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Abstract

Let V be a set of n points in 3-dimensional Euclidean

space. A subgraph of the complete Euclidean graph

is a t-spanner if for any u and v in V, the length of

the shortest path from u to v in the spanner is at

most t times d(u, v). We show that for any t > 1,

a greedy algorithm produces a t-spanner with O(n)

edges, and total edge weight O(1). tot(it4ST), where

MST is a minimum spanning tree of V.

1 Introduction

Let V be a set of n points in Euclidean space. The

complete Euclidean graph, G = (V, E) is defined as

the complete weighted graph on these points, with

edge weights equal to the Euclidean distance. A

subgraph G1 = (V, E’) is a t-spanner of G if for ev-

ery u, v G V, the distance between any two points

is at most t times the Euclidean distance between

the two points. The minimum value oft such that

g’ is a t-spanner is called the stretch factor of G’. In
this paper we consider the greedy algorithm to com-

pute a t-spanner for any complete Euclidean graph

in 3-dimensional Euclidean space, and show that it

produces a spanner that is sparse.

Sparseness of spanners is measured by two crite-

ria, the size and the weight. The size of a graph

G, size(G), is defined as the number of edges in G
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and the weight of G, wt (G), is defined as the aum of

the edge weighta of G. The minimum spanning tree

(MST) of G is obviously the sparsest possible span-
ner both in terms of size and weight, but its stretch

factor can be as bad as n – 1 [1]. The sparseness of

a spanner G1 is judged by comparing it to the size

and weight of the MST.

Spanners for Euclidean graphs as well ss for arbi-
trary graphs have numerous applications in robotics,

graph theory, network topology design, distributed

system, and communication protocols design. For a

recent survey of spanners refer to [2].

We consider the problem of finding sparse span-

ners for complete Euclidean graphs. Spanners for

complete Euclidean graphs in two-dimensional Eu-

clidean space are considered in [1, 3, 4], and it is

proved that there exist 0(1)-spanners with size O(n)

and weight 0(1) . wt(MST). However, the tech-

niques used in these papers exploit planarity prop-

erties, and the results cannot be extended to higher

dimensions, for which the only weight bounds known

are for arbitrary edge-weighted graphs. The best

results for higher dimensional Euclidean space are

shown in [2], where it is shown that sparse spanners

with size O(n) and weight O(log n) owt(MST) can

be constructed for a complete Euclidean graph in

any dimension.

In this paper, we use substantially different tech-

niques to obtain optimal weight sparseness results

for the case of a complete Euclidean graph on a set of

points in 3-dimensional Euclidean space. We show

how to construct 0(1)-spanners of O(n) size and

weight 0(1 ) . wt (MST). This is clearly an optimal

result for the 3-dimensional case.

In [2] the edges are partitioned with respect to
their sizes. Since the number of resulting partitions

is O(log n), this introduces a factor of O(log n) in the

final result. In contrast to [2], we do not group the
edges according to their sizes alone. Instead, edges
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of different sizes are grouped together (to form a

constant number of groups), and a complex charg-

ing scheme is employed. In this scheme, edges of

the spanner are charged to portions of the minimum

spanning tree. Another interesting feature of this

paper is the cleanup process that is applied to the

spanner edges, which greatly facilitates the analysis.

We believe that the cleanup process maybe useful in

other situations where edge lengths need to be ana-

lyzed. Another noteworthy point is that one of the
cases of our proof uses a locally minimum Steiner

tree as an analysis tool.

Theorem 1.1 Let G = (V, E) be any n-vertex com-

plete Euclidean graph, where V is a set of points in

3-dimensional space. Let t > 1 be any real num-

ber. There exists a polynomial time algorithm that

constructs a t-spanner of G of size O(n) and weight

O(1) . wt(MST). The constant implicit in the O-
notation depends only on t.

This theorem can be easily extended to arbitrary

norms. Our current proof does not extend to di-

mensions higher than three, because at one point

we require local properties of 2-dimensional mini-

mum Steiner trees.

2 Preliminaries

We begin by stating some definitions and properties
that will be used throughout the paper.

A complete Euclidean graph is a complete graph

on a vertex set corresponding to a set of points in

d-dimensional space with edge weights equal to the

Euclidean distances between the points. Let d(u, v)

refer to the Euclidean distance (L2 norm) between

points u and W. Let wt (E) refer to the total weight

of a set of edges E.

We now summarize some useful results from ear-

lier papers. In [1], a Greedy Algorithm is pre-

sented that produces a t-spanner for an arbitrary

graph. This is a simple generalization of Kruskal’s

algorithm to build a minimum spanning tree. The

algorithm takes as input a weighted graph G =
(V, E), and a real number t >1, and produces a

t-spanner G’ = (V, E’) as output. The algorithm
builds the spanner incrementally, starting with an

empty subgraph. It considers the edges in increas-
ing order of weights. An edge (u, v) is added if and

only if the shortest path from u to v in the partially

constructed spanner is greater than t .d(u, v). The

following two lemmas are proved in [1, 2].

Lemma 2.1 The output of the greedy algorithm,

G’, is a t-spanner of G with O(n) edges, for G a

complete Euclidean graph.

Lemma 2.1 states that the spanner of a complete

Euclidean graph formed by the Greedy Algorithm

satisfies the size bound of Theorem 1.1. The task of

this paper is to show that the spanner of the Greedy

Algorithm also satisfies the weight bound of the the-

orem.

Lemma 2.2 Let (u, v) be any edge on a cycie C in

G’. Then t od(u, v) < wt(C) – d(u, v)

In [2] the following observation is made regard-

ing how any pair of spanner edges are positioned in

space.

Lemma 2.3 Let (UI, VI) and (U2, V2) be any two
spanner edges. Then

t od(ul, VI) < d(u2, V2) + t.(d(vl, U2) + d(v2, VI))

Note that (V1, U2) and (V2, Ul) need not be span-

ner edges. One of the corollaries of this lemma is

that, if any two spanner edges are almost parallel,

say almost vertical, then the dist ante between their

top (bottom) endpoints is at least proportional to

the length of the shorter of the two edges. This sin-

gle fact is enough to prove the weight result in [2].

However, in order to eliminate the O(log n) factor

found in [2] we will require much more.

We now define what we call the Leap-Frog Prop-

erty. Let E be a set of line segments in space,

and let t > 1 be a real number. E satisfies

the Leap-Frog property if, for every subset S =

{(ul, v~), . . .,(uk, vk)},

t . d(ul, vl) < Z;=2kd(:i> vi) +

t - (Zi~l d(~i, %+1)+ ~(vkj ~1)).

The Leap-Frog property restricts how a set of line

segments may be positioned in space, and is a gen-

eralization of the property described in Lemma 2.3.

Lemma 2.4 The spanner edges satisfy the Leap-
Frog property.

The proof of this lemma is fairly straightforward

and follows from Lemma 2.2 and Lemma 2.1.

In the rest of the paper, we need not concern our-

selves any more with spanners. Instead, for any
t > 1, we show that if a set of edges E in 3-

dimensional space satisfies the Leap-Frog property,
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then wt(E) = O(wt(MSZ’)), where MST is a min-

imum spanning tree connecting the endpoints of E.

The constant implicit in the O-notation depends

only on t.

In fact, what we prove is actually something

slightly stronger. Let T be a minimum Steiner tree
of the endpoints of E. This tree may be shorter

than the MST. We prove that wt(E) = O(wt(T)).

Of course, this fact is not asymptotically significant

because in Euclidean space it is well known that
wt(MST) = O(wt(T)).

3 Overview

As mentioned earlier, for any t >1 we analyze the

weight of a set of edges E in 3-dimensional space

satisfying the Leap-Frog property. Let T always re-

fer to a minimum Steiner tree of the endpoints of

h’.

We first provide an overview of the proof. The

various steps are elaborated in later sections. The
proof employs a complex charging technique, where

edges of E are charged to portions of T in such away

that 1) each edge of E is charged to a portion of T

proportional to its length, and 2) the same portion

of T is never charged twice.
The approach is as follows. To facilitate the anal-

ysis, the edges of E go through a Cleanup phase,

which partitions the edges into a constant number

of groups. For each group we prove that the sum of

the lengths of the edges is at most a constant times

the weight of T. Since the number of groups is it-

self a constant, this proves the necessary result. The

cleanup process, which is described in some detail in

Section 4, ensures that the set of edges in a group

satisfy the nice properties listed below:

1.

2.

3.

4.

Near-Parallel Property: Any pair of edges

in a group are nearly parallel.

Length-Grouping Property: In a group,

any two edges have lengths that are either

nearly equal or differ by a large amount.

Empty-Region Property: In a group any

two edges of nearly equal length are far apart.

Nested-Dumbbell Property: As explained

later, this is a crucial property used in the proof.

Each edge in a group defines a dumbbell. A
dumbbell consists of an edge attached at each

endpoint to a cylinder, or dumbbell head, of suit-

able size, These dumbbells are properly nested,
that is, either one is completely contained in

5.

the head of the other, or the two are completely

disjoint (see Figure 3.1).

Isolated-Centers Property: The grouping is

such that, given two edges of dfierent sizes, the

endpoint of the longer edge is not inside a head

of the smaller dumbbell.

After the Cleanup process, each group is analyzed

separately, and we show that the weight of each

group is O(wt (T)). Since T is a minimum Steiner

tree of the endpoints of E, it is also a (not necessar-

ily minimum) Steiner tree of each group. To achieve

our analysis we need to show that for any edge in the

group, there is enough portion of T within the two

dumbbell heads such that all the edges completely

contained in the heads as well as the edge itself can

be charged to this portion.

Without loss of generality we assume that the

edges in a group are parallel to the z axis (vertical).

First transform T in the following manner. Replace

each edge (u, v) of T by a pair of line segments (u, w)

and (w, v), where w is a new Steiner point, (u, w) is
parallel to the z axis, and (w, v) is parallel to the zy

plane. The weight of the new tree T is still within a

constant multiple of the weight of the old tree.

T must connect all the endpoints of the edges in

the group, hence it must pierce all the dumbbell

heads. We partition the set of dumbbells into two

sets based on the location of the points at which T

intersects the surface of the cylinders of the dumb-

bell. Let (u, v) be an edge in a group. Consider the

fragments of T inside the two heads of (u, v). Let

T. (respectively T.) be the fragment containing u

(respectively v). If neither T“ nor To pierces any

of the flat faces of the two dumbbell heads, then

we call such a dumbbell a Lateral dumbbell with

respect to T, and the corresponding edge a Lateral

edge. All other dumbbells (and edges) are termed as

Non-Lateral with respect to T. Figure 3.2 describes

these notions.

Accordingly, each group is further partitioned into

a Lateral and a Non-Lateral group. We shall show

separately that the weight of the edges in each group

is O(wt (T)). This is tackled in Sections 5 and 6,

respectively.

The global techniques used in both cases are sim-

ilar, because in both we perform a bottom-up anal-

ysis in the implicit forest defined by the nesting of

the dumbbells. The local techniques used, however,
are quite different. The non-lateral case uses the

generalized version of the Leap-Frog property, while

the lateral case does not use the Leap-Frog property

at all. Instead, it uses local properties of minimum
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Steiner trees in 2-dimensions. We have not been able

to extend this part of the proof to arbitrary dimen-

sions. However, what is interesting and surprising

is that minimum Steiner trees are used as a tool for

analyzing the lengths of edges.

4 Cleanup Phase

In this section we show that a set of edges satisfy-

ing the Leap-hog property can be partitioned into

a constant number of groups, each having the nice

properties listed below.

A number of constants are introduced in this sec-
tion. Each constant is actually a function dependent

only on t. In this version of the paper we do not

derive the functions; instead, we provide intuitive

explanations.

1,

2.

Near-Parallel Property: Any pair of edges

in a group is Near-Parallel, i.e., the angle be-

tween the two edges is less than a small con-

stant, which depends on t.

The technique to achieve this grouping is bor-

rowed from [2]. Cover the half-space above

the x~plane into a constant number of cones

cl,... Co(l), such that the angle of each cone is

a small constant. Each edge of E is assigned to

a group Ei in such a manner that, upon trans-

lating the endpoint with lesser z-coordinate to

the origin, the edge lies completely within cone

Ci. The union of the Ei’s is E. In the rest
of the paper, we assume that the edges in any

Ei are actually parallel; a more rigorous proof

allowing Near-Parallel edges appears in the full

version.

Length-Grouping Property: Let c be a

small constant, and s a large constant, both

dependent upon t.For the ease of notation, we

define 6 = 1 – e. In a group, any two edges with

lengths z and y (say z > y) are either of Near-

Equal length (z > y ~ z6), or have lengths that

differ by a large amount (y < Zt$s-l).

To achieve this grouping, consider a group Ei

of Near-Parallel edges. Let the longest edge be

of length z. Partition the interval [0, z] into

an infinite set of intervals {[X6, z], [262, z6] . . .}.

Define the subgroup Ei,j for j E {O,.. .,s –

1} as having those edges whose lengths belong

to the intervals {[z$~+l, m$], [z&+’+1, #+’],

[#+2S+l, ~aj+zq,.. .}.

Clearly, Ei,j satisfies both Properties 1 and 2,
and there is only a constant number of such

groups. Again, we may imagine that Near-

Equal edges are actually equal; a more rigorous

proof allowing Near-Equal edges appears in the

full version.

Empty-Region Property: A group Ei,j may
be further subdivided into groups Ei)j)k such
that any two points on two Near-Equal edges

(of length z each) are separated in space by a
distance which is-a large (but constant) multiple

of z. In other words, two Near-Equal edges

cannot be close to each other.

To achieve this grouping, construct a graph

where the nodes are edges of Ei,j, and two
Near-Equal nodes el and ez (of length z) have

a graph edge between them if el intersects a

large cylinder of radius cz and height cc (c

is a large constant), centered at the center of

ez. This graph has a constant degree, because

by Lemma 2.3, there can be only a constant

number of similar Near-Equal edges whose end-

points can be packed into the cylinder. Thus

this graph has a constant chromatic number,

and consequently a constant number of inde-

pendent sets, and each set forms a group satis-

fying Properties 1, 2, and 3.

Nested-Dumbbell Property: Each group

Ei,j,k also satisfies the Nested-Dumbbell prop-

erty, which is the most crucial property in the

entire proof. First we describe dumbbells more

precisely. For each edge of length x, the dumb-

bell head around an endpoint is a cylinder of

radius ax and height kc (1 >> h >> a > O). The

axis of the cylinders lie along the edge. Observe

that the radius of each cylinder is much smaller

than its height, which in turn is much smaller

than the edge length. Any two dumbbells in
the same group E~jj,k are nested, i.e., either one

dumbbell is completely contained within one of

the cylinders of the other dumbbell, or the two

dumbbells are completely disjoint (as in Figure

3.1).

As we shall now see, this nesting is achieved

by relaxing the requirement that each dumb-

bell head be a cylinder. Instead, each dumbbell

head is actually a closed region in space resem-

bling a cylinder, in that the minimum radius is

nearly equal to the maximum radius, and the

minimum height is nearly equal to the maxi-

mum height. The construction of the dumb-
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5.

5

bells proceeds from the smallest to the largest

edge in the group. Recall that edges are either

Near-Equal, or vary greatly in length.

First construct dumbbells for the smallest Near-

Equal class. Since they are pairwise sufficiently

far apart, we can construct heads which are ac-

tual cylinders. At any stage, suppose we are

considering the edge e of length z. As an in-

duction hypothesis, assume that all the dumb-

bells of the previous edges satisfy the Nested-

Dumbbell property. As a first attempt, con-

struct a dumbbell D, by attaching cylindrical

heads of radius and height ax and hx respec-

tively. If the surface of D does not intersect any

of the previous dumbbells, we can go on to the

next edge. Suppose the surface of D intersects

some of the previous dumbbells, say D1, . . . Dm.

However, the sizes of the previous dumbbells

are much smaller than even the radius of D

(this can be achieved by a very large constant

s in the Length-Grouping property). Construct

the actual dumbbell as D \ (Dl U D2 U. . . Dm ).

Clearly the nested property is maintained. The
shapes of the dumbbells may get quite compli-

cated as the process continues, but the heads

still resemble cylinders, because the minimum

radius and height are always very close to their

maximum values. Some of these notions are il-

lustrated in Figure 4.1.

From now on, it will help to imagine that all the

heads are actually cylinders; a more rigorous

proof allowing the general shapes appears in the

full version of the paper.

Isolated-Centers Property: The grouping is

such that even though a smaller dumbbell is

completely contained in a larger dumbbell head,

the endpoint of the longer edge is not inside a

cylinder of the smaller dumbbell.

Each group Ei,j,k is further broken up into

groups Ei,j,k,i to achieve this property. Tech-
niques similar to Property 3 are used here (ap-

plication of Lemma 2.3, as well as graph color-

ing), and we omit details in this version.

The Non-Lateral Case

In this section we prove that the sum of the weights

of the edges in a non-lateral group with respect to

the tree T is O(wt(T)). Recall that T is a Steiner
tree of the endpoints of the edges in the group, trans-

formed in such a way that each line segment of T

is either parallel to the z axis or the zu plane, It is

easy to see that from T we can construct a travel-

ing salesman cycle C of the endpoints of the group

edges, by doubling the line segments. Henceforth,

we shall show that the weight of the non-lateral

group is O(wt(C)).

The dumbbells in the group define a forest of

rooted trees ss follows. If dumbbell D1 is contained

within a head of dumbbell D2, then D2 is an ances-

tor of D1. Thus the dumbbells which do not con-

tain other dumbbells are the leaves of the forest, and

likewise the dumbbells which are not contained by

other dumbbells are the roots of the forest. We shall

employ a bottom-up analysis in this forest. At any

stage, we shall remove some leaf dumbbells, and re-

structure C to connect the remaining dumbbells in

such a way that several invariants remain true.

We describe the weight of the cycle C. During

the bottom-up analysis, each segment of the cur-

rent cycle C has weight equal either to its Euclidean

length or to zero. The segments with weight zero are

called null segments, and are crucial to the charging

scheme. All null segments are vertical, and initially

there are no null segments. The weight of the cur-

rent C, denoted wt (C), is defined as the sum of its

segment weights.

We employ the following notation. Let e = (u, v)

be an edge in the group, Let De refer to the dumb-

bell of e, and H. and Hv its two heads. Let Cu

(C”) be the maximal portion of the current cycle C

that contains u (v) and is fully contained within HV

(H”). Let {ul, U2} ({vI, VZ}) be the two points of

Cu (CV ) on the surface of H. (Hv). The non-lateral

property dictates that at least one of U1, U2, VI, V2
lies on a flat face of the heads.

Basis Step: Perform the following restructuring at

all the leaf dumbbells. Let De be a leaf dumbbell

with edge weight z, and with cylindrical dumbbell

heads of height hx and radius ax. W.1.o.g., let U1 lie

on a flat face of De. Replace CU by a horizontal seg-

ment (UI, w) and a vertical segment (w, U2), where

w is a new Steiner point inside He, and (w, U2) is a

null segment.

Do not remove the leaf dumbbells as yet. Observe
that within each leaf dumbbell the weight of C has

reduced by at least hz/2 (because of the use of a null

segment ). Since h >> a, the edge corresponding to

the leaf dumbbell can be charged to this difference.

Inductive Hypothesis: The following properties

hold at all stages of the bottom up traversal. Let w
be the weight of the original C before the traversal

sta:ted, W1 be the weight of the current C (where
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null segments have weight zero), and W2 be the

weight of all dumbbells charged so far.

1.

2.

3.

4.

5.

w— WI > c. wz, for some constant c.

In the current forest, the leaf dumbbells have
been charged already, while the nonleaf ones

have not yet been charged.

The current cycle C connects all the endpoints

of the nonleaf dumbbells.

The portions of the current C outside the leaf

dumbbells are identical to the corresponding

portions of the original C.

Some of the vertical line segments of the cur-

rent C may be null segments. However, all such

segments are confined within the heads of the

leaves.

Inductive Step: Select an edge e = (u, v) such

that all its children are leaves. Let its length be z.

W.1.o.g. assume U1 lies on a flat face of D.. We

remove the children, thus making D. a leaf. At the

same time, we restructure C so that the inductive

hypothesis is maintained. Two cases arise.

Case 1 : wt(CU) > 3az
In this case, restructure C by replacing CU by a

horizontal segment (UI, w) and a vertical null

segment (w, UZ). Remove all children of De

from the forest. Since the length of (ul, w) is

at most 2ax, the difference between the weights

of the previous C and the new C is at least ax.

The edge e can be charged to this difference. It

is easy to see that the inductive hypothesis is

still true.

Case 2 : wt(Cu) ~ 3az

We will show that this case is impossible. This

is where where the Leap-Frog property is used,

and the analysis is more difficult. In this version

we simply provide an intuitive outline.

Ignore the null labels on vertical segments of C.

for the moment. The portion of Cu from UI to u haa

a vertical displacement of hx/2 and a total horizon-
tal displacement of at most 3az. (By total, we mean

the sum of all horizontal segments on this portion).

Since h >> a, this intuitively implies that this por-
tion of C. is vertical most of the way, occasionally

straying a little bit in the horizontal direction. The

proof will show that, due to the Leap-Frog property,

null segments can comprise only a small fraction of

the vertical sections of this portion of CU.

In this version, we describe a special situation

which provides insight into why Case 2 cannot oc-

cur. Suppose the portion of CU from U1 to u is com-

pletely vertical (see Figure 5.1). We need to show

that a large fraction of this path is not composed

of null segments. Recall that null segments are con-

fined within the dumbbell heads of the children of

D.. We will show that, given a vertical segment

(UI, u) of length hz/2, it is impossible to arrange

children dumbbells alongside it with their heads in-

tersecting the segment, such that the exposed por-

tions (portions not contained within the dumbbell

heads of the children of De) of (u1, u) is ~ 3az.

Consider the example in Figure 5.1 again. The
leaf dumbbells that intersect (U1, u) are those of

cl . . . e5, where ei = (pi, qi), and whose correspond-

ing edge lengths are, say, Z1 . . . Z5. Here pi is the

top endpoint while qi is the bottom endpoint. In

what follows, based on the context, ei may refer

to an edge, or its corresponding dumbbell. By se-

lecting suitable constants in the Length-Grouping

and Empty-Region properties, it can be assured that

these dumbbells cannot straddle one another, that

is, the endpoints of ei and ej cannot be vertically

ordered M either pi, Pj, qi, qj or Pj, pi, qj, qi.

This situation defines a natural hierarchy of the

dumbbells. For example, in Figure 5.1, el and e2

are at the top of the hierarchy. At the next level,
e3 and e4 are confined between the two heads of el,

while e5 is confined between the two heads of e2. In

general there could be further levels in the hierarchy.

Consider the top level, Clearly the portions of

(ul, u) above the top head of el, between the bot-

tom head of el and the top head of e2, and be-

low the bottom head of e2 cannot contain null

segments. The total length of these portions is
hz/2 – (zl + Z2) – (hq + hq).

Let us now go to the next level; in fact, two lev-

els will be enough to bring about the contradiction.

Consider el, In what follows, we shall show that

the exposed portions between the two heads of el

can be made aa close to Z1 aa possible, by suitably

selecting the constants in the Cleanup stage, and

applying the Leap-Frog property. Let the length of

the exposed portions between the top heads of el
and e3, between the bottom head of e3 and the top

head of e4, and between the bottom heads of e4 and

el be z. Let d = d(pl, pa) + d(qa, p.4) + d(qd, 91).

Clearly, d < z + (h + 2a)(z1 + Z3 + X4). But

z < ZI – (Z3 + Z4), Let h + 2a = /3. Substitut-

ing we get d < z(1 –/?) + z12fl.

The Leap-Frog property says that tzl < (Z3+

Z4)+ td. Substituting for (Z3 + Z4) and d, and sim-
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plifying, we get

In the above example, by suitably selecting a
small /? (by making h and a suitably small), we can

make z se close to Z1 as we like. We offer an in-

tuitive description for this phenomena, Given any

edge el, we cannot “leap frog” from one endpoint

to the other a lot, via other parallel edges close by.

Now consider e2 at the same level of the hierarchy.

As above, we can make the exposed portions be-

tween the top heads (and bottom heads) of ez and

es as close to Z2 as we like,

At this stage we see that the exposed portion of

(ul, u) between the dumbbell heads is at least

hz/2–(zl+z2)–(h2? l+hz2)+ llyjy(s,+s,)

But an upper bound for xl +X2 is hz/2. Substi-

tuting above and simplifying, we see that the total

exposed portion is at lead

By suitably selecting a small/3 (by making h and

a suitably small), we can make this as close to hz/2

aa we like. Since h >> a, clearly we can violate the

condition that this exposed portion be < 3ax, which

disallows Case 2.

The entire argument can be applied to any hier-

archy of dumbbells intersecting with (UI, u). In a

more rigorous proof, we have to take into account

the fact that the portion of CU from U1 to u is “al-

most vertical”. This is omitted from this version of

the paper.

In the next section, we consider the case of lateral

dumbbells.

6 The Lateral Case

In this section we prove that the sum of the lengths

of the edges in a group that are lateral with re-

spect to T is bounded by a constant factor times

the weight of T. Recall that T is a minimum Steiner

tree of the endpoints of the edges in the group, trans-

formed such that each segment of T is either parallel
to the z axis or to the xy plane.

In our analysis a horizontal segment has weight
equal to its length, while a vertical segment haa zero

weight. Intuitively, what we will be proving is that

it is sufficient to charge the edges of the group only

against the horizontal segments of T.

To prove this claim, we use induction on the num-

ber of dumbbells. For the inductive step, we pick

the shortest remaining edge e = (u, v). The corre-
sponding dumbbell is then eliminated and the tree

is restructured. The length of e is charged to the

difference in weight between the original and the

restructured tree. The inductive hypothesis states

that all eliminated edges have already been charged

to horizontal portions of T. The portion of T inside

only one of the two dumbbell heads of e is restruc-

tured; the portion within the other dumbbell head

is left unchanged. The restructured tree is a Steiner

tree that connects the remaining points, but haa a

total length that is less than the previous tree by
an amount proportional to the length of the elim-

inated dumbbell. The eliminated dumbbell can be

charged against this reduction in length. The re-

maining dumbbells continue to be lateral with re-

spect to the new tree, since the restructured portion

of T lies within the eliminated dumbbell.

Let T. be the maximal connected portion of T

that includes u and that lies wholly within the

dumbbell head centered at u. A similar piece T. lies

around vertex v. Note that once the dumbbell as-

sociated with e is eliminated, the restructured tree

need not visit the vertices u and v. So if Tu is a
simple segment from the surface of the cylinder to

vertex u, then this entire piece can be eliminated, to

which the edge e can be charged. However, things

may not be that simple. In general, the piece Tu

may be a complex tree structure. We will show that

regardless of its precise structure, we can restructure

it and shorten it sufficiently.

Let the piece TU pierce the dumbbell head at

points U = {ul, UZ,..., uk}. Let UI be the point

in U that is “closest” to bottom portion Tv. More

precisely, let U1 be the point in U such that any path

from a point in U to Tv must pass through U1; such

a U1 exists. Let U) ~ U be such that Ui c U1 if the

path from Ui to U1 does not pass through u. Let T:

be the portion of T. that connects U’ and u,

Our approach will be to restructure TJ so that

it still connects all the points in U’, but is discon-

nected from u. Since this may disconnect T, we can

reinstate connectivity by adding a vertical null seg-

ment from u to v. Vertical segment can be added

“free of charge” since they have zero weight. Conse-

quently, it is sufficient to imagine the points inside

a dumbbell head to be on a plane. The first step of
the restructuring will be achieved by replacing TJ by

the minimum Steiner tree connecting U’ and u. Call
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this tree Su. Clearly, since a minimum Steiner tree is

a minimum connecting network, wt(S” ) s wt (T:).

Now consider an imaginary circle C centered at u

and of radius axfl where z is the length of the edge

e, az is the radius of the cylindrical dumbbell head

around u, and /3 < 1 is an appropriately small con-

stant. Several cases arise for the restructuring of Su.

These cases depend on the number of Steiner points,

s, that are present on S“ and that lie inside circle

C. In fact, we will show that the only possible cases
are s = O and s = 1, and that s ~ 2 is impossible.

Casel : s=O

If S. does not have any Steiner points inside C,

then the portion of S. inside C is a straight line

of length at least az~. To restructure T, sim-

ply remove this piece of SW, and add a vertical

null segment from u to u. Clearly the weight

is reduced by at least a constant factor times

the length of e, and the inductive hypothesis is
preserved. This case is shown in Figure 6.1.

Case2 : 5=1

In this case, S. touches C at two points, let us

call them u’ and u“. To restructure 2’, remove

the entire portion of S. inside C, connect u’

and u)) by a straight line, and add a vertical

null segment from u to v. Since the two straight

lines that pierce C form an angle of 120 degrees,

this restructuring involves a weight reduction of

at least (2 — fi)azfl, to which e can be charged

(see Figure 6.2).

Case3 : 522

We show that this case is impossible.

Assume that S. starts off from u with segment

eu. Since s ~ 2, the segment eu must terminate

inside C at a Steiner point w. Since every Steiner

point must have degree 3, assume that segments eW
and ey are the other two segments incident at w.
Assume that the segment ev terminates inside C at

another Steiner point y. Let e= be another segment

incident on y, as shown in Figure 6.3.

Now consider the segments eW and e.. We will

first show that both eW and e= cannot be too long. In

other words, it cannot happen that both wt (eW ) and

wt (e~) are larger than az~/4. If that does happen

then S. cannot be a minimum Steiner tree since it

can be shortened as shown in Figure 6.4.

If either eW or ez is not too long, say wt (e, ) <

ax/?/4, then consider the Steiner point z into which

segment e~ terminates. Since z is a Steiner point,

there must be another segment (say e=) that is par-

allel to e~. Now again, if both eW and e= are very

long (of length more than ax/3/4), then as shown in

Figure 6.5, S. cannot be a minimum Steiner tree.

However, if either eW or e= is short, then their

subtrees will eventually intersect before hitting the

surface of the cylinder, contradicting the fact that

S“ is a minimum Steiner tree.

This completes the proof that Csse 3 (s z 2) is

impossible.

7 Open Problems

The most interesting and immediate open question

we would like to answer is whether our techniques

can be used without much modification for the csse

of higher dimensional point sets. It would also be

interesting to see whether the constant that appears

in the weight bound of Theorem 1.1 can be reduced.
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