i u| " ° lul"®
distribution, and to computel;| = |u|/b;. However, we found R(s,u,k) = - WJ - 1-= e T
through experiments that this approximation is oversimplibed j=1
because many attributes in real-world datasets have higlap(d
skewed value distribution. % $

Thus, we propose to brst issue a small number, If;) L(u,k) = k — Uj_ (16)
of marginal queries, and then estimate;| based on the '
conditional independence assumption: The marginal queries
are COUNTA; = vi), ..., COUNTA; = v,;,) for all IV. ALERT-HYBRID
attributesA;. To select an attribute for node, we estimate In this section, we present the main ideas behind ALERT-

the COUNT of branchy; for attributeA; by HYBRID, our new algorithm for sampling hidden database
~COUNT (a; =v;) (15) behind a TOP-ALERT interface.

COUNT(+)

. . .. A. Basic Ideas

However, note that once an attribude is selected, we will _
actually query allju;| in order to determine the probability A major problem of ALERT-ORDER, the state-of-the-art
for following each branch. By doing so, we save the querigdgorithm for sampling TOR-ALERT interfaces, is the bias
used for constructing but not sampling the decision tree (i.6f the collected samples. Since ALERT-ORDER chooses each
queries|u;| for attributes which are not eventually chosen)pranch of a node with equal probability, those tuples on upper

without affecting the unbiasedness of the collected sampleeVels of the tree (which require shorter walk from the root) are
more likely to be sampled. Although an acceptance-rejection

D. Algorithm COUNT-DECISION-TREE module was introduced to reduce the bias [1], not many
Figure 5 depicts COUNT-DECISION-TREE, our algorithnmsamples can be rejected in order to maintain the efpciency
for sampling TOPk-COUNT interfaces. It performs the fol- of ALERT-ORDER. As a result, the remaining bias may still
lowing alternative steps: a) determine the attribute for tH®e signibcant, as we will illustrate in the experiments.
current node (Lines 1 to 3), then b) determine which branchOn the other hand, the algorithms we just discussed for
to follow, and so on. The estimation &ER(s,u) is used to TOPk-COUNT interfaces generate no bias because each
determine the attribute (Line 6). Note that once an attributelisanch is chosen with probability proportional to its COUNT.
chosen for a node, it is available for reuse for future samplés a result, each tuple is sampled with equal probability.

15: end function

315# [1,b:] | us| <k

Ujle = [ul



Clearly, the COUNT information which is absent from TOPstable estimation for the probability of following each edge.
k-ALERT interfaces can play an important role on reducinionetheless, its is too large, a random walk might switch
the bias of collected samples. to ALERT-ORDER at very early stage of a random walk, and
Fortunately, the COUNT information is not completely outhereby introduce more bias to the samples.
of reach in TOPk-ALERT interfaces. In particular, after a We will discuss the impact of different settingssafandcs
small number of samples are collected, the COUNT of certaiim greater details in the experimental results section. Nonethe-
queries may besrimated from the collected samples. less, we would to remark that, although the experimental
Thus, we propose ALERT-HYBRID, a two-phase procedur@sults verify the effect o, and cs on the efbciency and
by which the sampler brst collects a small number (sgy bias of ALERT-HYBRID, for the class of datasets we tested,
of pilot samples for COUNT estimations, and then use théhe efpciency and bias are not very sensitivesit@andcs as
estimated COUNT to facilitate the collection of the remainintpng as the parameters are set within a reasonable range. How
(much larger)s — s; samples. Thes; samples can be sim-to determine the optimal values fsi andcs is left as an
ply collected by ALERT-ORDER, parameterized to producepen problem for future work.
samples with small bias. The small bias in the samples .
is desirable because it helps in accurate COUNT estimatiol?isflugorlthm ALEBT'HYBRID ) )
in the second phase. Although this requirement makes theé-igure 6 depicts the detailed algorithm for ALERT-
ALERT-ORDER procedure less efbcient, the relatively smdilYBRID. In the algorithm,Ts is the set of collected samples
number of the pilot samples required ensures that the cost({sfwhich a newly acquired sample is appended); Bangath)
the brst phase is a modest portion of the overall sampling cd§SP- T (path)) is the subset of tuples ifis (resp.T) which
For the remainings — s, samples, note that we cannof@lisfy the selection conditions path. , .
directly use the COUNT-DECISION-TREE algorithm because The basic steps can be stated as follows. F|rst,_ the aIgomhm
not all nodes can have COUNT accurately estimated frof@!l€cts s1 pilot samples before using the hybrid sampling
a very small numbers{ < m) of samples. Thus, we pro- method to collect the ther samples. During the hybrid sam-
pose ahybrid approach which integrates COUNT-based arfing: ALERT-ORDER is used when the current node has
ALERT-based sampling. In particular, after collecting the COUNT less thargs in Ts. Otherwise, COUNT-DECISION-
samples, we invoke the COUNT-DECISION-TREE aIgorithnTREE is used., with the only dn‘ferenpe that the coupts of the
until reaching a node with COUNT in the collected samples Current node (i.ejul.) and all edges (i.eju;|.) are estimated
less than a threshold, say. At this node, there are not oM the samplgs rather than queried from the dat'abase.
enough collected samples to support a robust estimation @farly, the saving functiomR.(s;, u) — Lc(u) — Ce(u) is
the probability for following each edge. Thus, a natural choi@Stimated as well. Both the pilot samples and the samples
is to switch to ALERT-based sampling. In particular, ALERTEO!l€cted by hybrid sampling are returned.
ORDER is called to collect a sample under nadé\s we can :
see, this hybrid approach starts with COUNT-based sampling for i =11tos, do
at the upper levels of the tree, and then switches to ALERT2:  Ts[i] < ALERT-ORDER().
based when there is not enough support from the collected end for
samples. Initially, the switch from COUNT-based to ALERT- 4: for i =s; to s do
based sampling may occur early at the upper levels. Howeve?; Ts[i] < HYBRID_SAMP(s —i + 1, ()).
when more samples are collected (at the second phase), mdreend for
nodes will be able to support COUNT-based sampling, and: function HYBRID_SAMP(s;, path)

thus the switch may occur later. 8. if COUNT(Ts(path)) <cs then
There are two important parameters in the algoritemthe & return ALERT-ORDER(T (path))
number of pilot samples collected for initial count estimationt©: else if Attr(path) = # then
andcs, the count threshold for switching to ALERT-ORDER.1L: Attr(path) = arg max Re(sg, U) — Le(u) — Ce(u).

The setting of; inBuences the efbciency of ALERT-HYBRID 12 end if o . .
for two reasons: First, with a smai|, the constructed decision 13 Randomly pickj € [1, b with P (j) = [u; [/ |ule.
tree is unlikely to be optimal, and therefore may require mork: ~ Queryq = (path|[Attr(path) = v;).

queries in the second phase. Second ifs too large, there 15 if gis a valid querythen
will be a large number of queries spent in collecting the pilot6: return a random tuple from the answer ¢p
samples. Note that these queries are unlikely to be reusedlfi  else
the second phase because COUNT-DECISION-TREE may uk& return HYBRID_SAMP(s;, path||Attr(path) = v;).
a different tree from the attribute-order tree used by ALERTLY: end 'f_
ORDER in the brst phase. 20: end function

The setting ofcg inBuences the bias of the collected Fig. 6. ALERT-HYBRID

samples. Note that in the count-based sampling part of the

tree, the probability of following each branch is determined

by the COUNT information estimated from the samples. Thus, V. EXPERIMENTAL RESULTS

error on the estimated COUNT will lead to biased samples.In this section, we describe our experimental setup, com-
Thus, the value ofcs should be large enough to enable @are our two algorithms with the existing ALERT-RANDOM,



ALERT-ORDER, and COUNT-ORDER algorithms, and dravgueries that were executed to reach a certain desired sample
conclusions on the impact of our three main ideas: leveragiage. To measure the bias of collected samples, we use the
query history, constructing an efpcient decision tree, and sagame measure as [1] which compares the marginal frequencies
pling TOPK-ALERT interfaces with ALERT-HYBRID. Note of attribute values in the original dataset and in the sample:
that the existing algorithms for comparison were proposed as 2 L

[2
the HIDDEN-DB-SAMPLER in [1]. % oy 1o
v pp (v

) bias =
A. Experimental Setup \4

1) Hardware: All experiments were on a machine withHereV is a set of values with each attribute contributing one
Intel Xeon 2GHz CPU with 4GB RAM and Windows XPrepresentative value, angk(v) (resp.pp(V)) is the relative
operating system. All our algorithms were implemented usirfgequency of value in the sample (resp. dataset). The intuition
C# and Matlab. is that if the sample is unbiased uniform random sample, then

2) Datasets: \We conducted the experiments on three typehe relative frequency of any value will be the same as in the
of datasetsBoolean Synthetic, Yahoo! Auto, and Census. For original dataset. However, note that even for uniform random
all datasets, we tested a TGPCOUNT interface wittk = 10. samples, this method of measuring bias will result in small
Boolean Synthetic: Two Boolean synthetic datasets werdut possibly non-zero bias.
generated. Both hax#90, 000 tuples. The brst one is generated
as i.i.d. data having 80 attributes with the probabilitydfeing B Comparison with Existing Algorithms
25%. We refer to this dataset as ttBvolean-i.i.d. dataset. 1) COUNT-DECISION-TREE: We compared the perfor-
The second dataset is generated in a way such that differarince of COUNT-DECISION-TREE with three existing al-
attributes have diverse distribution. In particular, there are 4@rithms: COUNT-ORDER, ALERT-ORDER, and ALERT-
independent attributes, 5 of which have uniform distributioRANDOM (note: although the latter two algorithms are de-
while the others have the probability dfranging from1/160 signed for ALERT interfaces, they can sample from COUNT
to 35/ 160 with step of1/160. We refer to this dataset as theinterfaces by ignoring the returned counts).

Boolean-mixed dataset. For COUNT-ORDER, our direct competitor for COUNT
Yahoo! Auto: The Yahoo! Auto (YA) dataset consistsinterfaces, we conducted the comparison on both Yahoo! Auto
of data crawled from a real-world hidden database ahd Census datasets. The number of queries issued are shown
http://autos.yahoo.com/. In particular, it contains 15,211 usedin Figures 7. Note that both algorithms generate unbiased
cars for sale in the Dallas-Fort Worth metropolitan area. Thesamples. As we can see, our algorithm requires orders of
are 32 Boolean attributes, such as A/C, Power Locks, etc, amdgnitude fewer queries than COUNT-ORDER.

6 categorical attributes, such as Make, Model, Color, etc. TheFor ALERT-ORDER, we conducted the comparison on the
domain size of categorical attributes ranges from 5 to 447.categorical Census dataset. In particular, we tested ALERT-
Census:The Census dataset consists of the 1990 US CensdRDER with two settings of the scaling factor [1T =
Adult data published on the UCI Data Mining archive. Aftel/ 15000 and C = 1/400000. The number of queries issued
removing attributes with domain size greater than 100, tlead the bias of samples collected are shown in Figures 8 and
dataset had 12 attributes and 32,561 tuples. It is instructivedp respectively. As we can see, our algorithm signibcantly
note that the domain size of the attributes of the underlyirmutperforms both settings of ALERT-ORDER in efbciency and
data is unbalanced in nature. The attribute with the highdsts (recall that even though our measurements show non-zero
domain size has 92 categories and the lowest-domain-simarginal bias, technically COUNT-DECISION-TREE has no
attributes are Boolean. bias).

3) Parameter Settings: The experiments involve bve al- Since ALERT-RANDOM was designed for Boolean
gorithms. Among them, ALERT-RANDOM and COUNT-datasets [1], we performed the comparison on the Boolean-
DECISION-TREE are parameter-less. ALERT-ORDER ranixed dataset. As seen in Figures 10 and 11, our algorithm sig-
quires a parameter called scaling fac®r for the accep- nibcantly outperforms ALERT-RANDOM in both efbciency
tance/rejection module, in order to tradeoff between efpcienagd bias.
and bias. Following the heuristic in [1], for Boolean datasets, 2) ALERT-HYBRID: We compared the performance of
we setC = 1/2! wherel is the average length of randomALERT-HYBRID with both existing algorithms for ALERT
walks for collecting the samples. For categorical data, weterfaces: ALERT-RANDOM and ALERT-ORDER. Fig-
consider various values @f to tradeoff between efbciency andures 12 and 13 shows results on the Boolean-i.i.d. dataset.
bias. COUNT-ORDER requires input of an (arbitrary) attributée see that ALERT-HYBRID requires signibcantly fewer
order. We randomly generate the order in our experimentgieries than both of the previous approaches, and produces
Our ALERT-HYBRID approach requires two parameters: theubstantially less bias than ALERT-ORDER.
number of pilot samples; and the switching count threshold ) o
Cs. We sets; = 100 andcs = 10 by default, but conducted C- Effects of History and Decision Tree for COUNT-
experiments with various other combinations. DECISION-TREE

4) Performance Measures: For each algorithm, there are The above subsection illustrates the improvement of our
two performance measuresficiency and bias. Efbciency of COUNT-DECISION-TREE algorithm over the prior algo-

a sampling algorithm was measured by counting the numberrthms. The improvement comes from a combination of two

7



#S$
—1234* ¢ —e)rx -

g
P s

N ——YA: COUNT- 2 g .
s ORDER = 67189824 ./)010*,-
& ¥ow =77 =2/
g 4 — - —YA: COUNT- s c7x E 2! 34/2* -
=2 3 DECISION-TREE = ! AP = *2./125
g o . 2:67:) 7 2@&ABS)C
g 2 —=—= Census: COUNT—“§) &F'G+)10 6 347/2* -
= 1 ORDER = %" i<7x E -— *2./25?49D!

° o 200 400 600 800 1000 Census: COUNT- " % ! # $ éfL;lO ¢ e

" ) =" LA e g y 1 "
# of Samples DECISION-TREE ©° >),?)9.CDEA- 63% 7$5859:§$%';<=>?$ #BBE

Fig. 7. Number of queries vs. samples forfFig. 8. Number of queries vs. samples forFig. 9. Bias vs. Number of samples for COUNT-

COUNT-DECISION-TREE and COUNT-ORDER COUNT-DECISION-TREE and ALERT-ORDER DECISION-TREE and ALERT-ORDER

(Ui 11 20000

. — e , ——ALERT-
oo —-789:< - A 5 600 HYBRID
g & T7=>72@" . ' |( g 12000
RS o =S ALERT-
P = e @>A<;; ‘s 8000 ORDER
r s A?B=< 10" =8@BCB> *
#ne >9AC2C?= " :988" 4000 ALERT-
T e e e w D e e e e ° RANDOM
#11 s )"*+"§)§456.%" i S Wl 0 B g dl 0 200 #%ofosamch)JI%S 800 1000
Fig. 10. Number of queries vs. sam-Fig. 11. Bias vs. Number of samples for COUNT+ig. 12. Number of queries vs. Number of
ples for COUNT-DECISION-TREE and ALERT- DECISION-TREE and ALERT-RANDOM samples for ALERT-RANDOM, ALERT-ORDER,
RANDOM and ALERT-HYBRID
Yot ——9,5.+.0" YA: COUNT-
——ALSRT- % g _ < ORDER (w hist)
HYBRID & £ e 9,5.+.:
oL s i <$#H —— YA: COUNT-
...... ALSRT- - ip I"## T 9(?/; DECISION-TREE
ORDsR ?% Raad P - _EE'DZ:';<! — == Census: COUNT-
ALSRT- % N ’(/ EEF:';< ORDER (w hist)
RANDOM # o= — —EEF"<¢ o 200 400 600 200 1006 " Census: COUNT-
o 200 #4g?same;ﬁgs 800 1000 # BHh &':(’;‘*A/B?lg,. Pk I B 0 200 #ggf)san?g?es 800 1000 DECISION-TREE
Fig. 13. Bias vs. Number of samplesFig. 14. Number of queries saved by history vsFig. 15. Number of queries vs. Number of sam-
for ALERT-RANDOM, ALERT-ORDER, and Number of samples for COUNT-DECISION-TREEples for COUNT-DECISION-TREE and COUNT-
ALERT-HYBRID ORDER with history.

techniques: query history and decision tree. In this subsectiamproves the sampling efpciency (by 188% wises 1, 000).
we illustrate the effect of each technique separately. An interesting observation from Figure 16 is that most
First, we consider the effect of query history on the pegueries issued by ALERT-HYBRID are for collecting the pilot
formance of COUNT-DECISION-TREE. We conducted theamples. After the pilot samples are collected, the number
experiments on both categorical (Census) and Boolean (i.i.df)queries per remaining sample is much lower than that of
datasets. Figure 14 depicts the number of queries savedtiwy ALERT-ORDER and ALERT-RANDOM algorithms. The
considering history. As we can see, the saving is roughly line@ason is that no query needs to be issued for a node that
to the number of samples, and is not sensitive to the valuearfables COUNT-based sampling. Clearly, we can expect the
k. This is consistent with our intuition from Theorem 3.1. efbciency improvement of ALERT-HYBRID to be even more
Then, we consider the effect of decision tree constructiaignibcant as the number of samples becomes larger.
on the performance of COUNT-DECISION-TREE. To remove We now consider the effect of the two paramerandcg
the effect of history, we added the technique of history savimg the performance of ALERT-HYBRID. Figure 17 shows the
to COUNT-ORDER, and then compared its efpciency witbhange of efbciency and bias whenranges fromb0 to 250
COUNT-DECISION-TREE. The results for Yahoo! Auto anchnd cg is Pxed atl0. As we can see, increase sp reduces
Census datasets are shown in Figures 15. As we can seebfas, because the larger number of pilot samples delays the
collecting 1,000 samples, we achieve 289% and 520% imwitching to ALERT-ORDER which generates higher bias. On
provement on efbciency for Yahoo! Auto and Census datasetss other hand, the greatsy is, the more queries need to be

respectively, while providing unbiased samples. issued because the queries used to obtain the pilot samples are
) unlikely to be reused during hybrid sampling.
D. Analysis of ALERT-HYBRID Figure 18 shows the change of efbciency and bias when

We Prst consider the effect of using pilot samples tgs ranges froml to 25 ands; is bxed atl00. As we can
bootstrap COUNT-based sampling in ALERT-HYBRID. Insee, whencs is too low (e.g.,1), the bias is high because
particular, we compare its efpciency with ALERT-ORDER the estimated count used for count-based sampling has a high
ter adding the technique of history saving to ALERT-ORDERerror. Nonetheless, whegs is too large, the bias becomes
The result for the Boolean-i.i.d. dataset is shown in Figure 1Bigher again because switching to ALERT-ORDER in the
As we can see, the OhybridO technique by itself not ohlybrid sampling phase occurs earlier which introduces higher
reduces bias (as shown in Figure 13), but also signiPcaniiias. This is consistent with our discussion in Section IV.
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