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Abstract 

We study the problem of approximately answering ag- 
gregation queries using sampling. We observe that uniform 
sampling performs poorly when the distribution of the ag- 
gregated attribute is skewed. To address this issue, we intro- 
duce a technique called outlier-indexing. Uniform sampling 
is also inefective for  queries with low selectivity. We rely on 
weighted sampling based on workload information to over- 
come this shortcoming. We demonstrate that a combination 
of outlier-indexing with weighted sampling can be used to 
answer aggregation queries with significantly reduced ap- 

weighted sampling alone. We discuss the implementation of 
these techniques on Microsoji's SQL Server; and present ex- 
perimental results that demonstrate the merits of our tech- 
niques. 

proximation error compared to either uniform sampling or 

1 Introduction 

Decision support applications such as On Line Analyt- 
ical Processing (OLAP) and data mining tools for ana- 
lyzing large databases are gaining popularity. Executing 
such applications on large volumes of data can be resource- 
intensive. Fortunately, small samples of the data can be used 
by data mining and statistical techniques effectively with- 
out significantly compromising the accuracy of their analy- 
sis. Likewise, OLAP servers that answer queries involving 
aggregation can potentially benefit from the ability to use 
sampling. 

There are at least two factors why significant errors may 
be introduced if uniform random samples are used for ap- 
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proximating results of aggregation queries over relational 
databases. These two factors are presence of data skew and 
low selectivity of queries. A skewed database is character- 
ized by the presence of outlier values that are significantly 
different from the rest in terms of their contribution to the 
aggregate. Unless special care is taken to handle the effect 
of these outliers, uniform sampling over a skewed database 
is susceptible to significant error. Uniform sampling is also 
hard to exploit for selection queries with aggregates. Very 
few or no tuples in the sample may satisfy the query pred- 
icate. Extrapolating the aggregate from such a small set of 
tuples to the entire data set can can lead to error in estimat- 

In this paper, we suggest techniques to overcome these 
limitations of uniform random sampling. First, in order to 
address problems arising out of skew in data, we isolate val- 
ues in the data set that could contribute heavily to the error 
in sampling. We refer to this technique as outlier-indexing. 
Next, we exploit workload information to overcome limita- 
tions in answering queries with low selectivity. This is mo- 
tivated by the observation that in general no single uniform 
sample can answer low selectivity queries with sufficient 
accuracy. However, by using a representative workload, 
we can tune our selection of samples' (as well as outlier- 
indexes) such that for queries in the workload, we can sig- 
nificantly improve accuracy. 

For much of this paper we illustrate our techniques for 
the class of single table queries involving selection and 
group-by queries with the sum aggregate. However, our 
techniques naturally extend to a broader class of queries, 
containing foreign key joins as well as other aggregation 
functions. We discuss these extensions in Section 4.3. 

i n g  t h e  aggrega te s .  

'Most of the techniques that we propose can either use online samples 
(i.e., computed during query processing), or precomputed samples of the 
base relations (see. also Section 5 ) .  
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A key contribution of the paper is the experimental eval- 
uation of the proposed techniques based on an implementa- 
tion on Microsoft SQL Server. Our technique demonstrates 
that the combination of outlier-indexing and weighted sam- 
pling, based on workload information, results in significant 
reduction in error compared to uniform or weighted sam- 
pling alone. 

The rest of the paper is organized as follows. In Sec- 
tion 2 we discuss related work. In Section 3 we point out 
the limitations in using uniform sampling for aggregation 
queries. In Sections 4 and 5,  we describe outlier-indexing 
and workload-sensitive sampling respectively. We present 
an experimental evaluation in Section 6 and conclude in 
Section 7. 

nique of outlier-indexing. Outlier detection has a long his- 
tory in statistics [3, 4, 113 and has also been considered in 
data mining [14, 15, 161. In particular, the work in [I41 is 
similar to ours in that it explores the concept of detecting 
and removing deviants in time series data. The differences 
are that (1) we do not deal with time series data, and (2) our 
outlier detection algorithm only minimizes data skew of the 
remaining data, while their algorithm attempts a more com- 
plex minimization, i.e., the error of the histogram represen- 
tation of the remaining data. Consequently, our algorithm 
is more efficient than the one in [ 141. Finally, our technique 
for outlier indexing is structurally a horizonal partition (sub- 
set) of the data. Thus, it is related to partial indexes [ 191. 

3 Study of limitations 
2 Related work 

Sampling based methods have been used in a wide vari- 
ety of scenarios in databases, such as query selectivity es- 
timation in query optimization, providing sampling as a re- 
lational operation, and approximate query answering [ 181. 
We now discuss related research on the problem of approxi- 
mately answering aggregation queries which is the focus of 
our paper. 

The work of Hellerstein, Haas, and Wang [12] uses 
an online sampling technique for answering aggregation 
queries that provides the user with a time-accuracy trade- 
off. The paper by Hellerstein and Haas [lo] introduces 
novel join methods that are best suited for such an inter- 
active architecture. Our techniques can be integrated with 
this architecture to derive the benefits that the architecture 
provides, while at the same time addressing some of its lim- 
itations. One of the important limitations addressed in our 
work is their assumption that there is little variability in the 
data. 

Acharya, Gibbons, Poosala, and Ramaswamy [2] pro- 
posed the use of synopses (i.e., precomputed samples of re- 
lations) for answering aggregation queries. Gibbons and 
Matias [9] developed techniques for the fast incremental 
maintenance of summary statistics, and considered their ap- 
plication to providing approximate query answers. 

A key technique introduced in our paper is weighted 
sampling of the data by exploiting workload information. 
Recently, Ganti, Lee, and Ramakrishnan have indepen- 
dently developed a weighted sampling scheme that also ex- 
ploits workload information to continuously tune a repre- 
sentative sample of the data [8]. Although the work by 
Acharya, Gibbons and Poosala [ l ]  proposes a weighted 
sampling scheme, they do not explicitly leverage workload 
information. Instead, their sampling scheme tries to accom- 
modate all possible group-by queries. 

None of the above papers address the problem of datu 
skew that we have addressed in this paper through the tech- 

In this section, we demonstrate the limitations of uniform 
sampling in answering aggregation queries. We discuss two 
problems that adversely affect the accuracy of sampling- 
based estimations: (1) presence of skew in aggregate values, 
and, (2) the effect of low selectivity in selection queries as 
well as the presence of small groups in group-by queries. 

3.1 Effect of data skew 

The following example demonstrates the adverse impact 
of skew on the applicability of uniform sampling. 

Example 1 Consider a relation R with 10,000 tuples of 
which 99% have value 1 in the aggregate column C, while 
the remaining 1% of the tuples have value 1000 in C. Thus 
the sum over all tuples of R is 109,900. 

Consider using a 1% uniform random sample of R (i.e., 
100 tuples) to estimate this sum. The idea is to compute 
the sum of values in the sample, and multiply the result by 
100 (multiplying by the inverse of the sampling fraction is 
necessary since each tuple in the sample “represents” 100 
tuples of R). 

It is quite likely that the sample would not include any 
tuple of value 1000, leading to an estimate of 10,000 for  
the sum of R. On the other hand, ifperchance two or  more 
tuples of value 1000 were to be included in the sample, then 
our estimate of the sum of R would be more than 209,800. 
In either case, the estimate would be far  from the true value 
which is 109,900. Only in the event where we get exactly 
one tuple of value 1000 in the sample, we would obtain a 
reasonable estimate of the average value. But this event has 
probability only 0.37. Therefore, with probability of 0.63, 
we would get a large error in the estimate. I 

Although the above example demonstrated the limita- 
tions for the sum aggregate, similar arguments also hold 
for the aggregate avg (average). Thus a skewed database 
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is characterized by the existence of certain tuples that are 
deviant from the rest in terms of their contribution to the 
aggregate value. We refer to these tuples as outliers. The 
following theorem from [7] quantifies the contribution of 
these outliers to the error in estimating the sum via uniform 
sampling (a similar theorem also holds for the error in esti- 
mating the average via uniform sampling). 

Theorem 1 Consider a relation R of size N and let 
{ yl , y2, . . . , y ~ }  be the set of values associated with the 
tuples in the relation. Let U be a uniform random sample 
of the yi’s of size n. Then Ye = ( N / n )  yi is an 
unbiased estimator of the actual sum Y = yi with a 
standard error (i.e., standard deviation) of 

where S is the standard deviation of the values in the rela- 
tion, dejined as 

If there are outliers in the data then S could be very 
large. In such a case, for a given error bound, we will need 
to increase the sample size n. In the work of Hellerstein 
et al. [ 121, they assume that the aggregate attributes are not 
skewed. Therefore, the confidence intervals provided with 
their estimate could be severely affected by the presence 
of skew. Finally, note that although histograms are widely 
used as statistical summaries in databases, i t  remains non- 
trivial to leverage histograms to alleviate the resulting error 
in sampling. 

3.2 Effect of low selectivity and small groups 

Since most queries involve selection conditions and/or 
group-by’s, it is important to study their interaction with 
sampling. We observe that if the selectivity of a query is 
low, then it adversely impacts the accuracy of sampling- 
based estimation. A selection query partitions the relation 
into two sub-relations: tuples that satisfy the condition (rel- 
evant sub-relation) and tuples that do not. If we sample 
uniformly from the relation, the number of tuples that are 
sampled from the relevant sub-relations will be proportional 
to its size. If this relevant sample size is small due to low 
selectivity of the query, it may lead to large error. The 
same is true for group-by queries which partition the rela- 
tion into numerous sub-relations (tuples that belong to spe- 
cific groups). Thus for uniform sampling to perform well, 
the relevant sub-relation should be large in size, which is 
not the case in general (see also [ 13 and [8]). 

In the next two sections we propose solutions to the two 
problems of data skew and low selectivity of queries. 

4 Handling data skew: Outlier-indexes 

As seen earlier from Example 1 and Theorem 1 pre- 
sented in Section 3, we know that a large variance in the 
aggregate column could lead to unacceptably high errors. 
The large variance is primarily due to the presence of cer- 
tain outliers or deviants in the data. Thus, a natural idea 
would be to deal with outliers separately, and sample from 
the rest of the relation. 

This leads to our idea of outlier-indexing, whereby we 
identify the tuples with outlier values and store them in a 
separate ~ub-relat ion.~ The basic insight is that we can now 
use the following efficient scheme for estimating a query’s 
result. Consider a selection query with the sum aggregate. 
First, apply the query to the outlier values and thus deter- 
mine the true result of the query on the part of the table 
which only includes the outlier values; next, pick a uniform 
random sample from the part of the table that does not in- 
clude the outlier values (i.e., the non-outliers), and estimate 
from the sample (as in Theorem 1) an approximation to the 
true result of the query if applied to the non-outlier tuples; 
finally, combine the two results to obtain an overall estimate 
of the query’s true result. It is clear that for Example 1 (pre- 
sented in Section 3), the proposed technique would result in 
a very accurate estimate of the aggregate. In the rest of this 
section we formalize and expand on this idea. 

4.1 Using outlier-indexes to approximate aggre- 
gation queries 

Given an aggregation query Q which aggregates over 
column C of relation R, we describe a technique which uses 
an outlier-index for C along with a uniform sample of R to 
approximately answer Q. While we will give a precise def- 
inition of the outlier-index in the next sub-section, for the 
time being it is sufficient to assume that an outlier-index 
Ro is a sub-relation of the original relation R. 

We view the relation R as being partitioned into two sub- 
relations Ro (outliers) and RNO (non-outliers). The query 
Q can now be considered as the “union” of two sub-queries, 
the first of which is Q applied to Ro, while the second is Q 
applied to RNO. This leads us to the following scheme for 
approximately answering an aggregation query for a given 
choice of the outliers Ro. To illustrate the scheme, we use 
the following example query: 

Select sum(sa1es) from lineitem 

2We use the word “index” here to simply indicate a distinct physical 
sub-relation. Such an index is best considered as a materialized view. Of 
course, a materialized view may be physically implemented as a heap or 
as a B+-tree index. 
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Preprocessing steps. 

1 .  Determine outliers - specify the sub-relation Ro of 
the relation R deemed to be the set of outliers. For 
the example query above, we will create a view called 
lineitem-outlier which will be appropriately indexed. 

2. Sample non-outliers - select a uniform random sam- 
ple T of the relation RNO. For the example query, we 
will obtain a uniform sample from the lineitem table 
(ensuring that no tuples that appear in lineitemautlier 
are sampled) and materialize the sample in a table 
called lineitemsamp. 

Query processing steps. 

1 .  Aggregate outliers - apply the query to the outliers 
in Ro accessed via the outlier-index. For the exam- 
ple query, this corresponds to computing sum(sa1es) 
for the view lineitem-outlier. 

2. Aggregate non-outliers - Apply the query to the 
sample T and extrapolate to obtain an estimate of 
the quety result for  RNO. For the example query, 
this corresponds to computing sum(sa1es) for the ta- 
ble lineitemsamp and then multiplying the result by 
the inverse of the sampling fraction (extrapolation). 

3. Combine aggregates - combine the approximate re- 
sult f o r  RNO with the exact result for  Ro to obtain an 
approximate result for  R. For the example query, this 
means adding sum(sa1es) for the view lineitemautlier 
and the extrapolated sum(sa1es) for lineitemsamp. 

Since the database content changes over time, this re- 
quires selection of outlier indexes and samples to be re- 
freshed appropriately. The samples need to be refreshed 
periodically as precomputed samples can become stale with 
use. An alternative is to do the sampling completely online, 
i.e., make it  a part of query processing. 

4.2 Selection of outliers 

There are two points to be observed for our scheme: (1) 
the query error is solely due to the error in estimating the 
aggregate of the non-outliers from their sample, and ( 2 )  un- 
like sampling, in our scheme, there is an additional over- 
head of maintaining and accessing the outlier-index. Let T 
be the memory (i.e., the number of tuples) allocated for the 
outlier-index. We would like to select the outlier set Ro so 
as to minimize the approximation error of our scheme for 
a class of queries subject to the constraint that Ro contains 
at most T tuples from the relation R. The following defini- 
tion identifies an optimal choice of the outlier set Ro. The 
reader should relate the error E in the definition to the error 
introduced in Theorem 1. 

Definition 1 For any sub-relation R’ C R, let €(RI) be the 
standard error in estimating the sum of the values in R’ 
using uniform random sampling followed by extrapolation. 
An optimal outlier-index Ro (R,  C, r )  for  a column C in a 
relation R with a threshold r is defined as a sub-relation 
Ro c R such that 

0 lRol 5 T, and 

4 R  \ Ro) = ~ ~ ~ R ~ C R , I R I ~ < ~  { € ( R  \ R’)) 

Essentially, we have defined the outlier-index as an op- 
timal sub-relation Ro that leads to the minimum possible 
sampling error, subject to the constraint that Ro has at most 
r tuples in the relation R. Recall that the sampling er- 
ror is the error in estimating the aggregate value over the 
tuples not included in Ro using the standard sample-and- 
extrapolate strategy. We know from Theorem 1 that the 
error is directly proportional to the standard deviation S.  
Let S(R’) denote the standard deviation for a sub-relation 
R’ c R. Then, as per our definition, an outlier index Ro 
is a sub-relation of size at most T such that the comple- 
ment sub-relation R \ Ro has minimum standard deviation 
S(R\ Ro). The following theorem assists in choosing such 
a sub-relation efficiently. 

Theorem 2 Consider a multiset R = { y l ,  y2, . . . , Y N }  
where the y i ’ s  are in sorted order. Let Ro c R be the 
subset such that 

0 lRol 5 T, and 

S ( R  \ Ro) = ~ ~ ~ R ~ C R , I R ’ I < ~  { S ( R  \ R’)} 

{ Y i l l  5 i 5 T’} U { y z l ( N  + 7’ + 1 - T) 5 i 5 N }  
Then, there exists some 0 5 r’ 5 I- such that Ro = 

The theorem states that the subset that minimizes the 
standard deviation over the remaining set consists of the 
leftmost r’ elements (for some 0 5 T’ 5 T) and the right- 
most T - T‘ elements from the multiset R, when the ele- 
ments are arranged in a sorted order. Thus, the selection of 
an outlier-index reduces to determining the value 7’. This 
gives rise to the following algorithm for outlier-index selec- 
tion. 

Algorithm Outlier-Index(R, C, T): 
1. Read the values in column C of the relation R. Let 

y1,y~, . . . , y~ be the sorted order of the values appearing 
in C.  Each value corresponds to a tuple. 

2. Fori = 1 to T + 1 ,  compute 

3. Let i’ be the value of i where E ( i )  takes its minimum value. 
Then the outlier-index is the tuples that correspond to the set 
of values {yJ (1 5 j 5 T’}u{~, ((N+T’+~-T) 5 j 5 N }  
where T’ = i‘ - 1. 

E ( i )  = S((YZ,YZ+l,~~~, YN-r+z-1}). 
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The efficiency of the algorithm crucially depends on the 
ability to compute standard deviations efficiently. It is well 
known that quantities such as sum, mean, variance, standard 
deviation can be efficiently maintained for a dynamic set of 
numbers subject to insertions and deletions. In particular, 
E(i + 1) can be computed from E(i) ,  yi, and y ~ - ~ + i  in 
O(1) time. 

We start the algorithm by performing the sort in Step 1. 
In Step 2, we first scan the sorted data to compute E( 1). We 
also make memory-resident copies of the first T and the last 
T values of { y1, y2, . . . , y ~ } .  If they cannot fit into memory 
then we spool this subset of tuples W to disk. Since T is 
usually small, the latter situation is unlikely. After this, we 
do not need access to data that is not in the set W .  This 
is because E(i  + 1) can be incrementally computed from 
E( i )  since the value to be deleted (yi ) and the value to be 
inserted ( y ~ - ~ + i )  can be looked up from W .  Thus, the 
running time of the algorithm is dominated by the sorting in 
Step 1 3 .  

4.3 Discussion 

Error guarantees. Like other sampling schemes, it is 
possible to give a per-query standard error (probabilistic) 
guarantee of our estimated answer. The standard error is 
estimated using Theorem 1. Estimating the standard error 
requires estimators for the count as well as the standard de- 
viation of the non-outlier samples. The details of these com- 
putations are omitted due to lack of space. 

Storage allocation. Thus far we have looked at the prob- 
lem of allocating storage separately between outliers and 
samples. But, we can also ask the question: given sufficient 
space to store m tuples, how do  we allocate storage between 
samples and outlier-index in order to minimize the error? 
This question is important when we use precomputed sam- 
ples instead of online samples. Let S ( T )  denote the standard 
deviation in the non-outliers for an optimal outlier-index of 
size T. If we allocate the space such that we have T tuples in 
the outlier-index and m -T tuples in the sample, then the er- 
ror as given by Equation 1 is proportional to S(T) /~=.  
Identifying an optimal allocation requires finding the value 
of T for which S ( T ) / ~ =  is minimized. Due to lack of 
space, we omit details of our techniques that address such 
optimization. 

Extensions to other aggregates. For the case of the 
counr aggregate, outlier-indexing is not particularly ben- 
eficial since there is no variance among the data values. 
For the case of the aggregate average (avg), our prepro- 
cessing steps (i.e., selecting outliers and samples) does not 

3For small values of T ,  smallest and the largest T values may be deter- 
mined without requiring a complete sorting of the column. 

change. During query processing, an avg query is estimated 
as sumlcount. In general, our techniques extend to a class 
of aggregates that satisfy certain algebraic properties, the 
details of which are deferred due to lack of space. 

Suppose we want to aggregate (sum or avg) f ( t ) ,  where 
f is a real valued function defined over the tuples, e.g., 
sum(price *quantity).  Then, we can use the function val- 
ues instead of yi’s in our algorithm and can determine the 
sub-relation that minimizes the standard deviation over the 
remaining set. Of course, the number of real-valued func- 
tions f is potentially infinite and one cannot build an index 
for each one. As future work, we are investigating whether 
one can exploit workload information and build outlier- 
indexes only for the frequently occurring functions. In such 
cases it is also likely that the different outlier-indexes are 
correlated and as a result have a lot of tuples in common. 
Hence an optimization heuristic is to maintain the union of 
these indexes, instead of building a separate outlier-index 
for each. 

Outlier-indexing does not appear to be useful for aggre- 
gates that depend on the rank order of the tuples rather than 
their actual values (i.e., aggregates such as min, m u ,  and 
median). For a discussion of sampling-based techniques 
for computing order statistics, the reader should refer to the 
work by Manku, Rajagopalan, and Lindsay [ 171. 

Extensions to foreign-key joins. Thus far, we have been 
only concerned with queries over a single relation. Con- 
sider foreign-key join queries involving a fact table R and a 
dimension table D, where the aggregation column is in R. 
Our techniques will work if the outlier-index and sample 
are computed over R, and these are joined with D at query 
processing time. This example generalizes to a wider class 
of queries in which multiple dimension tables are joined to 
the same fact table which contains the aggregate column. It 
is known that sampling-based methods (including ours) do  
not work well for more general join queries [5].  

5 Handling low selectivity and small groups: 
Exploiting workload information 

In this section, we examine the problem of low selectiv- 
ity queries and small groups in group-by queries. Our ap- 
proach to this problem is to use weighted sampling (instead 
of uniform sampling) by leveraging information about the 
workload while drawing the sample. The essential idea be- 
hind our weighted sampling scheme is to sample more from 
subsets of data that are small in size but are important, i.e., 
have high usage. Thus, our approach is based on the desire 
to exploit the fact that the usage of a database is typically 
characterized by considerable locality in the access pattern, 
i.e., queries against the database access certain parts of the 
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data more than others. Therefore, by tuning the sample to 
a representative workload (i.e., set of queries) faced by the 
system, we can hope to answer queries posed to the database 
system more accurately. 

The technique presented in this paper for weighted sam- 
pling is based on using precomputed samples. As part of our 
ongoing work, we are investigating how to leverage the idea 
of weighted sampling in the context of online sampling. 
As mentioned earlier, our technique of outlier-indexing pre- 
sented in Section 4.2 can either use online or precomputed 
samples. 

The rest of this section is organized as follows. First, we 
describe the framework for exploiting workload informa- 
tion. Second, we discuss the details of our weighted sam- 
pling scheme based on workload information. 

5.1 Exploiting workload information 

Our use of workload information for sampling and 
outlier-indexing involves the following steps: 

1. Workload Collection: We obtain a workload consist- 
ing of representative queries gainst the database. Mod- 
ern database systems provide tools to log queries posed 
against the server (e.g., the Profiler component of Mi- 
crosoft SQL Sever). 

2. Trace Query Patterns: The workload can be analyzed 
to obtain parsed information, e.g., the set of selection 
conditions that are posed. 

3 .  Trace Tuple Usage: The execution of the workload re- 
veals additional information on usage of specific tu- 
ples, e.g., frequency of access to each tuple, the num- 
ber of queries in the workload for which it passes the 
selection condition of the query. Since tracking this 
information at the level of tuples can be expensive, it 
can be kept at coarser granularity, e.g., on page-level. 
Alternatively, the techniques presented in [8] such as 
batching of updates can be used to lower this overhead. 
For our experiments, we have assumed that a tuple ti 
has weight wi if the tuple ti is required to answer wi 
of the queries in the workload. These weights are sub- 
sequently normalized (See Section 5.2). 

4. Weighted Sampling: Perform sampling by taking into 
account weights of tuples (from Step 3). 

5.2 Details of Weighted sampling 

In this section, we describe how we can leverage the 
weights derived from the tuple usage (see Step 3 above) to 
draw a weighted sample and how to use the weighted sam- 
ple to answer an aggregation query. 

Let the weight of the tuple ti in the relation be wi (see 
Step 3 above). Let the normalized weight be w: defined 
as wi/ E,”=, wj. In our weighted sampling scheme, this 
tuple is accepted in the sample with probabilitypi = n . w:. 
Thus, while the expected sample size is n, the probability 
with which each tuple is accepted in the sample varies from 
tuple to tuple. 

Given such a sample, we now address the question of 
how to answer aggregation queries approximately. With 
each tuple that is included in the sample, we store the prob- 
ability pi  with which it was accepted in the sample. The 
inverse of this probability is the multiplication factor asso- 
ciated with the tuple used while answering the query. Each 
aggregate computed over this tuple gets multiplied by this 
multiplication factor. In the (degenerate) case of uniform 
sampling, since the probability is same for each tuple we do 
not have to store it and the multiplication factor is the same 
( N / n )  for all tuples. 

Weighted sampling works well if (1) the access pattern 
of queries is local (most of the queries access a small part 
of the relation) and ( 2 )  we have a workload which is a good 
representative of the actual queries which will be posed in 
the future. 

Finally, note that just as we modified sampling by ex- 
ploiting workload information, it is possible to also tune the 
outlier-index based on workload information. That is, we 
can modify algorithm Outlier-Index(R, C, T) presented in 
Section 4.2 so that only outliers “relevant” to the queries in 
the workload are selected as part of the outlier-index. This 
is part of our ongoing work. 

6 Implementation and experimental results 

We have implemented the techniques described in this 
paper on Microsoft SQL Server 2000 and experimentally 
evaluated their effectiveness. The goals of the experiments 
were to compare the quality and performance of uniform 
sampling, weighted sampling, and weighted sampling + 
outlier-indexing. We begin by describing the implementa- 
tion and the experimental setup. We then discuss our exper- 
imental results. 

6.1 Implementation 

Outlier-indexing. We leveraged the support of materi- 
alized views in Microsoft SQL Server 20004 to implement 
outlier-indexing. For example, if 1-extendedprice is the 
column on which we want to construct an outlier-index, 
the following view returns all tuples in the lineitem table 
satisfying a certain predicate on (I-extendedprice): 

4Materialized views are referred to as indexed views in SQL Server 
2000. 
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CREATE VIEW I-extendedprice-otl-idx AS SELECT * 
from lineitem 
WHERE (I-extendedprice 5 54819.46) OR 
(I-extendedprice 2 71442.88) 

By materializing the above view we effectively index all 
tuples in lineitem satisfying the predicate (i.e., it is a par- 
tial index). The predicate in the view is determined us- 
ing the algorithm described in Section 4 and depends on 
the storage allocated for the outlier-index. We also imple- 
mented a module that automatically rewrites a, query to use 
the outlier-index and the sample rather than the fact table. 

Uniform and weighted sampling. We modified Mi- 
crosoft SQL Server to support uniform and weighted sam- 
pling. Specifically, we modified the execution tree gener- 
ated by the SQL Server optimizer by adding a new operator 
as the root of the tree. For uniform sampling this operator 
simply accepts tuples with the specified probability (i.e., the 
sampling fraction) and stores the accepted tuples in a table. 
For weighted sampling, the probability of accepting a tuple 
is proportional to the weight associated with the tuple. In 
our experiments we calculated exact weights for each tuple 
for a given workload. We did this by including an additional 
column in the fact table (lineitem) to hold the weight of the 
tuple. It is also possible to maintain this column in a sepa- 
rate (weights) table. The trade-off is that while the cost of 
updating the weight associated with the tuple is reduced, the 
time to pick a weighted sample goes up since the weights ta- 
ble has to be “joined” in. We converted a SELECT query 
in the workload into the corresponding UPDATE statement 
that increments the weight of all the tuples satisfying the se- 
lection predicates. Finally, we implemented a module that 
automatically substitutes the sample table for the fact table 
of an incoming query. 

6.2 Experimental setup 

Platform. All experiments were run on a Dell Precision 
610 system with a Pentium I11 Xeon 450 Mhz processor 
with 128 MB RAM and an external 23GB hard drive. 

Databases. We used the well-known TPC-R benchmark 
for our experiments. One of the requirements of the bench- 
mark however, is that the data is generated from a uniform 
distribution, Since we were interested in comparing the al- 
ternatives across different data distributions, we modified 
the TPC-R data generation program to generate data with 
varying degree of skew. The modified program generates 
data for each column in the schema from a Zipfian [20] 
distribution determined by the Zipfian parameter z5. For 

5We have made this program (which runs on x86Nindows NT plat- 
form) available for public download from [6]. 
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our experiments we generated 1 OOMB TPC-R databases by 
varying z over values 1, 1.5, 2, 2.5, and 3. The ratio of 
the maximum value to the minimum value of the aggre- 
gation column varied between 76 and 106 for the different 
databases. The values in the aggregation column are chosen 
independently of their frequencies. 

Workloads. For our experiments on outlier-indexing, we 
generated several workloads over the TPC-R schema using 
a random query generation program. The program gener- 
ates queries with (1) foreign key joins between tables, (2) 
aggregations on the fact table (lineitem), and optionally (3) 
grouping, and (4) selection. We used the sum aggregation 
function. Due to lack of space, we present results only for a 
few of the workloads that we experimented with. 

Parameters. We varied the following parameters in our 
experiments: (1) skew of the data (z) was varied over 1, 1.5, 
2, 2.5, and 3 (2) the sampling fraction (0 was varied over 
a wide range from 1% to loo%, and (3) the storage for the 
outlier-index was varied over 1%, 5%, IO%, and 20%. All 
numbers reported are the average over 3 runs. 

Error metric. For each query in the workload we com- 
puted the relative error by dividing the difference between 
the approximate estimate for the aggregate (sum) and the 
accurate value of the aggregate by the latter. For queries 
with a group-by clause, we use the following error metric. 
Consider a query that has k groups in the answer obtained 
from actually executing the query. We build a k dimensional 
vector where the ith dimension contains the relative error in 
the aggregate expression for that ith group. The error is the 
mean of all the points in the vector. Thus, we report the av- 
erage relative error over all groups. The error metric for a 
workload is average error over all queries in the workload. 

6.3 Comparison of uniform sampling, weighted 
sampling and weighted sampling + outlier- 
indexing 

We experimentally compared (1) uniform sampling (US- 
AMP), (2) weighted sampling (WSAMP) and (3) weighted 
sampling + outlier-indexing (WSAMP+OTLIDX). Due to 
lack of space we only report results on the quality of these 
approaches, i.e., our experimental comparsions are focussed 
on the the accuracy of the estimates. Also, due to lack of 
space, we only report experiments for which the storage 
for outlier-indexing was 10% of the size of the data set. 
We plan to make additional experimental results available 
at http://research.microsoft. coddmx. 

To test the effectiveness of weighted sampling and 
outlier-indexing when the queries in the workload have low 

http://research.microsoft
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Figure 2. Error versus sampling fraction 

selectivity, we generated a workload where each query con- 
sisted of a fact and dimension table, and all selection con- 
ditions on the dimension table were picked at random from 
a fixed range of the dimension table to simulate locality in 
workload. The “width” of the range was fixed at 20% of the 
size of the dimension table. 

Varying the data skew. In this experiment, we vary the 
data skew, while keeping the sampling fraction constant 
(5%). Figure 1 shows that weighted sampling does con- 
sistently better than uniform sampling across all data skews, 
and that weighted sampling + outlier-indexing performs sig- 
nificantly better than weighted sampling alone. 

Varying the sampling fraction. In our next experiment, 
we varied the sampling fraction while fixing the data skew 
(z=2). From Figure 2 we once again observe that weighted 
sampling gives lower error than uniform sampling across 
all sampling fractions. As expected, the greatest benefit oc- 
curs at low sampling fractions (e.g., 1%). Once again, use 
of outlier-indexing in addition to weighted sampling further 
improves accuracy significantly. 

Varying the selectivity of queries. In our third experi- 
ment, we vary selectivity of queries between 1 % and 100%. 

Varying selectivlty 
(2=2, 1 4 % )  

-t USAMP 

Maximum Selectivity 

Figure 3. Error versus selectivity of queries 

We fixed data skew (z=2) and the sampling fraction (f=l%). 
Figure 3 shows that at very low selectivity, weighted sam- 
pling noticeably alleviates the drawback of uniform sam- 
pling. However, as expected, when the workload refer- 
ences large portions of the data (e.g., at 100% selectivity) 
uniform and weighted sampling are not significantly differ- 
ent. Moreover, we see that weighted sampling + outlier- 
indexing performs consistently well across different selec- 
tivities, although as expected, its relative improvement over 
weighted sampling is smaller at lower selectivities. 

6.4 Results on a real data set: MS Sales 

We tested the effectiveness of outlier-indexing and 
weighted sampling on a real data set. We used an inter- 
nal database in Microsoft called MS Sales which tracks 
the sales of products by the company over the fiscal year. 
We performed our analysis on a subset of about 1 GB of 
this data (fact + dimension tables). We used 25 representa- 
tive queries involving aggregation, grouping, and selection 
which were picked from the log of queries executed against 
the database. We varied the sampling fraction over a range 
of values from 1 % to 90% and compared uniform sampling 
and uniform sampling + outlier-indexing, where the size of 
the outlier-index was restricted to be no more than 10% of 
the data set. We found that compared to uniform sampling 
at 1 %, uniform sampling + outlier-indexing significantly re- 
duced the error (by 70% to 140%). We also found that using 
weighted sampling further reduced the error by about 20%. 
The maximum benefits of outlier-indexes appeared to be at 
the lowest sampling fraction (1 %), although the same trends 
appeared to hold at higher sampling fractions as well. 

7 Conclusion and future work 

We explored some of the problems encountered when us- 
ing uniform sampling as a means for approximate query an- 
swering. We observe that skew in the aggregation attribute 
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can lead to large errors. We proposed outlier-indexing 
to improve the accuracy in such cases. Our experiments 
demonstrated that our technique indeed improves accuracy 
significantly, at only a small additional cost. Another im- 
portant issue examined in this paper is the problem of low 
selectivity of queries, and we outlined approaches based 
on workload information. Combination of outlier-indexing 
and weighted sampling based on workload information has 
proved to be a significant step forward. 

We are currently investigating the problem of building a 
single outlier-index for different aggregates and aggregate 
expressions. As mentioned in this paper, tuning the selec- 
tion of the outlier-index using the workload information is 
another interesting issue. We are also investigating exten- 
sions of our techniques to a wider class of join queries. 
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