
Geometric Searching and Link Distance
(Extended Abstract)

Gautam Dan Giri Narasimhan

Mathematical Sciences Department
Memphis State University

Memphis, TN 38152

A B S T R A C T

Given n orthogonal line segments on the plane, their intersection graph is defined such
that each vertex corresponds to a segment, and each edge corresponds to a pair of
intersecting segments. Although this graph can have f~(n 2) edges, we show that breadth
first search can be accomplished in O(n log n) time and O(n) space. As an application,
we show that the minimum link rectilinear path between two points s and t amidst
rectilinear polygonal obstacles can be computed in O(nlog n) time and O(n) space,
which is optimal. We mention other related results in the paper.

1 I n t r o d u c t i o n

Given a set S of n orthogonal line segments on the plane, the intersection graph
of S is defined as follows: each segment corresponds to a vertex in the graph, and an
edge connects a pair of vertices if the two corresponding segments intersect. Clearly this
graph is bipartite with the horizontal and vertical segments forming two independent
sets.

This graph can potentially have ~(n 2) edges. Given an initial segment h, the
main result of this paper is an efficient algorithm to label every segment by its shortest

distance from h in the graph. This is equivalent to breadth first search. Our algorithm
does not explicitly generate all the edges, and in fact runs in O(n log n) time and O(n)
space. It uses elementary data structures such as binary trees and priority queues.
Using this algorithm we solve several other problems efficiently.

Asano and Imai have shown how to perform breadth first and even depth first
search on such graphs in O(nlogn) time and O(nlog n) space ([IA86], [IA87]). They
use fairly complex data structures. However their techniques have wider applications.

The primary application of our result is motivated by a motion planning problem.
Suppose we are given a collection of disjoint rectilinear polygonal obstacles inside a

262

rectilinear polygonal room on the plane, and a pair of points s and t in the free space.
Let the input size be n. Consider the problem of computing the minimum link rectilinear
path between s and t that avoids all the obstacles. Such a path is composed of a minimum

number of line segments, each of which is parallel to either the x or the y axis. The
number of line segments on the path is known as the link distance between the pair
of points. We first reduce the problem to performing two breadth first searches on an

intersection graph of O(n) orthogonal line segments. The technique in [IA86] and [IA87]
can accomplish these searches in O(n log n) time and O(n log n) space. Instead, we show
how to use our algorithm to solve the problem in O(n log n) time and linear space. We
also solve several other related problems.

Before we summarize our results, we introduce the following definitions. Given

some rectilinear polygonal obstacles inside a polygonal room, let H (resp. V) be the
set of horizontal (vertical) line segments formed by extending each horizontal (vertical)
polygonal edge within the free space (possibly in both directions) until it hits an obstacle
or the room. Our results are listed below, and assume rectilinear geometry.

Results

1. Given a collection of polygonal obstacles inside a room, and their H and V sets,
we show that breadth first search on the intersection graph of H U V can be ac-
complished in O(n log n) time and O(n) space, using elementary data structures.

2. Given any collection S of line segments, we can perform breadth first search on
their intersection graph in O(n log n) time and O(n) space. This is a generalization

of the previous result.
3. Given a collection of polygonal obstacles inside a room, and points s and t, the

minimum link path can be computed in O(n log n) time and O(n) space, which is

optimal.
4. Given a collection of polygonM obstacles in a room, and a point s, we can preprocess

the input in O(nlog n) time and O(n) space such that given a query point t, its
minimum link path from s can be reported in O(log n + k) time, where k is the link
distance. Its link distance from s can be reported in O(log n) time.

Remarks

Our results are interesting for several reasons. Firstly, as was noted by Imai and
Asano, extending their scheme in [IA86] to perform breadth first search in O(n) space
seems dii~cult, although we note that their technique is quite general and easily allows
other searching schemes such as depth first search. Secondly, to achieve our bounds,
we employ several interesting ideas. To start with, we show that if the line segments
were the same as those generated by extending the edges of a group of polygons, then
the claimed bounds can be achieved. The algorithm uses a key idea of searching the

263

horizontal and vertical lines separately, which allows us to exploit various geometric
properties. We then generalize this result for any set S of line segments by showing
that there e±ists a group of polygons such that H U V = S. Given S, these polygons
can be computed in O(n log n) time and O(n) space. Interestingly, this is related to the
problem of computing many faces in an arrangement of line segments lEGS88].

Next, consider the applications to link distance problems, which is motivated by
motion planning. Here a robot has to navigate amidst obstacles inside a cluttered
workspace, where translational motion is considered cheap while directional changes
are considered expensive. Thus we seek to minimize the links along the path. Several
results have appeared for the nonrectilinear versions of the problem. Suri has studied
the problem of minimum link distances inside a simple polygon without holes, and
has obtained linear time optimal algorithms [$86]. Several people have also studied
related concepts such as the link diameter and the link center of the region ([$90],
[LPS87], [K89], [DLS89]). The rectilinear link distance problem has been studied for
the case of a simple polygon without holes ([B91]). The problem becomes more complex
when we allow multiple obstacles. Recently Mitchell et at. [MRW90] have designed
an algorithm for computing nonrectilinear link distances amidst multiple polygons, and
their algorithm runs in O(n2a(n)log 2 n) time and O(n 2) space, where a(n) is the inverse
Ackermann's function.

The above result is suboptimal, and in fact this is generally true for most existing
algorithms for shortest path problems amidst polygonal obstacles under various distance
metrics. For example, consider the shortest path problem under the Euclidean metric.
The best known algorithm runs in O(n 2) time and O(n 2) space [GM87]. Under recti-
linear geometry, this problem can be solved in O(n log 2 n) time and O(nlog n) space

[CKV87]. Optimal algorithms have only been obtained for very restricted inputs. For
example, if the input is a collection of rectangles, then the rectilinear Euclidean shortest
path can be computed in O(n log n) time [DLW89]. This is possible by a plane sweep
because it can be shown that such paths have to be monotone in some direction.

In our case, we allow rectilinear polygons of arbitrary shapes, and the resulting
minimum link paths need not be monotone in any direction. Yet our algorithm runs in
optimal time and space.

The rest of this paper is organized as follows. In Section 2, we discuss the breadth
first search algorithm (Result 1). Section 3 discusses how to generalize this algorithm
where the input is an arbitrary set of orthogonal line segments (Result 2). Several
problems related to minimum link distances are discussed in Section 4 (Results 3 and
4). We conclude with some open problems.

264

2 Labelling Algorithm

For this algorithm we are given a collection of disjoint rectilinear polygonal obstacles
inside a polygonal room in the plane along with their H and V sets (as described in the
Introduction). We are also given a distinguished line segment h in H O V. Without loss
of generality we assume that h is a horizontal line segment. Consider the intersection
graph I obtained by all these horizontal and vertical line segments. In this section we
show how to perform an efficient breadth-first search in this graph starting from h so
~hat every line segment is labelled with its distance (in I) from h.

For the sake of simplicity, we will assume throughout this section that all the x-
coordinates (resp. y-coordinates) of the vertical (resp. horizontal) sides of the polygons
are distinct, Mthough our algorithm can be modified to tackle the general case.

Out l ine

An efficient search in I is achieved by searching in two different planar partitions
- the horizontal planar partition, and the vertical planar partition. The horizontal
(vertical) planar partition, which is denoted by HPP (VPP), includes H(V) and all
the edges of the obstacles. The algorithm works in two parts, each of which is divided
into many phases. In the first part, the algorithm searches in the HPP to compute
the shortest path from h to all the other horizontal segments. In the second part, the
algorithm performs a search in the VPP to compute the shortest path from h to all the

vertical segments.
We first describe the search performed in the HPP. In each phase the algorithm

determines the set of horizontal line segments that are at distance 2 away from the
horizontal line segments discovered in the previous phase. We denote the set of new
horizontal segments chosen in phase k by Hk with H0 = {h}. One way to imagine the
algorithm is by using ideas from Suri et al. [$90]. One could imagine that in phase k
the algorithm determines all new horizontal segments that get illuminated by placing
light sources on the horizontal segments in Hk-~ and shining them in the upward or
downward direction. Hence in each phase the algorithm effectively jumps two steps by
going from a set of horizontal segments Hk-1 (at distance 2(k - 1) from h) to a set of

horizontal segments Hk (at distance 2k from h).
In the second part, the algorithm does a search in the VPP to label all the vertical

line segments. In phase k of the second part, the algorithm labels all vertical segments
at distance 2k - 1 from h in I.

Intuitively, the search is made efficient by maintaining two "complementary" data
structures (HPP and VPP) instead of one. Maintaining these two data structures sepa-
rately reduces the information stored about all the intersections between the segments.
However, there is enough information stored in each of the structures to perform the
requisite search.

265

It is possible to alternate the phases of the search in the HPP with that of the

search in the VPP. This will ensure that all segments labelled k will be processed before

any of the segments labelled k + 1.

We now get into more details of the labelling algorithm.

Searching the H P P

The set H0 consists only of the line segment h. In phase k the algorithm computes
the set of new horizontal segments Hk that get illuminated by placing a light source on
some segment from Hk-1.

We first describe an outline of phase k, which consists of Initialization, UpSweep,
and DownSweep procedures. In the initialization procedure, the algorithm places light
sources on the set of segments in/ '/k-1. It is clear that not all line segments in Hk-~
need to be attached with a light source. We only need to attach light sources to portions
of an "outermost" set of segments (as shown in Figure 2.i). The upsweep procedure
directs all the light sources in the upward direction and labels (with label 2k) all the new
horizontal segments that get illuminated in the process. The horizontal segments are
labelled in sorted order, sorted according to the y-coordinates of these segments. This
is followed by downsweep, which directs all the light sources in the downward direction,
and labels (with label 2k) as many new segments as possible (in the order of decreasing
y-coordinates). Figures 2.1, 2.2, and 2.3 illustrate the three procedures.

We now describe the upsweep procedure in more detail. At the start of an upsweep,

the outermost line segments in Hk-1 will be called Fronts, and beams of light are
directed upwards from portions of each Front. Each such beam is called a Window.
The upsweep consists of a sequence of upward advancements of Fronts. The next Front
that is selected is the one that advances to the horizontal segment above with the least

y-coordinate. This is facilitated by using a priority queue. These new Fronts get labelled
2k. Effectively, the light sources axe moved from the previous segment to the illuminated
portions of these new segments. However, the original beams (i.e., windows) are likely
to get modified (narrowed~ ~plit or terminated) if they encounter obstacle edges. Each

Front is thus a dynamic collection of disjoint windows (see Figure 2.4 for examples).

For a particular Front, when all its windows have terminated (which happens when all

the light beams have been terminated by obstacles), the Front is also terminated. The
upsweep terminates when all the Fronts terminate.

There are two main data structures used by the upsweep procedure. Since the set
of windows in a Front are a set of disjoint intervals, the windows associated with a FYont
will be maintained as a balanced tree structure that maintains disjoint intervals. The
balanced tree structure used here must allow the following operations: Searct,, In, ert~
Merge, Split, Delete (see Figure 2.4 for examples). Each of these operations can be
performed in O(log n) time, assuming any of the basic balanced tree structures like
red-black trees. The second data structure is the priority queue, which is maintained as

266

a heap. This facilitates the following operations: DeIe~eMin~ Insert, both of which can
be performed in O(log n) time.

The following are some of the subtle problems that the upsweep correctly handles.
Firstly, propagating a set of windows to the new Front can be achieved by a constant
number of elementary operations on the windows data structure of the previous Fronts.
Secondly, using a heap structure effectively eliminates the possibility of a new segment
being processed by different advancing Fronts at different times. Thirdly, a Front could

encounter a segment of a previous phase. If this happens, the Front is immediately
terminated. The reason is thai either everything above it has already been processed,
or there will be another Front that will carry on the advancement in that direction.
This is illustrated in Figure 2.2, where Front e is terminated when it advances and hits
Front b, since Front a would illuminate any new segments thai c would have.

The downsweep procedure is similar to the upsweep procedure. There is one situ-
ation that needs further explanation. It is possible that a Front encounters a segment
thai was processed by the upsweep. However, this is ignored, and the sweep continues.

The reason is that the downward sweep may have more segments that need to be la-
belled that could not possibly have been processed by an upward sweep. Thus some
set of line segments could get processed twice within a phase (but not more number of
times). No line segment is processed once in two different phases. This is crucial for

our analysis.

Searching the V P P

This part of the algorithm is also divided into phases. The first phase involves
finding out all the vertical segments that intersect h. These set of segments can also be
set up as a collection of Fronts that can illuminate other vertical segments by shining
light in the right or the left direction. From this point onwards, the algorithm proceeds
along the lines of the earlier part of searching the HPP, with the difference that the
search is done in the VPP. It suffices to say thai in phase/c, it will determine the

vertical segments at distance 2k - 1 from h in I.

Analys is o f A l g o r i t h m

Each line segment is processed in exactly one phase. Processing a line segment
involves: 1) removing it from the heap structure, which can be performed in O(log n)
time; 2) modifying the Windows data structure, which can be performed in O(log n)
time; 3) finding the next segment to be inserted into the heap (which takes O(1) time),
and inserting that segment into the heap (which again takes O(log n) time). Within
each phase, each tine segment may be processed twice, once along an upward sweep,
and once along a downward sweep. Consequently, it is clear that the algorithm runs in

time O(n log n).

267

The heap data structure uses O(n) space. At any instant in the algorithm there are
at most n Windows active in all the Fronts put together. Hence the space complexity

of the algorithm is O(n).

3 Arbitrary Sets of Orthogonal Line Segments

In this section we will show that given any set S of orthogonal line segments,
breadth first search on their intersection graph can be accomplished in O(n log n) time
and linear space. To do this, we shall compute a collection of polygons inside a polygonal

room such that S = H U V, where H and V axe formed by extending each horizontal
(vertical) edge of the polygons in the free space (possibly in both directions) until it
hits the room or another polygon. After this is done, the Mgorithm in Result 1 can be
used.

Let S = H I U V1, where H1 (V1) is the set of horizontal (vertical) line segments in
S. Consider the arrangement lEGS88] of the segments in S on the plane, as Figure 3.1
shows. Let us compute those faces of the arrangement (including the external face) that
contain an endpoint of some segment in S. These faces will be our polygonal obstacles,
with the room being the external face. We will shortly describe how to efficiently
compute these faces. For now, let us imagine that these faces have been computed, mad
we axe ready to run the algorithm in Result 1 on the intersection graph of their H and
V segments. The following facts hold (some of them are trivial).

1. H = H1 and V = V1. Thus the intersection graph of H U V is the same as the
intersection graph of S.

2. If the intersection graph of S is disconnected then some of the obstacles may them-
selves have holes within which other obstacles may reside. However, this is not a
problem for our algorithm in Result 1, because it will only restrict the search to
one component.

3. The collection of polygons may have several horizontal (vertical) edges sharing the
same y (x) co-ordinate. Again, this is not a problem because the algorithm in
Result 1 can be modified to handle such degeneracies.

Thus, M1 we need to do first is to compute these faces efficiently. Let P be the set
of 2n endpoints of M1 segments in S. Our problem is a particular instance of a more
general problem, which is as follows. Given a set of arbitrarily oriented segments S and
a point set P, compute M1 faces of the arrangement of S that contain some point in P.

This problem has been solved in lEGS88], unfortunately it has a running time which is
unacceptable for our purposes. However, we can exploit the orthogonality of our S and
modify the algorithm to run in O(n log n) time and linear space. For this it will help if
we briefly review the algorithm in lEGS88].

268

The algorithm works roughly as follows. S is divided into two sets $1 and $2 of
approximately equal size. Then the faces in the arrangement of $1 ($2) which contain

points of P are recursively computed. Each face resembles a polygon with holes. The
faces from Sa ($2) are known as the red (blue) polygons. The algorithm then performs
what is known as a red-blue merge, which outputs every connected component of the
intersections between the red and blue polygons that contain points of P . This merge
is performed by a plane sweep, and if all the red (blue) polygons had r (b) edges the
running time of the merge is O((r + b + [PI) log(r + b + IPI)) [EGS88]. The algorithm
uses a priority queue as a data structure and requires O(r + b + IPD space.

In our case we can considerably simplify the above algorithm. We can eliminate

recursion and perform the red-blue merge only once. Partition S into H1 and V1. We

know that horizontal (vertical) segments do not intersect among themselves. Thus the
arrangement of H1 (V1) has only one multiply connected face which is the entire plane,
with the horizontal (vertical) segments representing "holes". Let us call the face of H1
(V1) the red (blue) face. We run the red-blue merge only once with these two polygons
and the point set P as input. The output is clearly the set of obstacles we are seeking.
Since r, b, and IP] axe each O(n), the algorithm runs in O(n log n) time and O(n) space.

In the next section we shall discuss some applications of our breadth first search

algorithms.

4 M i n i m u m Link P a t h Pro b lem s

In this section we consider the following problem. Suppose we are given a collection
of rectilinear polygons inside a polygonM room, and points s and t within the free space.
Let the total input size be n. We are required to compute the minimum link path from
s to t which avoids all the obstacles. We have designed an algorithm for solving the
problem in O(n log n) time and O(n) space. In this version of the paper, we describe
the algorithm for finding the link distance. We will only briefly outline how to modify

the algorithm for computing the actual path.
Consider the VPP and HPP of the set of polygons, with 8 and t being treated as

point obstacles. Both partitions can be computed in O(n log n) time and O(n) space
by a plane sweep algorithm described in [FM84]. It is easy to see that there exists a
minimum link path which is confined to the grid formed by overlaying VPP on HPP.
Of course we do not want to compute the grid as it will be too time consuming. Let S
be the set of the horizontal segments of HPP and the vertical segments of VPP. Clearly
s is associated with a horizontal (vertical) segment hs (vs), and similarly t is associated

with a horizontal (vertical) segment h, (vt). The minimum link path has to start along

either hs or vs, and end along either h, or v,.

269

We now make two copies of each partition, called HPPh, HPP~, VPPh and VPP~.
The labelling algorithm is first run with hs as the initial segment. In this run the
partitions HPPh and VPPh are labelled. The algorithm is then run with v8 as the

initial segment. In this run the partitions HPP~ and VPP, are labelled. At this stage
we have four partitions with each segment labelled. Consider for example VPPh. The
label associated with vt, say k, tells us that the minimum link path from s to t which
,tarta along h8 and ends along vt has k + 1 links. By examining all four partitions, we
can find out the minimum link distance from s to t if the path originated along either
h8 or v~ and terminated along either ht or yr. The minimum of all four values gives us
the link distance between s and t. To compute the actual path, we have to modify the
labelling algorithm to keep back pointers so that the actual path can be retrieved by
following pointers. We omit the details in this version of the paper.

Clearly the algorithm runs in O(n log n) time and O(n) space. Notice that if we
had performed the breadth first searches as in [IA86], our space complexity would have
been nonlinear.

Opt imal i ty P r o o f

By reducing integer sorting to the the minimum link path problem, we show that
our algorithm is optimal.

Assume that you are given n integers a l , . . . , a n . Construct a polygon, Pi for
each ai. Pi is a strip of width ~ = 0.1 connecting the following points: (al, al -

~), (ai,-ai), (-ai , -ai) , (-ai,ai), (ai,ai). It leaves a gap of width ~ in the top right
corner of the square region that the strip encloses. Hence, if ai > aj then Pi completely
encloses Pj. Now consider the problem of determining the minimum link path from the
origin to (B, 0), where B is 1 more than the largest integer in the input. The minimum
link path will have to extricate itself from each of the polygonal regions. In the process
it must sort the numbers.

Link Dis tance Q u e r y P r o b l e m

We next consider the query version of the above problem. Suppose we are given a
collection of polygons in a room, and a point s. We have to preprocess the input into a

data structure such that given any query point t, its minimum link path from s can be
reported efiCiciently.

We describe an algorithm which takes O(nlog n) preprocessing time and O(n)
space, and answers each query in O(log n + k) time where k is the link distance between
.s and t. In fact we describe in detail an O(log n) algorithm for reporting the link
distance, and briefly outline how that may be modified to extract the path.

We first compute the HPP and VPP of the free space, treating s as a point obstacle.
The point s corresponds to two line segments ha and vs. We then make two copies of

each partition, called HPPh, HPP, , VPPh and VPPv. The labelling algorithm is first

270

run with hs as the initial segment. In this run the partitions HPPh and VPPh are
labelled. The algorithm is then run with vs as the initial segment. In this run the
partitions HPP~ and VPP~ are labelled. At this stage we have four partitions with each
segment labelled. Finally we organize each partition into a data structure for planar
point location queries [K83]. All of the above can be done in O(n log n) time and O(n)
space.

We are now ready for query processing. Given a t, for each of the four partitions we
find out the respective rectangle that contains it. Consider for example VPPh. Suppose
t is contained in a rectangle, both of whose vertical sides were labelled k. This means
that the minimum link path from s to ~ which starts along ha and ends along a vertical
segment through t has k + 1 links. But suppose the two vertical sides had different

labels. Clearly they cannot differ by more than one, so let one be k and the other be
k + 1. This means that the minimum link path from s to t which starts along ha and
ends along a vertical segment through t has k + 2 links.

Thus we can find out the minimum link distance from s to t if the path origi-
nated along either h8 or v~ and terminated along either a horizontal or vertical segment
through t. The minimum of all four values gives us the link distance between s and t.
Clearly all four point locations can be performed in O(log n) time.

To compute the actual path, we have to modify the labelling algorithm to keep
back pointers so that the actual path can be retrieved by following pointers. We omit

the details in this version of the paper.

5 C o n c l u s i o n s

In this paper we show that breadth first search can be accomplished in O(n log n)
time and O(n) space in an intersection graph of n orthogonal line segments. The main
idea behind the algorithm is that it searches the horizontal and vertical lines separately.
We apply it to several link distance problems to obtain optimal algorithms. We conclude

with some open problems.
1. Can depth first search be done on a set of orthogonal line segments in O(n log n)

time and linear space?
2. Are there other applications for the techniques used in this paper, namely that of

maintaining separate data structures for the horizontal and vertical line segments?
3. Can the Link Diameter, and the Link Cen~er problems [$90] be solved more effi-

ciently in the rectilinear case?

271

6 R e f e r e n c e s

[B91]

[CKVST]

[DLS89]

[EGCSS]

[FM84]

[GM87]

[IAS6]

[IAST]

[KSg]

[KS3]

[LPSST]

[MRW90]

[RLW87]

[s86]

[sg0]

de Berg, On Rectilinear Link Distance, Computational Geometry: The-
ory and Application, to appear.
Clarkson, Kapoor, and Vaidya, Rectilinear Shortest Paths through Polyg-
onal Obstacles in O(n log ~ n) time, A CM Symposium on Comp. Geome-
try, 1987.
Djidjev, Lingas, and Sack, An O(n log n) Algorithm for Finding a Link
Center in a Simple Polygon, Proceedings of Sixth STAGS, Lecture Notes
in Computer Science~ Springer Verlag Series, 1989.
Edelsbrunner, Guibas, and Sharir, The Complexity of Many Faces in
Arrangements of Lines and Segments, A CM Symposium on Oomp. Ge-
ometry, 1988.
Fournier, and Montuno, Triangulating a Simple Polygon and Equivalent
Problems, ACM Trana. on Graphics, 1984.
Ghosh, and Mount, An Output Sensitive Algorithm for Computing Vis-
ibility Graphs, IEEE FOGS, 1987.
Imai, and Asano, Efficient Algorithm for Geometric Graph Searc~ Prob-
lems, SIAM J. of Comp., 1986.
Imai, and Asano, Dynamic Orthogonal Segment Intersection Search, J.
of Algorithms, 8 (1987), pp. 1-18.
Ke, An Efficient Algorithm for Link Distance Problems, A GM Sympo-
sium on Comp. Geometry, 1989.
Kirkpatrick, Optimal Search in Planar Subdivision, SIAM J. of Com-
puting, 1983.
Lenhart, Pollack, Sack, Seidel, Sharir, Suri, Toussaint, Whitesides, and
Yap, Computing the Link Center of a Simple Polygon, A CM Symposium
on Gomp. Geometry, 1987.
Mitchell, Rote, and Woeginger, Minimum Link Paths among Obstacles
in the Plane, A CM Symposium on Comp. Geometry, 1990.
de Rezende, Lee, and Wu, Rectilinear Shortest Path with Rectangular
Barriers, Discrete and Gomp. Geometry, 1987.
Suri, A Linear Time Algorithm for Minimum Link Paths inside a Simple
Polygon, Computer Vision, Graphics, Image Processing, 1986.
Suri, On some Link Distance Problems in a Simple Polygon, IEEE Trans.
on Robotics and Automation, 1990.

272

Fronts for Downsweep Fronts for
Upsweep

Init ialization of Phase 2
Figure 2.1

t

___£__ I

_ _ -

Upsweep

Figure 2.2

I

I
_ _4= =I ~

Downsweep

Figure 2.3

I I

Old window of front New window

Window set splits at new front.

Window set spl i ts . Some w i n d o w s n a r r o w .

Window sets m e r g e .

I I

. _ 2 - L
Windows t e r m i n e t o , F r o n t t e r m i n a t e s .

Fronts and Window Sets
Figure 2,4

Poly~

\

Segment
h i t
tWiCe ir~
phase

Polygons from Segments
Figure 3.1

