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A B S T R A C T  

Given n orthogonal line segments on the plane, their intersection graph is defined such 
that each vertex corresponds to a segment, and each edge corresponds to a pair of 
intersecting segments. Although this graph can have f~(n 2) edges, we show that breadth 
first search can be accomplished in O(n log n) time and O(n) space. As an application, 
we show that the minimum link rectilinear path between two points s and t amidst 
rectilinear polygonal obstacles can be computed in O(nlog n) time and O(n) space, 
which is optimal. We mention other related results in the paper. 

1 I n t r o d u c t i o n  

Given a set S of n orthogonal line segments on the plane, the intersection graph 
of S is defined as follows: each segment corresponds to a vertex in the graph, and an 
edge connects a pair of vertices if the two corresponding segments intersect. Clearly this 
graph is bipartite with the horizontal and vertical segments forming two independent 
sets. 

This graph can potentially have ~(n 2) edges. Given an initial segment h, the 
main result of this paper is an efficient algorithm to label every segment by its shortest 

distance from h in the graph. This is equivalent to breadth first search. Our algorithm 
does not explicitly generate all the edges, and in fact runs in O(n log n) time and O(n) 
space. It uses elementary data structures such as binary trees and priority queues. 
Using this algorithm we solve several other problems efficiently. 

Asano and Imai have shown how to perform breadth first and even depth first 
search on such graphs in O(nlogn) time and O(nlog n) space ([IA86], [IA87]). They 
use fairly complex data structures. However their techniques have wider applications. 

The primary application of our result is motivated by a motion planning problem. 
Suppose we are given a collection of disjoint rectilinear polygonal obstacles inside a 
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rectilinear polygonal room on the plane, and a pair of points s and t in the free space. 
Let the input size be n. Consider the problem of computing the minimum link rectilinear 
path between s and t that avoids all the obstacles. Such a path is composed of a minimum 

number of line segments, each of which is parallel to either the x or the y axis. The 
number of line segments on the path is known as the link distance between the pair 
of points. We first reduce the problem to performing two breadth first searches on an 

intersection graph of O(n) orthogonal line segments. The technique in [IA86] and [IA87] 
can accomplish these searches in O(n log n) time and O(n log n) space. Instead, we show 
how to use our algorithm to solve the problem in O(n log n) time and linear space. We 
also solve several other related problems. 

Before we summarize our results, we introduce the following definitions. Given 

some rectilinear polygonal obstacles inside a polygonal room, let H (resp. V) be the 
set of horizontal (vertical) line segments formed by extending each horizontal (vertical) 
polygonal edge within the free space (possibly in both directions) until it hits an obstacle 
or the room. Our results are listed below, and assume rectilinear geometry. 

Results  

1. Given a collection of polygonal obstacles inside a room, and their H and V sets, 
we show that breadth first search on the intersection graph of H U V can be ac- 
complished in O(n log n) time and O(n) space, using elementary data structures. 

2. Given any collection S of line segments, we can perform breadth first search on 
their intersection graph in O(n log n) time and O(n) space. This is a generalization 

of the previous result. 
3. Given a collection of polygonal obstacles inside a room, and points s and t, the 

minimum link path can be computed in O(n log n) time and O(n) space, which is 

optimal. 
4. Given a collection of polygonM obstacles in a room, and a point s, we can preprocess 

the input in O(nlog n) time and O(n) space such that given a query point t, its 
minimum link path from s can be reported in O(log n + k) time, where k is the link 
distance. Its link distance from s can be reported in O(log n) time. 

Remarks 

Our results are interesting for several reasons. Firstly, as was noted by Imai and 
Asano, extending their scheme in [IA86] to perform breadth first search in O(n) space 
seems dii~cult, although we note that their technique is quite general and easily allows 
other searching schemes such as depth first search. Secondly, to achieve our bounds, 
we employ several interesting ideas. To start with, we show that if the line segments 
were the same as those generated by extending the edges of a group of polygons, then 
the claimed bounds can be achieved. The algorithm uses a key idea of searching the 
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horizontal and vertical lines separately, which allows us to exploit various geometric 
properties. We then generalize this result for any set S of line segments by showing 
that there e±ists a group of polygons such that H U V = S. Given S, these polygons 
can be computed in O(n log n) time and O(n) space. Interestingly, this is related to the 
problem of computing many faces in an arrangement of line segments lEGS88]. 

Next, consider the applications to link distance problems, which is motivated by 
motion planning. Here a robot has to navigate amidst obstacles inside a cluttered 
workspace, where translational motion is considered cheap while directional changes 
are considered expensive. Thus we seek to minimize the links along the path. Several 
results have appeared for the nonrectilinear versions of the problem. Suri has studied 
the problem of minimum link distances inside a simple polygon without holes, and 
has obtained linear time optimal algorithms [$86]. Several people have also studied 
related concepts such as the link diameter and the link center of the region ([$90], 
[LPS87], [K89], [DLS89]). The rectilinear link distance problem has been studied for 
the case of a simple polygon without holes ([B91]). The problem becomes more complex 
when we allow multiple obstacles. Recently Mitchell et at. [MRW90] have designed 
an algorithm for computing nonrectilinear link distances amidst multiple polygons, and 
their algorithm runs in O(n2a(n)log 2 n) time and O(n 2) space, where a(n) is the inverse 
Ackermann's function. 

The above result is suboptimal, and in fact this is generally true for most existing 
algorithms for shortest path problems amidst polygonal obstacles under various distance 
metrics. For example, consider the shortest path problem under the Euclidean metric. 
The best known algorithm runs in O(n 2) time and O(n 2) space [GM87]. Under recti- 
linear geometry, this problem can be solved in O(n log 2 n) time and O(nlog n) space 

[CKV87]. Optimal algorithms have only been obtained for very restricted inputs. For 
example, if the input is a collection of rectangles, then the rectilinear Euclidean shortest 
path can be computed in O(n log n) time [DLW89]. This is possible by a plane sweep 
because it can be shown that such paths have to be monotone in some direction. 

In our case, we allow rectilinear polygons of arbitrary shapes, and the resulting 
minimum link paths need not be monotone in any direction. Yet our algorithm runs in 
optimal time and space. 

The rest of this paper is organized as follows. In Section 2, we discuss the breadth 
first search algorithm (Result 1). Section 3 discusses how to generalize this algorithm 
where the input is an arbitrary set of orthogonal line segments (Result 2). Several 
problems related to minimum link distances are discussed in Section 4 (Results 3 and 
4). We conclude with some open problems. 
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2 Labelling Algorithm 

For this algorithm we are given a collection of disjoint rectilinear polygonal obstacles 
inside a polygonal room in the plane along with their H and V sets (as described in the 
Introduction). We are also given a distinguished line segment h in H O V. Without loss 
of generality we assume that h is a horizontal line segment. Consider the intersection 
graph I obtained by all these horizontal and vertical line segments. In this section we 
show how to perform an efficient breadth-first search in this graph starting from h so 
~hat every line segment is labelled with its distance (in I) from h. 

For the sake of simplicity, we will assume throughout this section that all the x- 
coordinates (resp. y-coordinates) of the vertical (resp. horizontal) sides of the polygons 
are distinct, Mthough our algorithm can be modified to tackle the general case. 

Out l ine  

An efficient search in I is achieved by searching in two different planar partitions 
- the horizontal planar partition, and the vertical planar partition. The horizontal 
(vertical) planar partition, which is denoted by HPP (VPP), includes H(V) and all 
the edges of the obstacles. The algorithm works in two parts, each of which is divided 
into many phases. In the first part, the algorithm searches in the HPP to compute 
the shortest path from h to all the other horizontal segments. In the second part, the 
algorithm performs a search in the VPP to compute the shortest path from h to all the 

vertical segments. 
We first describe the search performed in the HPP. In each phase the algorithm 

determines the set of horizontal line segments that are at distance 2 away from the 
horizontal line segments discovered in the previous phase. We denote the set of new 
horizontal segments chosen in phase k by Hk with H0 = {h}. One way to imagine the 
algorithm is by using ideas from Suri et al. [$90]. One could imagine that in phase k 
the algorithm determines all new horizontal segments that get illuminated by placing 
light sources on the horizontal segments in Hk-~ and shining them in the upward or 
downward direction. Hence in each phase the algorithm effectively jumps two steps by 
going from a set of horizontal segments Hk-1 (at distance 2(k - 1) from h) to a set of 

horizontal segments Hk (at distance 2k from h). 
In the second part, the algorithm does a search in the VPP to label all the vertical 

line segments. In phase k of the second part, the algorithm labels all vertical segments 
at distance 2k - 1 from h in I. 

Intuitively, the search is made efficient by maintaining two "complementary" data 
structures (HPP and VPP) instead of one. Maintaining these two data structures sepa- 
rately reduces the information stored about all the intersections between the segments. 
However, there is enough information stored in each of the structures to perform the 
requisite search. 
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It is possible to alternate the phases of the search in the HPP with that of the 

search in the VPP. This will ensure that all segments labelled k will be processed before 

any of the segments labelled k + 1. 

We now get into more details of the labelling algorithm. 

Searching the  H P P  

The set H0 consists only of the line segment h. In phase k the algorithm computes 
the set of new horizontal segments Hk that get illuminated by placing a light source on 
some segment from Hk-1. 

We first describe an outline of phase k, which consists of Initialization, UpSweep, 
and DownSweep procedures. In the initialization procedure, the algorithm places light 
sources on the set of segments in/ '/k-1. It is clear that not all line segments in Hk-~ 
need to be attached with a light source. We only need to attach light sources to portions 
of an "outermost" set of segments (as shown in Figure 2.i). The upsweep procedure 
directs all the light sources in the upward direction and labels (with label 2k) all the new 
horizontal segments that get illuminated in the process. The horizontal segments are 
labelled in sorted order, sorted according to the y-coordinates of these segments. This 
is followed by downsweep, which directs all the light sources in the downward direction, 
and labels (with label 2k) as many new segments as possible (in the order of decreasing 
y-coordinates). Figures 2.1, 2.2, and 2.3 illustrate the three procedures. 

We now describe the upsweep procedure in more detail. At the start of an upsweep, 

the outermost line segments in Hk-1 will be called Fronts, and beams of light are 
directed upwards from portions of each Front. Each such beam is called a Window. 
The upsweep consists of a sequence of upward advancements of Fronts. The next Front 
that is selected is the one that advances to the horizontal segment above with the least 

y-coordinate. This is facilitated by using a priority queue. These new Fronts get labelled 
2k. Effectively, the light sources axe moved from the previous segment to the illuminated 
portions of these new segments. However, the original beams (i.e., windows) are likely 
to get modified (narrowed~ ~plit or terminated) if they encounter obstacle edges. Each 

Front is thus a dynamic collection of disjoint windows (see Figure 2.4 for examples). 

For a particular Front, when all its windows have terminated (which happens when all 

the light beams have been terminated by obstacles), the Front is also terminated. The 
upsweep terminates when all the Fronts terminate. 

There are two main data structures used by the upsweep procedure. Since the set 
of windows in a Front are a set of disjoint intervals, the windows associated with a FYont 
will be maintained as a balanced tree structure that maintains disjoint intervals. The 
balanced tree structure used here must allow the following operations: Searct,, In, ert~ 
Merge, Split, Delete (see Figure 2.4 for examples). Each of these operations can be 
performed in O(log n) time, assuming any of the basic balanced tree structures like 
red-black trees. The second data structure is the priority queue, which is maintained as 
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a heap. This facilitates the following operations: DeIe~eMin~ Insert, both of which can 
be performed in O(log n) time. 

The following are some of the subtle problems that the upsweep correctly handles. 
Firstly, propagating a set of windows to the new Front can be achieved by a constant 
number of elementary operations on the windows data structure of the previous Fronts. 
Secondly, using a heap structure effectively eliminates the possibility of a new segment 
being processed by different advancing Fronts at different times. Thirdly, a Front could 

encounter a segment of a previous phase. If this happens, the Front is immediately 
terminated. The reason is thai either everything above it has already been processed, 
or there will be another Front that will carry on the advancement in that direction. 
This is illustrated in Figure 2.2, where Front e is terminated when it advances and hits 
Front b, since Front a would illuminate any new segments thai c would have. 

The downsweep procedure is similar to the upsweep procedure. There is one situ- 
ation that needs further explanation. It is possible that a Front encounters a segment 
thai was processed by the upsweep. However, this is ignored, and the sweep continues. 

The reason is that the downward sweep may have more segments that need to be la- 
belled that could not possibly have been processed by an upward sweep. Thus some 
set of line segments could get processed twice within a phase (but not more number of 
times). No line segment is processed once in two different phases. This is crucial for 

our analysis. 

Searching the  V P P  

This part of the algorithm is also divided into phases. The first phase involves 
finding out all the vertical segments that intersect h. These set of segments can also be 
set up as a collection of Fronts that can illuminate other vertical segments by shining 
light in the right or the left direction. From this point onwards, the algorithm proceeds 
along the lines of the earlier part of searching the HPP, with the difference that the 
search is done in the VPP. It suffices to say thai in phase/c, it will determine the 

vertical segments at distance 2k - 1 from h in I. 

Analys is  o f  A l g o r i t h m  

Each line segment is processed in exactly one phase. Processing a line segment 
involves: 1) removing it from the heap structure, which can be performed in O(log n) 
time; 2) modifying the Windows data structure, which can be performed in O(log n) 
time; 3) finding the next segment to be inserted into the heap (which takes O(1) time), 
and inserting that segment into the heap (which again takes O(log n) time). Within 
each phase, each tine segment may be processed twice, once along an upward sweep, 
and once along a downward sweep. Consequently, it is clear that the algorithm runs in 

time O(n log n). 
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The heap data structure uses O(n) space. At any instant in the algorithm there are 
at most n Windows active in all the Fronts put together. Hence the space complexity 

of the algorithm is O(n). 

3 Arbitrary Sets of Orthogonal Line Segments 

In this section we will show that given any set S of orthogonal line segments, 
breadth first search on their intersection graph can be accomplished in O(n log n) time 
and linear space. To do this, we shall compute a collection of polygons inside a polygonal 

room such that S = H U V, where H and V axe formed by extending each horizontal 
(vertical) edge of the polygons in the free space (possibly in both directions) until it 
hits the room or another polygon. After this is done, the Mgorithm in Result 1 can be 
used. 

Let S = H I  U V1, where H1 (V1) is the set of horizontal (vertical) line segments in 
S. Consider the arrangement lEGS88] of the segments in S on the plane, as Figure 3.1 
shows. Let us compute those faces of the arrangement (including the external face) that 
contain an endpoint of some segment in S. These faces will be our polygonal obstacles, 
with the room being the external face. We will shortly describe how to efficiently 
compute these faces. For now, let us imagine that these faces have been computed, mad 
we axe ready to run the algorithm in Result 1 on the intersection graph of their H and 
V segments. The following facts hold (some of them are trivial). 

1. H = H1 and V = V1. Thus the intersection graph of H U V is the same as the 
intersection graph of S. 

2. If the intersection graph of S is disconnected then some of the obstacles may them- 
selves have holes within which other obstacles may reside. However, this is not a 
problem for our algorithm in Result 1, because it will only restrict the search to 
one component. 

3. The collection of polygons may have several horizontal (vertical) edges sharing the 
same y (x) co-ordinate. Again, this is not a problem because the algorithm in 
Result 1 can be modified to handle such degeneracies. 

Thus, M1 we need to do first is to compute these faces efficiently. Let P be the set 
of 2n endpoints of M1 segments in S. Our problem is a particular instance of a more 
general problem, which is as follows. Given a set of arbitrarily oriented segments S and 
a point set P,  compute M1 faces of the arrangement of S that contain some point in P.  

This problem has been solved in lEGS88], unfortunately it has a running time which is 
unacceptable for our purposes. However, we can exploit the orthogonality of our S and 
modify the algorithm to run in O(n log n) time and linear space. For this it will help if 
we briefly review the algorithm in lEGS88]. 
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The algorithm works roughly as follows. S is divided into two sets $1 and $2 of 
approximately equal size. Then the faces in the arrangement of $1 ($2) which contain 

points of P are recursively computed. Each face resembles a polygon with holes. The 
faces from Sa ($2) are known as the red (blue) polygons. The algorithm then performs 
what is known as a red-blue merge, which outputs every connected component of the 
intersections between the red and blue polygons that contain points of P .  This merge 
is performed by a plane sweep, and if all the red (blue) polygons had r (b) edges the 
running time of the merge is O((r + b + [PI) log(r + b + IPI)) [EGS88]. The algorithm 
uses a priority queue as a data structure and requires O(r + b + IPD space. 

In our case we can considerably simplify the above algorithm. We can eliminate 

recursion and perform the red-blue merge only once. Partition S into H1 and V1. We 

know that horizontal (vertical) segments do not intersect among themselves. Thus the 
arrangement of H1 (V1) has only one multiply connected face which is the entire plane, 
with the horizontal (vertical) segments representing "holes". Let us call the face of H1 
(V1) the red (blue) face. We run the red-blue merge only once with these two polygons 
and the point set P as input. The output is clearly the set of obstacles we are seeking. 
Since r, b, and IP] axe each O(n), the algorithm runs in O(n log n) time and O(n) space. 

In the next section we shall discuss some applications of our breadth first search 

algorithms. 

4 M i n i m u m  Link P a t h  Pro b lem s  

In this section we consider the following problem. Suppose we are given a collection 
of rectilinear polygons inside a polygonM room, and points s and t within the free space. 
Let the total input size be n. We are required to compute the minimum link path from 
s to t which avoids all the obstacles. We have designed an algorithm for solving the 
problem in O(n log n) time and O(n) space. In this version of the paper, we describe 
the algorithm for finding the link distance. We will only briefly outline how to modify 

the algorithm for computing the actual path. 
Consider the VPP and HPP of the set of polygons, with 8 and t being treated as 

point obstacles. Both partitions can be computed in O(n log n) time and O(n) space 
by a plane sweep algorithm described in [FM84]. It is easy to see that there exists a 
minimum link path which is confined to the grid formed by overlaying VPP on HPP. 
Of course we do not want to compute the grid as it will be too time consuming. Let S 
be the set of the horizontal segments of HPP and the vertical segments of VPP. Clearly 
s is associated with a horizontal (vertical) segment hs (vs), and similarly t is associated 

with a horizontal (vertical) segment h, (vt). The minimum link path has to start along 

either hs or vs, and end along either h, or v,. 
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We now make two copies of each partition, called HPPh, HPP~, VPPh and VPP~. 
The labelling algorithm is first run with hs as the initial segment. In this run the 
partitions HPPh and VPPh are labelled. The algorithm is then run with v8 as the 

initial segment. In this run the partitions HPP~ and VPP,  are labelled. At this stage 
we have four partitions with each segment labelled. Consider for example VPPh. The 
label associated with vt, say k, tells us that the minimum link path from s to t which 
,tarta along h8 and ends along vt has k + 1 links. By examining all four partitions, we 
can find out the minimum link distance from s to t if the path originated along either 
h8 or v~ and terminated along either ht or yr. The minimum of all four values gives us 
the link distance between s and t. To compute the actual path, we have to modify the 
labelling algorithm to keep back pointers so that the actual path can be retrieved by 
following pointers. We omit the details in this version of the paper. 

Clearly the algorithm runs in O(n log n) time and O(n) space. Notice that if we 
had performed the breadth first searches as in [IA86], our space complexity would have 
been nonlinear. 

Opt imal i ty  P r o o f  

By reducing integer sorting to the the minimum link path problem, we show that 
our algorithm is optimal. 

Assume that you are given n integers a l , . . . , a n .  Construct a polygon, Pi for 
each ai. Pi is a strip of width ~ = 0.1 connecting the following points: (al, al - 

~), (ai,-ai), ( -ai , -ai) ,  (-ai,ai), (ai,ai). It leaves a gap of width ~ in the top right 
corner of the square region that the strip encloses. Hence, if ai > aj then Pi completely 
encloses Pj. Now consider the problem of determining the minimum link path from the 
origin to (B, 0), where B is 1 more than the largest integer in the input. The minimum 
link path will have to extricate itself from each of the polygonal regions. In the process 
it must sort the numbers. 

Link Dis tance  Q u e r y  P r o b l e m  

We next consider the query version of the above problem. Suppose we are given a 
collection of polygons in a room, and a point s. We have to preprocess the input into a 

data structure such that given any query point t, its minimum link path from s can be 
reported efiCiciently. 

We describe an algorithm which takes O(nlog n) preprocessing time and O(n) 
space, and answers each query in O(log n + k) time where k is the link distance between 
.s and t. In fact we describe in detail an O(log n) algorithm for reporting the link 
distance, and briefly outline how that may be modified to extract the path. 

We first compute the HPP and VPP of the free space, treating s as a point obstacle. 
The point s corresponds to two line segments ha and vs. We then make two copies of 

each partition, called HPPh, HPP, ,  VPPh and VPPv. The labelling algorithm is first 
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run with hs as the initial segment. In this run the partitions HPPh and VPPh are 
labelled. The algorithm is then run with vs as the initial segment. In this run the 
partitions HPP~ and VPP~ are labelled. At this stage we have four partitions with each 
segment labelled. Finally we organize each partition into a data structure for planar 
point location queries [K83]. All of the above can be done in O(n log n) time and O(n) 
space. 

We are now ready for query processing. Given a t, for each of the four partitions we 
find out the respective rectangle that contains it. Consider for example VPPh. Suppose 
t is contained in a rectangle, both of whose vertical sides were labelled k. This means 
that the minimum link path from s to ~ which starts along ha and ends along a vertical 
segment through t has k + 1 links. But suppose the two vertical sides had different 

labels. Clearly they cannot differ by more than one, so let one be k and the other be 
k + 1. This means that the minimum link path from s to t which starts along ha and 
ends along a vertical segment through t has k + 2 links. 

Thus we can find out the minimum link distance from s to t if the path origi- 
nated along either h8 or v~ and terminated along either a horizontal or vertical segment 
through t. The minimum of all four values gives us the link distance between s and t. 
Clearly all four point locations can be performed in O(log n) time. 

To compute the actual path, we have to modify the labelling algorithm to keep 
back pointers so that the actual path can be retrieved by following pointers. We omit 

the details in this version of the paper. 

5 C o n c l u s i o n s  

In this paper we show that breadth first search can be accomplished in O(n log n) 
time and O(n) space in an intersection graph of n orthogonal line segments. The main 
idea behind the algorithm is that it searches the horizontal and vertical lines separately. 
We apply it to several link distance problems to obtain optimal algorithms. We conclude 

with some open problems. 
1. Can depth first search be done on a set of orthogonal line segments in O(n log n) 

time and linear space? 
2. Are there other applications for the techniques used in this paper, namely that of 

maintaining separate data structures for the horizontal and vertical line segments? 
3. Can the Link Diameter, and the Link Cen~er problems [$90] be solved more effi- 

ciently in the rectilinear case? 
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