
Answering Top-k Queries Using Views

Gautam Das
University of Texas
gdas@cse.uta.edu

Dimitrios Gunopulos
University of California Riverside

dg@cs.ucr.edu

Nick Koudas
University of Toronto

koudas@cs.toronto.edu
Dimitris Tsirogiannis
University of Toronto

dimitris@cs.toronto.edu

ABSTRACT
The problem of obtaining efficient answers to top-k queries has
attracted a lot of research attention. Several algorithms and numer-
ous variants of the top-k retrieval problem have been introduced
in recent years. The general form of this problem requests the k
highest ranked values from a relation, using monotone combining
functions on (a subset of) its attributes.

In this paper we explore space performance tradeoffs related to
this problem. In particular we study the problem of answering top-k
queries using views. A view in this context is a materialized version
of a previously posed query, requesting a number of highest ranked
values according to some monotone combining function defined on
a subset of the attributes of a relation. Several problems of interest
arise in the presence of such views. We start by presenting a new
algorithm capable of combining the information from a number of
views to answer ad hoc top-k queries. We then address the prob-
lem of identifying the most promising (in terms of performance)
views to use for query answering in the presence of a collection
of views. We formalize both problems and present efficient algo-
rithms for their solution. We also discuss several extensions of the
basic problems in this setting.

We present the results of a thorough experimental study that de-
ploys our techniques on real and synthetic data sets. Our results
indicate that the techniques proposed herein comprise a robust so-
lution to the problem of top-k query answering using views, grace-
fully exploring the space versus performance tradeoffs in the con-
text of top-k query answering.

1. INTRODUCTION
Providing efficient answers to top-k (ranking) queries has been

an active research topic. Such queries aim to retrieve quickly a
number (k) of highest ranking tuples in the presence of mono-
tone ranking functions defined on the attributes of underlying re-
lations. Several algorithms have been proposed for a large number
of variants of this basic problem, the most well-known being the
Threshold Algorithm (TA) proposed by Fagin et.al., [19] and inde-
pendently by Guntzer et. al., [11] and Nepal et. al., [21]. Adapta-
tions of these algorithms in a relational context have been recently

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

f3 = 3x1+10x2+5x3

f2 = x2+2x3f1 = 2x1+5x2

10 197
4 202
6 219

V2 tid score

 2 201
 8 246
 4 270
 6 299
 7 527

V1 tid score

7 16 99 42
6 12 55 82
5 28 8 87
4 80 22 90
3 29 1 2

10 23 21 88
9 42 1 23
8 18 42 67

2 53 19 83
1 82 1 59

tid X1 X2 X3R

Figure 1: Example Views

studied (see [20] and references therein).
In relational query processing, the problem of answering queries

using views has received significant attention due to its relevance
to a variety of data management problems [13]. The problem here
is to find efficient methods of answering a query using a set of
previously defined materialized views over the database. One of
the advantages of using views for query answering is the promise
of increased performance. For example, views may be of small
size, so if an answer can be obtained by processing data from one
or more views the answer could be obtained much faster. With
performance as the parameter of interest in mind, views offer a
space/performance tradeoff to query answering. Views are materi-
alized (incurring a space overhead) with the hope to gain on perfor-
mance for some queries.

In this paper we focus on the problem of answering top-k queries
using views. In this context a view is defined as a materialized form
of a top-k query asked previously. In the presence of such views
several problems of interest arise. Consider Figure 1. It presents
a three attribute relation R and two views V1 and V2. Both views
are defined on subsets of attributes of R. To simplify our example,
assume that both views are defined using top-k queries expressed
on the entire relation R. Thus, the views do not specify any (range)
selection conditions on the attributes they aim to rank. The first
view is defined as a result of a top-5 query using function f1 and
contains 5 tuples of R. The second is defined as the result of a
top-3 query using function f2 and contains 3 tuples of R. Given a
top-2 query defined using function f3, thus requesting the 2 highest
ranking tuples of R according to f3, we can always apply a stan-
dard top-k algorithm (e.g., TA [19], assuming that the right access
paths are available as in [2]) using data from R and obtain an an-
swer to the query. A natural question arises regarding the feasibility

 451

of obtaining an answer to this query using views V1 and V2. For
example one may be able to use data in conjunction from views V1

and V2, in order to obtain an answer to the query. Clearly we need
to identify whether the use of the views can guarantee an answer to
the top-k query. Moreover, even if this is the case, we would like
to proceed using the views, only if an answer to the query can be
obtained much faster using the views as opposed to utilizing data
of R directly. Considering this problem in a more general setting,
we would like to address a view selection problem, namely given a
collection of views V , we would like to identify efficiently the set
U ⊆ V of views to use in order to efficiently provide an answer to
an incoming query.

In this paper, we place such problems into perspective formaliz-
ing them and we make the following contributions:

• We propose LPTA, an algorithm that given a set of views and
a top-k query utilizes the set of views to produce an answer
to the query. This algorithm is a nontrivial adaptation of the
TA algorithm, requiring the solution of linear programming
optimizations in each iteration.

• We present an analysis of the view selection problem, formal-
izing it in the case of two attribute relations for arbitrary data
distributions and extend our analysis to the case of multi-
attribute relations as well.

• Inspired by our analysis, we present a cost estimation frame-
work that enables reasoning about the cost of answering a
query given a set of views. We subsequently utilize this
framework in order to identify efficiently a solution to the
view selection problem. We subsequently extend this frame-
work to other forms of top-k queries and views.

• We present the results of a detailed experimental evaluation
utilizing both real and synthetic datasets highlighting the ben-
efits of our overall proposal.

The rest of this paper is organized as follows. We discuss related
work in Section 2. In Section 3 we present formal definitions of
the problems considered in this paper. In Section 4 we discuss the
LPTA algorithm. Section 5 is devoted to a conceptual analysis of
the view selection problem, while Section 6 describes a practical
solution that includes a cost estimation framework. We discuss fur-
ther variations to our problem framework in Section 7. Section 8
presents the results of our experiments, while we conclude in Sec-
tion 9.

2. RELATED WORK
Originally, top-k (ranking) queries have been proposed in a mul-

timedia context [8, 6, 7], where the aim is to produce a number
of highest ranking results from a set of ordered lists, according to
monotone ranking functions defined on the elements of the lists.
Each list consists of a tuple identifier and an attribute value and is
arranged in non increasing order of that value. Each tuple identi-
fier is assigned a score according to the ranking function computed
on the attribute values of the associated list and the objective is to
identify the k tuples with the highest scores.

The threshold algorithm (TA) constitutes the state of the art for
top-k query answering [21, 11, 19]. The TA algorithm accesses
list items in lock-step, traversing each list in a sequential fashion.
For each tuple identifier encountered in the sequential access, it im-
mediately probes (via random access) the remaining lists for their
scores and thus the full score of the tuple identifier is immediately
known to the algorithm. This algorithm has a deterministic stop-
ping condition and once encountered it terminates with the correct

top-k set. Adaptations of such an algorithm to work on top of re-
lations have been studied as well (see references in [20]). In such
a scenario, lists are essentially simulated via suitable access paths
per relational attribute. Sequential ordered access is conducted via
an iterator interface on the suitable access path. Random access is
conducted via indexed random access on the tuple identifier. No-
tice that in this case only a single random access per tuple identifier
is necessary to resolve all attributes of a tuple identifier. This is be-
cause the underlying data representation is a relation and a single
random access on the tuple identifier provides access to all attribute
values of the tuple.

Several variants of the basic ideas of the TA algorithm have
been proposed in the literature. In one variant (TA-Sorted) [19,
11] lists are always accessed sequentially. No random accesses are
performed and thus at any point the score of a tuple identifier is
partially known. Variants of the basic top-k problem have been
considered in a web context [3, 1], in a relational database context
[9, 17] as well as on join scenarios [15, 18, 16]. Others considered
nearest neighbor type of approaches for this problem [5, 4, 22].

Hristidis et. al., [14] studied the problem of supporting top-k
queries on a relation R, utilizing a relational database, by storing
multiple copies of R each ordered according to a different ranking
function. The particular problem studied was highly restrictive, as
it assumed that only one copy of a relation could be utilized to ob-
tain an answer to a new query. Due to this assumption, the entire
relation copy should be available, not some prefix of the ranking
suitably restricted to a fixed number of tuples (as it would be the
case if that was the result of a top-k query). This is required in order
to guarantee that a query answer can always be extracted from the
relation copy. The basic idea in the proposed PREFER algorithm
is, given a ranking function supplied by the query and a ranking
function according to which a relation copy RC has been ordered,
to obtain the maximal distance from the beginning of RC that the
answer to the top-k query should be located, using suitable up-
per bounds of the domain of each attribute in the relation instance.
Then, by accessing RC sequentially, evaluating the query ranking
function on the tuples of RC , the answer to the top-k query can be
obtained. An additional restrictive assumption is that all attributes
of R are always utilized for all top-k queries.

3. PRELIMINARIES

3.1 Top-k Queries and the Threshold Algo-
rithm

Consider a single relation R with m numeric attributes X1, . . . ,
Xm, and n tuples t1, . . . , tn. Let Domi = [lbi, ubi] be the domain
of the i-th attribute. We will refer to table R as a base table. Each
tuple t may be viewed as a numeric vector t = (t[1], t[2], . . . , t[m]).
Each tuple is associated with a tuple-id (tid). In this paper we con-
sider top-k ranking queries, which can be expressed in SQL-like
syntax: SELECT TOP [k] FROM R WHERE RangeQ ORDER
BY ScoreQ. More abstractly, a ranking query may be expressed as
a triple Q = (ScoreQ, k, RangeQ), where ScoreQ(t) is a func-
tion that assigns a numeric score to any tuple t (the function does
not necessarily involve all attributes of the table), and RangeQ(t)
is a Boolean function that defines a selection condition for the tu-
ples of R in the form of a conjunction of range restrictions on
Domi, i ∈ {1, . . . , m}. Each range restriction is of the form
li ≤ Xi ≤ ui, i ∈ {1, . . . , m} and the interval [li, ui] ⊆ Domi.
The semantics requires that the system retrieve the k tuples with the
top scores satisfying the selection condition. Efficient algorithms
for top-k retrieval have been the subject of much recent research,
the best known being the Threshold Algorithm (TA) and its many

 452

variants [19, 8]. This algorithm requires that the scoring function
should be monotonic; in our case, this means that if we consider two
tuples t and u such that t[i] ≤ u[i], 1 ≤ i ≤ m, then ScoreQ(t) ≤
ScoreQ(u). In our paper we especially focus on additive scoring
functions, i.e., where ScoreQ(t) = w1t[1]+w2t[2]+ . . . wmt[m],
where each wi is a positive constant. Additive scoring functions
are monotonic and have been widely adopted in the context of such
algorithms. The TA algorithm requires that each attribute has an
index mechanism that allows all tuple-ids to be accessible in sorted
order. This implies that for each attribute Xi, all tuple-ids can be
retrieved one by one in descending order of their Xi values. Given
any tuple-id, the entire tuple can be efficiently retrieved - this ac-
cess mechanism is called random access. Due to space limitations,
we do not review the TA algorithm in more detail here but we refer
the reader to the vast bibliography on the subject (e.g., see [19][2]
and references therein).

3.2 Ranking Views
The main thrust of this paper is to investigate whether ranking

queries can be answered more efficiently than the standard TA al-
gorithm, if we are allowed to also leverage the presence of materi-
alized ranking views. Informally, a materialized ranking view V is
the materialized result of the tuples of a previously executed rank-
ing query Q, ordered according to the scoring function ScoreQ.
More formally, for a previously executed query Q′ = (ScoreQ′ ,
k′, RangeQ′), the corresponding materialized ranking view ′ is a
set of k (tid, scoreQ(tid)) pairs, ordered by decreasing values of
scoreQ(tid). Henceforth, we refer to ranking queries and material-
ized ranking views simply as queries and views respectively. Given
a relation R with m attributes, we assume availability of the views
VXi , 1 ≤ i ≤ m. Each of these views is ordered according to the
scoring function

Pm
j=1 wjt[j] in which wj = 0, j 6= i and 1 other-

wise. We refer to the set of views VXi as base views. The standard
TA algorithm can utilize such views directly. Each of these views
serves as a “list” on which the algorithm has sequential access. One
random access per tuple identifier encountered is required to fully
resolve the score of an identifier however. This is because tuples
are available in base relation R (on which random access is avail-
able using a tuple identifier). This is in contrast to the original TA
algorithm description requiring m− 1 accesses per tuple identifier
encountered using m lists.

The following problems constitute the main focus of this paper:

PROBLEM 3.1 (TOP-k QUERY ANSWER USING VIEWS). Given
a set U of views, and a query Q, obtain an answer to Q combining
all the information conveyed by the views in U .

We propose an algorithm named LPTA to solve this problem. The
second problem we address in this paper is the view selection prob-
lem.

PROBLEM 3.2 (VIEW SELECTION). Given a collection of views
V = {V1, . . . Vr} that includes the base views (thus r ≥ m) and a
query Q, determine the most efficient subset U ⊆ V to execute Q
on.

Such a subset U will be provided as input to LPTA. Notice that since
V contains the base views, we can always obtain an answer to an
arbitrary ranking query by running TA. We seek to identify sub-
set U that when utilized by LPTA can solve the problem faster (for
suitably defined performance metrics). This problem is challeng-
ing because it is not always possible to obtain an answer to a query
using a set of views, other than the base views. As a simple exam-
ple consider a query asking for the, say, 10 highest ranking tuples;

however each of the views specified to participate in the query an-
swer contain fewer than 10 tuples each. This situation may become
more complicated however. Depending on the ranking functions
of the query and the views, even if the views contain more than
10 tuples, it is not always the case that the query answers can be
obtained from views, other than the base views. Thus, the view se-
lection problem should identify a set of views that can both provide
an answer to the query and at the same time provide the answer
faster than running TA on the base set of views, if possible.

We structure the rest of the paper as follows. We begin our
presentation by solving an important variation of Problem 3.1, in
which each view V ∈ U is of the form V = (ScoreV , n, ∗).
Thus, each view V represents an ordering of all the database tu-
ples according to ScoreV . However, the query Q at hand may
be of the form Q = (ScoreQ, k, ∗). We provide an algorithm
for this problem in Section 4. Section 5 presents analytical rea-
soning for the view selection problem. In section 6 we present an
algorithm for the solution of problem 3.2. Section 7 discusses our
solution for views and queries of the form V ′ = (ScoreV ′ , k

′, ∗)
and Q = (ScoreQ, k, ∗) respectively, as well as our solution for
the most general case, i.e., where views and queries are of the form
V ′ = (ScoreV ′ , k

′, RangeV ′) and Q = (ScoreQ, k, RangeQ)
respectively.

4. LPTA: LINEAR PROGRAMMING ADAP-
TATION OF THE THRESHOLD ALGO-
RITHM

In this section we shall describe Algorithm LPTA which is a lin-
ear programming adaptation of the classical TA algorithm to solve
Problem 3.1 for the special case when views and queries are of the
form V ′ = (ScoreV ′ , n, ∗) and Q = (ScoreQ, k, ∗) respectively.
We shall first illustrate our adaptation using a simple example, and
then follow it up with a formal description.

Consider a relation with attributes X1, X2 and X3 as shown in
Figure 1. Let views V1 and V2 have scoring functions f1, f2 respec-
tively as shown in Figure 1 and consider a query Q = (f3, k, ∗).
The algorithm initializes the top-k buffer to empty. It then starts re-
trieving the tids from the views V1, V2 in a lock-step fashion, in the
order of decreasing score (w.r.t. the view’s scoring functions). For
each tid read, the algorithm retrieves the corresponding tuple by
random access on R, computes its score according to the query’s
scoring function f3, updates the top-k buffer to contain the top-
k largest scores (according to the query’s scoring function), and
checks for the stopping condition as follows: After the dth itera-
tion, let the last tuple read from view V1 be (tid1

d, s1
d) and from

view V2 be (tid2
d, s2

d). Let the minimum score in the top-k buffer
be topkmin. At this stage, the unseen tuples in the view have to
satisfy the following inequalities (the domain of each attribute of R
of Figure 1 is [1, 100]):

0 ≤ X1, X2, X3 ≤ 100 (1)
2X1 + 5X2 ≤ s1

d (2)
X2 + 2X3 ≤ s2

d (3)

This system of inequalities defines a convex region in three dimen-
sional space. Let unseenmax be the solution to the linear pro-
gram where we maximize the function f3 = 3X1 + 10X2 + 5X3

subject to these inequalities. It is easy to see that unseenmax

represents the maximum possible score (with respect to the rank-
ing query’s scoring function) of any tuple not yet visited in the
views. The algorithm terminates when the top-k buffer is full and
unseenmax ≤ topkmin. Considering the example of Figure 1 the

 453

algorithm will proceed as follows; first retrieve tid 7 from V1 and
conduct a random access to R to retrieve the full tuple and tid 6
from V2 accessing R again. The top-2 buffer contains the follow-
ing pairs (tidi

d, si
d) {(7, 1248), (6, 996)}. The solution to the lin-

ear program with s1
q = 527 and s2

d = 219 yields an unseenmax =
1338 > topkmax = 1248 and the algorithm conducts one more it-
eration. This time we access tid 6 from V1 and tid 4 from V2. The
top-2 buffer remains unchanged and the linear program is solved
one more time using s1

d = 299 and s2
d = 202. This time, unseenmax

= 953.5 < topkmax = 1248 and the algorithm terminates. Thus,
in total LPTA conducts two sequential and two random accesses
per view. In contrast, the TA algorithm executed on R of Figure 1
will identify the correct top-2 results after 12 sorted and 12 random
accesses in total. The performance advantage of LPTA is evident.

Intuitively, the algorithm will stop early if the scoring function
of the views is “similar” to the scoring function of the query - this
crucial issue is discussed in more detail in subsequent sections. Al-
gorithm 1 gives the pseudo-code for LPTA generalized for multiple
views. The algorithm starts by performing sequential and random
accesses like TA to fill the top-k buffer (topk-Buffer). Tuples up-
date the current top-k buffer as their score becomes available. At
each step the solution to the linear program provides new informa-
tion and the stopping condition is tested. The algorithm terminates
when the stopping condition is satisfied. It is evident that LPTA is
more general than the TA algorithm, in the sense that LPTA essen-
tially becomes the TA when the set of views U provided is equal to
the set of base views.

It terms of execution “cost”, notice that both the LPTA and TA
algorithms have sequential and random access patterns. These I/O
operations play a significant role in determining the execution ef-
ficiency of the algorithms - in fact, as our experiments show, they
overshadow the costs of CPU operations such as updating the top-
k buffer, testing for stopping condition (even the solution of the
linear programs), and so on. It is evident that in both algorithms
sequential and random access patterns are highly correlated; every
sequential access incurs a random access. For LPTA every tuple
identifier encountered in a view via a sequential access prompts
a random access to the base relation to resolve its attributes and
compute the score according to the query. Similarly for TA every
identifier encountered via sequential access prompts a random ac-
cess to the base relation as well. As a result the determining factor
for the performance advantage of an algorithm is the the distance
from the beginning of the view (relation) each algorithm has to tra-
verse (read sequentially) before coming into a halt with the correct
answer, multiplied by the number of views participating in the pro-
cess. In the case of Algorithm 1, if d is the number of lock-step
iterations, the running cost is therefore O(dr′).

5. THE VIEW SELECTION PROBLEM: A
CONCEPTUAL DISCUSSION

This section is devoted to a conceptual discussion of the view
selection problem. We first graphically illustrate various view se-
lection scenarios of the problem for two attribute relations (in two
dimensions). We then present formal results that hold for multi-
attribute relations (for any dimension). Without loss of generality
assume that the domain of each attribute of an m-attribute relation
is normalized to [0, 1]. We refer to an m-attribute relation as an
m-dimensional database.

5.1 View Selection in Two Dimensions
Consider Figure 2. The unit square OPRT contains all the

points of a two dimensional database. Assume that two views V1

Algorithm 1 LPTA(U , Q)
U = {V1, . . . , Vr′} // Set of views
Q = (ScoreQ, k, ∗) // Query
topk-Buffer = {}
topkmin = 0
for d = 1 to n do

for all views Vi(1 ≤ i ≤ r′) in lock-step do
Let (tidi

d, si
d) be the d-th item in Vi

// Update topk-Buffer
Let ti

d = RandomAccess(tidi
d)

if ScoreQ(ti
d) > topkmin then

if (|topk-Buffer| = k) then
Remove min score tuple from topk-Buffer

end if
Add (tidi

d, ScoreQ(ti
d)) to topk-Buffer

topkmin = min score of topk-Buffer
end if
//Check stopping condition by solving LP
Let Unseen = convex region defined by
lbj ≤ Xj ≤ ubj ∀ 1 ≤ j ≤ m
ScoreVj ≤ sj

d ∀ 1 ≤ j ≤ r′

Compute Unseenmax = maxt∈Unseen{ScoreQ(t)}
if (|topk-Buffer| = k) and (unseenmax ≤ topkmin) then

Return topk-Buffer
end if

end for
end for

and V2 have been materialized (in addition to the base views, i.e.,
V = {V1, V2, VX , VY }). In the figure, these two views are repre-
sented by vectors denoting the respective directions of increasing
score - thus the views themselves are essentially materialized lists
of tids, sorted according to their projections on these vectors. The
direction of increasing score of a query Q’s scoring function is also
represented by a vector. Note that for this example, both view vec-
tors are to the same side (clockwise) of the query vector.

Let M be the tuple with the k-th largest score in the database.
Let AB be the line segment perpendicular to the query vector that
passes through M and intersects the unit square. Thus, the top-
k tuples are contained in the triangle ABR, while the remaining
tuples are contained in the polygon ABPOT .

Figure 2: Selecting a view from same side of query

Now let us assume that only one of the views, V1, is available for

 454

use by the LPTA algorithm in answering the query. The execution
of LPTA will perform sorted accesses on this view, which may be
visualized as sweeping a line perpendicular to the vector V1 from
infinity towards the origin, and the order in which the data tuples
are encountered by this sweepline is the same as their order in the
materialized view.

Let us discuss when the stopping condition is reached. Notice
that when the sweepline encounters M , it cannot stop because at
this stage there is no guarantee that the stopping condition has
been reached. In fact, the stopping condition is reached when the
sweepline crosses position AB1. This is because, at this position
the convex polygon AB1POT encloses all the tuples that have not
yet been encountered in the view, and by solving a linear program,
we see that the maximum score of any tuple in this polygon (ac-
cording to Q′s scoring function) is the score of point A, which is
no more than the score of M . I.e., ∀t ∈ AB1POT, ScoreQ(t) ≤
ScoreQ(M). The number of sorted accesses performed by this al-
gorithm is equal to the number of tuples inside the triangle AB1R
(denoted as NumTuples(AB1R)).

Now, let us compare this to the execution of LPTA when only the
view V2 is available for use. In this case, the algorithm stops when
the sweepline crosses position AB2. The number of sorted ac-
cesses performed by this algorithm equals NumTuples(AB2R).
Clearly, this is a slower execution compared to using V1. More
generally, if several views in two dimensions are available, and all
their vectors are to one side of the query vector, then it is optimal
for LPTA to use the vector that is closest to the query vector.

Figure 3: Selecting a view from either side of query

Next, let us consider the case when the view vectors are on either
side of the query vector. This is illustrated in Figure 3. Suppose
we can only use one of V1 or V2 for our execution. The respec-
tive stopping conditions are illustrated in the figure by the lines
A1B and AB2 respectively, representing positions of the respec-
tive sweeplines when the stopping condition is reached. It is easy
to see that V1 (resp. V2) should be preferred over V2 (resp. V1) if
NumTuples(A1BR) is smaller (resp. larger) than NumTuples
(AB2R).

Next, let us analyze whether two views are better than one. Is
it more efficient to run LPTA on both V1 and V2, rather than just
running on only one of V1 or V2? To understand this question, con-
sider Figure 4. Since the algorithm is performing sorted accesses
on both views in lock-step, the stopping condition is reached when
the sweeplines respectively cross positions A′1B

′
1 and A′2B

′
2, such

that

1. The intersection of A′1B
′
1 and A′2B

′
2 is a point S on the line

AB

2. NumTuples(A′1B
′
1R) = NumTuples(A′2B

′
2R) (since the

algorithm sweeps each view in lock-step)

Figure 4: Selecting views from both sides of query

Note that at the time the algorithm stops, the position of each
sweepline is before the respective stopping positions if only one
view had been used. However, the total number of sorted accesses
performed by the algorithm is equal to NumTuples(A′1B

′
1R) +

NumTuples(A′2B
′
2R) = 2NumTuples(A′1B

′
1R). In general,

this may or may not be better than if we used just one view. In-
tuitively, if one of the view vectors, say V1, is very close in ori-
entation to the query vector, it may be best to just use V1 only.
Thus we conclude that if the minimum of NumTuples(A1BR),
NumTuples(AB2R), and 2NumTuples(A′1B

′
1R) is NumTuples

(A1BR) then use V1; else if it is equal to NumTuples(AB2R)
then use V2; else use both V1, V2.

The following theorem summarizes our discussion of the two
dimensional case:

THEOREM 1. Let V = {V1, . . . , Vr} be a set of views for a
two dimensional dataset, and let Q be a query. Let Va and Vc be
the closest view vectors to the query vector in anticlockwise and
clockwise order respectively. Then the optimal execution of LPTA
requires the use of a subset of the views from {Va, Vc}.

5.2 View Selection in Higher Dimensions
Theorem 1 can be extended to higher dimensions as follows:

THEOREM 2. Let V = {V1, . . . , Vr} be a set of views for a
m-dimensional dataset, and let Q be a query. Then the optimal
execution of LPTA requires the use of a subset of the views U ⊆ V
such that |U| ≤ m.

Proof: We shall prove this theorem by contraction. Assume that
the views are in general positions, i.e., that no two view vectors are
parallel. Assume that the optimal execution of LPTA for query Q
requires the use of a set of views U ′ such that |U ′| = m′ > m.
Let W be a hyperplane perpendicular to the query vector such that
it passes through the tuple M with the smallest top-k score. Let us
visualize the execution of LPTA as the sweep of m′ hyperplanes -
each perpendicular to a corresponding view vector - from infinity
in lock-step towards the origin. At any point, the intersection of the
lower halves of these hyperplanes as well as the unit hypercube in

 455

the first quadrant, defines a convex region. The stopping condition
is reached when this convex region drops just below the hyperplane
W . Let the number of lock-step iterations be d and let S be the
maximal point of this convex region that lies on W at that instant.

Now, since the point S is a m-dimensional point, it is defined
by the intersection of exactly m hyperplanes. Some of these hy-
perplanes may correspond to hyperplanes perpendicular to some of
the view vectors, while others may correspond to hyperplanes that
define the surface faces of the unit cube. Clearly, there are at least
m′ − m hyperplanes corresponding to views that do not intersect
with S. It is now easy to see that if we rerun LPTA with these latter
views eliminated from U ′, the algorithm will stop after exactly the
same number of iterations (d), and on stopping, the maximal point
of the convex region that lies on W will be the same point S as the
earlier run. This execution is cheaper, requiring at most md sorted
accesses as compared to m′d sorted accesses in the earlier run. 2

However, Theorems 1 and 2 notwithstanding, we note that the
decision of which m (or fewer) views to use has to be taken be-
fore the query is actually executed. Even in the two dimensional
case, this involves deciding which of the two views Va, Vc to use
(or whether to use both). To do so, we need to estimate the score
of the tuple M and the number of tuples contained in certain tri-
angles (since this is equivalent to the number of sorted accesses
performed). A naive way of estimating and comparing the number
of tuples likely to be encountered is to simply compare the areas
of the respective triangles. But such an approach assumes that the
data follows an uniform distribution within the triangles, which is
often quite unrealistic.

Instead, in our approach for view selection, we not only utilize
the above conceptual conclusions, but also leverage knowledge of
the actual data distribution. We discuss our proposed view selection
algorithms in the next section.

6. VIEW SELECTION ALGORITHMS
In this section we develop algorithms for Problem 3.2. In partic-

ular, we develop a view selection procedure SelectV iews(Q,V),
which, given a set of views V and a ranking query Q, determines
a subset of views U on which the LPTA algorithm should be run.
Towards the end of the section we also describe two simpler view
selection procedures: SelectV iewsUniform(Q,V) and Select
V iewsByAngles(Q,V). These procedures are considerably sim-
pler than SelectV iews(Q,V), but only work well for fairly re-
strictive datasets.

Since the objective is to return U such that LPTA can be executed
on this subset, U has to encompass two properties, namely (a) it
should be able to produce an answer to the top-k query and (b)
the subset U identified should be the one that is able to provide
an answer to a ranking query most efficiently among all possible
subset choices of V .

Notice that the set V available to Problem 3.2 contains the set of
base views. As a result there is always a subset of views that can be
utilized to provide an answer to any query. To determine the best set
of views to supply LPTA with, we formulate an estimation problem.
We describe a methodology to estimate the cost of actually running
LPTA on a set of views. Since LPTA defaults to TA when the set
of views in U is the base views, this methodology will estimate the
cost of running TA on the base views as well. We will use this
methodology to identify the set U with the smallest cost.

The notion of cost adopted in this estimation is the total number
of sequential and random data accesses conducted. Both LPTA and
TA have sequential and random data access components that are
highly correlated. Every sequential access in a view (in the case of
LPTA) or base view (in the case of TA) prompts a random access

to the base relation in order to retrieve the complete list of values
in the corresponding tuple and compute the score. As a result, the
number of sequential accesses is a precise indicator of their sequen-
tial and random access I/O behavior. We develop a cost model that
estimates the number of elements that LPTA (TA) will sequentially
accesses provided with a set of views.

The rest of this section is organized as follows. First, we discuss
a cost estimation procedure EstimateCost(Q,U) which, given
a query Q and any subset of views U ⊆ V , returns an estimate
of the cost of running LPTA on exactly this set of views. Second,
we show how this procedure is used by the view selection proce-
dure SelectV iews(Q,V) to search amongst the subsets of V for
the subset U that minimizes EstimateCost(Q,U). Finally, we
conclude the section with two simpler view selection procedures:
SelectV iewsUniform(Q,V) and SelectV iewsByAngles(Q,V).

6.1 The Procedure EstimateCost(Q,U)

In this subsection we present a comprehensive estimation pro-
cedure that takes into account multi-attribute views (higher dimen-
sions) as well as non-uniform data distributions.

6.1.1 Approximating Score Distributions
EstimateCost(Q,U) is an estimation procedure. Thus, to be

able to estimate the execution cost, we have to assume that some
type of compact distributional model of the data is available. Since
real data is rarely uniformly distributed along each attribute, we
make use of standard database statistics such as histograms com-
puted to represent the distribution of the data along each attribute
of the base table R of size n (tuples). For this paper, we assume
equi-depth histograms, thus if Hi is an equi-depth histogram with
b buckets representing the distribution of points along the Xi at-
tribute, then each bucket represents n/b data points.1 Similarly
we make use of histograms of the score distribution for each view.
Such histograms can be computed when the view is materialized or
derived on demand.

Let the scoring function of Q be ScoreQ(t) = w1t[1]+w2t[2]+
. . . wmt[m]. Clearly each tuple’s score lies in the interval [0,

Pm
i wi].

In our estimation procedure, we will need to compute a histogram
HQ that represents the distribution of the scores of all tuples of
the database according to this scoring function. Since computing
the scores of all tuples in the database is prohibitive, we discuss a
much more efficient way of approximating HQ by convolutions of
the histograms Hi that represent the marginal distributions along
each attribute. The convolution procedure, which we discuss next,
assumes that the attributes are independent.

We define the convolution of two probability density functions
(pdfs) as follows.

DEFINITION 1. Convolution of two distributions: Let f(X),
g(Y) be the pdfs of two independent random variables X, Y re-
spectively. Then e(Z), the pdf of the random variable Z = X +Y ,
is known as the convolution of f(X) and g(Y), and can be ex-
pressed as e(Z) =

R Z

0
f(Y)g(Z − Y)dY

In our case, pdfs are represented by histograms. Consider a
query Q with a simple scoring function Z = Xi + Xj where
Xi, Xj are two attributes. The histogram HQ representing the
distribution of Z can be computed by the convolution of the two
b-bucket histograms Hi, Hj by replacing the integral above with a
cartesian product of histograms as follows. Assume that the bucket
1While other types of histograms are of course possible, the spe-
cific type of histogram to be used is orthogonal to the methods of
this paper, and we use equi-depth histograms mainly for the ease of
exposition.

 456

Algorithm 2 EstimateCost(Q,U)

U = {V1, . . . , Vr′} // Set of views
Q = (ScoreQ, k, ∗) // Query
Compute HQ, HV1 , HV2 , . . . , HV ′r // via convolutions
Estimate topkmin from HQ

for d = 1 to b // b buckets in each histogram do
for all HVi(1 ≤ i ≤ r′) in lock-step do

Let si
d be lower boundary of current bucket in HVi

//Check stopping condition by solving LP
Compute Unseenmax = max of ScoreQ subject to
lbj ≤ Xj ≤ ubj ∀ 1 ≤ j ≤ m
ScoreVj ≤ sj

d ∀ 1 ≤ j ≤ r′

if (unseenmax ≤ topkmin) then
// Perform logarithmic search within last buckets
Let si

d(n′) denote interpolated score of n′th tuple in cur-
rent bucket of HVi (1 ≤ n′ ≤ n/b)
Let Unseenmax = max of ScoreQ subject to
lbj ≤ Xj ≤ ubj ∀ 1 ≤ j ≤ m
ScoreVj ≤ sj

d(n′) ∀ 1 ≤ j ≤ r′

Compute (via logarithmic search) smallest n′ s.t.
unseenmax ≤ topkmin

Return ((d− 1)n/b + n′)r′

end if
end for

end for

boundaries of Hi and Hj are the same: [0 = h0, h1, . . . , hb = 1]
(if not, we can create two equivalent histograms with 2b buckets
and the same bucket boundaries). Consider the cartesian product
Ci,j = Hi ×Hj where Ci,j [p, q] = Hi[p] ·Hj [q] (where Hi[p] is
the relative count associated with bucket p).

We can approximate the pdf of Xi + Xj with a histogram with
2b buckets and boundaries g0 = 0, g1 = h1, . . . , gb = 1, gb+1 =
1+h1, . . . , g2b = 2. To compute the histogram we have to compute
the probability Prob(gk < A + B ≤ gk+1) for the buckets of the
new histogram, which may be derived as

P
hl+hm=gk+1

Ci,j [l][m].
This histogram can subsequently be approximated by a b bucket
histogram by merging neighboring pairs of buckets. This proce-
dure gives an O(b2) algorithm for computing the convolution of
the two pdfs.

Note that this basic technique can also be utilized to derive score
value distribution histograms on demand for each view using at-
tribute value histograms of base relation attributes. This approach
can be extended to computing (in O(mb2) time) histograms of
more general linear combination scoring functions of the general
form Z =

Pm
i wiXi. We omit further details from this version of

the paper.

6.1.2 Simulating LPTA on Histograms
Algorithm 2 describes the pseudo code for EstimateCost(Q,U).

Since we obviously cannot afford to execute LPTA directly on the
views in U , we perform the cost estimation by first computing his-
tograms representing the distribution of scores along each view in
U according to the scoring functions of the respective views (in case
these histograms have not already been computed when the views
were created), and then “walking down” these histograms bucket
by bucket in lock-step until the stopping condition is reached. Even
though we are simulating LPTA, the estimation time is much faster
because a single iteration of this simulation corresponds to n/b it-
erations if directly executed on the views.

There are two complications with this simulation that need to be
discussed. First, we need to pre-estimate topkmin. This is neces-

Algorithm 3 SelectV iews(Q,V)

V = {V1, . . . , Vr} // Set of views
Q = (ScoreQ, k, ∗) // Query
U = {}
MinCost = MinCurCost = ∞
for i = 1 to m do

for V ∈ V − U do
if (EstimateCost(Q,U ∪{V }) < MinCurCost) then

MinV = V
MinCurCost = EstimateCost(Q,U ∪ {V })

end if
end for
if (MinCurCost < MinCost) then
U = U ∪ {MinV }
MinCost = MinCurCost

else
Return U

end if
Return U

end for

sary because we do not have access to actual tuples or their tids, as
we are accessing histograms which only contain aggregated infor-
mation. The value of topkmin is estimated from HQ by determin-
ing the bucket which contains the kth highest tuple. Since the kth
tuple is very likely to be inside a bucket, we use linear interpolation
within the bucket to estimate topkmin.

Second, if the final number of buckets visited along each view’s
histogram is d, a very simple estimation of the number of sorted ac-
cesses is nr′/b, where r′ is the number of views used in our estima-
tion. However, since n/b can be large, this estimate can be rather
crude. We refine this estimate by computing the smallest number
of tuples, n′, that need to be scanned from each of the last buck-
ets visited, so that the stopping condition is reached - using linear
interpolation for the scores of tuples within each bucket. Since the
size of each bucket is potentially large (n/b), we cannot afford to
do a linear search to determine n′. Instead, we perform a “logarith-
mic” search, which proceeds by repeatedly doubling n′, checking
the stopping condition at each iteration, and then performing a final
binary search between the last pairs of values of n′.

Thus, the algorithm finally returns the estimated number of sorted
accesses as ((d−1)n/b+n′)r′. The running time of this algorithm
is O((d− 1) + log n′) lock-step iterations.

6.2 The Procedure SelectV iews(Q,V)

Once we have developed a cost estimation procedure, our next
task is to determine the subset of views of a base relation R with
m attributes with least cost. According to Theorem 2, an obvious
algorithm to determine the best subset of views U is to estimate the
cost of all possible

`
r
p

´
subsets of V (where p ≤ m) and select the

subset of views with the smallest cost (we refer to this approach as
Excustive). While this approach is feasible for databases with few
attributes, for large values of m this can often be prohibitive. For
such cases we follow a simple greedy heuristic to select the subset
set of views with the cheapest cost. The pseudo code is described
in Algorithm 3.

6.3 Simpler View Selection Procedures
In this subsection we present two procedures for selecting views

that are considerably simpler than SelectV iews(Q,V) presented
above. However, these procedures are only effective for datasets
with fairly restrictive data distributions.

 457

6.3.1 The Procedure SelectV iewsSpherical(Q,V)

Consider the special case of a dataset that is uniformly distributed
in the unit m-dimensional sphere (i.e., there is no preferred direc-
tion in the dataset, nor is there any skew in the data density). Let V
be a set of views over this dataset, and let Q be a query. Assume
that the score function of each view has been normalized, such that
if we take a point t that intersects a view vector V and the surface
of the unit sphere, then ScoreV (t) = 1. Now let us imagine that
we execute LPTA on the entire set of V views. The execution may
be visualized as sweeping the corresponding perpendicular hyper-
planes from just outside the unit sphere towards the origin. After
d iterations, let t1d, . . . , tr

d be the last tuples read from each view,
and let Unseend be the convex region defined by the intersection
of the lower halfspaces below each view’s hyperplane. From the
symmetry of the spherical distribution, we can make the following
assumptions:

1. The distance of each ti
d to the origin is the same (equiva-

lently, ScoreV1(t
1
d) = ScoreV2(t

2
d) = . . . ScoreVr (tr

d)).
Moreover, as d increases, these distances (scores) decrease
by the same amount.

2. As d increases, the convex region Unseend does not change
in shape; it just gets smaller in scale.

These assumptions suggest a very simple algorithm to select a set
of views U . We fix any valid score value, say s. We then solve the
linear program where we maximize ScoreQ subject to the inequal-
ities ScoreVj ≤ s ∀ 1 ≤ j ≤ r′. Let S be the vertex of the convex
region at which ScoreQ(S) is maximized. Using arguments simi-
lar to Theorem 2, the set U is defined as those views that intersect
with S.

Clearly this procedure is much simpler than the more general
SelectV iews() procedure described earlier, as it only has to solve
a linear program once (and does not have to simulate LPTA on his-
tograms). However, it is also clear that this procedure will only
work well for very restrictive data distributions.

6.3.2 The Procedure SelectV iewsByAngles(Q,V)

We finally present an extremely simple heuristic for selecting
views. The procedure SelectV iewsByAngles(Q,V) simply sorts
the view vectors by increasing angle with the query vector, and re-
turns the top-m views as the set U , the intuition being that views
that have similar orientations with the query vector are likely to
contribute towards early stoppage of LPTA. However, this proce-
dure suffers from two disadvantages: (a) it too makes an implicit
assumption of uniform data distribution, and (b) several of the se-
lected views may render one another “redundant” as they may have
very similar orientations.

7. MORE GENERAL QUERIES AND VIEWS
In this section we extend our methods to work for more general

queries and views. We first consider the case where views may only
be restricted to materializing the top-k tuples. We then extend to
the case where both views and queries my be associated with range
selection conditions.

7.1 Views that Only Materialize their Top-k
Tuples

In this subsection we consider the case where materialized views
only contain their top-k tuples. The view selection problem may
be posed as follows: Given a set of views V = {V1, . . . , Vr} that
contains the set of base views where each non-base view Vi =

(ScoreVi , ki, ∗), and a query Q = (ScoreQ, k, ∗), determine the
subset of views U with least cost for answering the query. The
new complication stems from the fact that certain combinations of
views now may not be able to answer the query on hand - simply
because they may not have enough tuples materialized.

Our approach to solving this problem is to modify the procedure
SelectV iews() and its associated subroutine EstimateCost() of
the previous section as follows. First, for each view Vi, we pre-
pare its histogram Hi using convolutions as before, but then trun-
cate the histogram by removing a portion of its tail such that the
truncated histogram represents the distribution of the top-ki tuples
of the view. Next, when the LPTA algorithm is mimicked in the
EstimateCost() procedure, if any of the view histograms are ex-
hausted before the topkmin score has been reached, the procedure
simply returns a cost of infinity. This way, the greedy SelectV iews()
algorithm will make sure not to return this particular combina-
tion of views. Note that since base views are present in V , and
each of these views cover all tuples in the database, the procedure
SelectV iews() is guaranteed to always return with a feasible com-
bination of views for answering Q.

7.2 Accommodating Range Conditions
In this subsection we consider the case where views and queries

are also associated with range selection conditions RangeV and
RangeQ respectively. Each selection condition is a conjunctive
condition of the form [l1, u1]&[l2, u2]& . . . &[lm, um] with the usual
semantics - a tuple is selected if all its attribute values fall within
the respective intervals of the range condition. The view selec-
tion problem may be posed as follows: Given a set of views V =
{V1, . . . , Vr}where each view Vi = (ScoreVi , ki, RangeVi), and
a query Q = (ScoreQ, k, RangeQ), determine the subset of views
U with least cost for answering the query. As with views that mate-
rialize only their top-k tuples, views with range conditions compli-
cate the view selection problem because now certain combinations
of views may not have enough tuples to be able to answer the query
at hand.

We propose the following simple but effective approach to solv-
ing this problem. We first select a subset W ⊆ V of views, such
that each view inW “covers” the query’s range. I.e, V ∈ W if and
only if RangeQ ⊆ RangeV . The subset W can be selected very
efficiently as each each interval of the view’s range condition can
be easily checked to see if it contains the corresponding interval
of the query’s range condition (several indexing schemes may be
utilized for this step [12]).

Once W has been selected, we run SelectV iews() on W in-
stead of U . The algorithm for SelectV iews() needs to be mod-
ified, especially the part that computes score histograms for the
query as well as the views in W (unless of course the score his-
togram of the view has already been constructed at view creation
time). To compute the score histograms of views, we first truncate
each attribute’s histogram Hi such that the truncated histogram rep-
resents the distribution of Xi values only within the corresponding
interval defined in the view’s range condition. These truncated his-
tograms are then convoluted to generate the histogram correspond-
ing to the view’s score distribution.2 Using a similar procedure, we
also compute a histogram that describes the query’s score distribu-
tion. The procedure SelectV iews() can be run without any further
modifications.

We note that in principle, it is not necessary for each view’s range

2Note that in the earlier case of views that materialize only their
top-k tuples, we first convoluted the attribute histograms and then
truncated the resultant score histogram. In contrast, here we first
do the truncations and then perform the convolutions.

 458

condition to completely cover the query’s range condition - so long
as the union of the range conditions of the set of views consid-
ered covers the query’s range condition, we are guaranteed of not
missing any result tuples. However, we do not advocate this ap-
proach as (a) checking for combinations of views whose unions
cover a query’s range is more involved, and (b) more importantly,
the LPTA algorithm needs to be substantially modified to account
for this situation. In fact, if we were to perform lock-step sorted
accesses on such a combination of views, the techniques to deter-
mine unseenmax cannot be done by a linear program, as the space
of unseen tuples may not be convex. We omit further discussion of
this approach in this paper.

8. EXPERIMENTAL EVALUATION
In this section we report the results of a detailed experimental

study evaluating the performance and accuracy of our proposed
techniques.

8.1 Description of Parameters and Data
We use both synthetic and real data sets in our experiments. We

use synthetic data in order to easily control parameters that affect
the performance of our techniques and be able to demonstrate the
relative trends. Our synthetic data collection includes uniform data
as well as Zipf data with varying skew parameters. We increase the
size of synthetic data in terms of both number of attribute values in
the underlying relation and number of tuples in order to study scal-
ability. The default size for synthetic data, unless stated otherwise,
is 500K tuples; we vary the size during scalability experiments. In
addition the default size of histograms used for our estimations is
set to 1% of the size of the corresponding data set. We vary the
size suitably for experimental purposes. In our implementation we
used equi-depth histograms. We also used several real data sets to
experiment with. We report the results for one real data set, corre-
sponding to attributes of automobiles automatically extracted from
a site specializing to automobiles. The size of this set is 30K tuples.
Results for other real data sets were consistent with those we report
for the automobile data set.

We build two way correlations between attributes of the base
relation by populating an attribute uniformly and for each value v
of that attribute we populate the values of the other attribute by
sampling a Gaussian distribution with mean v and fixed variance
[10].

8.2 Experimental Results
In this section we present detailed experimental results. Un-

less stated otherwise, the results reported are averages of 50 runs.
Performance is quantified in terms of total running time. Several
cost models have been proposed for evaluating the performance
of top-k algorithms. In [7] they define the middleware cost as
Cost = cs ∗ s + cr ∗ r, where s is the sorted access cost, r is the
random access cost and cs, cr are positive constants. Cost models
that measure only disk accesses do not allow us to accurately com-
pare the performance of top-k algorithms. The TA algorithm [19]
is I/O bounded, while PREFER [14] has substantial computational
cost. LPTA is mostly I/O bounded but it also has a non-negligible
computational cost (solving a linear program). Processor time for
the solution of LP equations for all of our experiments with LPTA
was always about 10% of the total running time. In order to be fair
when comparing the performance of these algorithms, we measure
the total running time.

We quantify estimation accuracy using the absolute average rel-
ative error, defined as |val−val′|

val
, where val is the exact value of a

quantity (in our case exact number of sorted accesses of LPTA),

and val′ is its approximation (estimate returned by EstimateCost
procedure). Since the LPTA algorithm does a random access for
every sorted access and the algorithm is mainly I/O bounded, we
use the number of sorted accesses as a cost estimate for the view
selection algorithms (Section 6.1).

Our first experiment aims to evaluate the utility of the LPTA
algorithm in terms of performance, compared to PREFER and the
TA algorithm. PREFER can utilize only one view in order to return
query answers. We compare the performance of the three algo-
rithms by varying parameters of interest, namely the type of data,
the number of views, the number of attributes of the relation and the
number of top-k results requested. Due to space limitations only a
subset of our experiments is presented here. Figure 5(a)(b) presents
the performance of the algorithms for the real data set (in two and
three dimensions). Figure 5(a) presents the average running time
of 50 runs for PREFER, LPTA and TA as the value of k (highest
ranked results) increases for two dimensions. We randomly gener-
ated two views. PREFER utilizes only one view, while LPTA uses
both of them. LPTA performs consistently better than PREFER
and TA algorithms.

Figure 5(b) presents the results of the same experiment, but this
time in three dimensions. In this case we generated three random
views during each run. LPTA uses all of them while PREFER
only one. As we see from Figure 5(b), the results are consistent
with the case of two dimensions. As the value of k increases the
benefits of LPTA are pronounced. Compared to both TA and
PREFER, the performance advantage of LPTA is obvious.

This experiment does not completely reveal the performance ad-
vantage of LPTA since no view selection procedure is applied and
the algorithm is forced to answer top-k queries using randomly gen-
erated views. The goal of this experiment was to show that even in
the case where LPTA cannot select which views to exploit still
outperforms both TA and the PREFER algorithms.

We derived results consistent with those presented for the case of
real data, for several synthetic data sets (including uniform and Zipf
with varying skew). In all experiments LPTA was the algorithm of
choice, both for increasing number of attributes (dimensionality) as
well as values of k. Figure 6 presents the results for uniform data
of size 500K tuples in three dimensions. We omit the rest of the
results due to space constraints.

We conducted a series of experiments, varying the correlation
between the attributes of base relations. The intend is to study the
impact of correlation on the accuracy of our cost estimation proce-
dure. Figure 7 presents the results of an experiment, showing the
accuracy of our cost estimation procedure as correlation between
attributes varies for a two attribute relation of 500K tuples and a
fixed value of k = 100. It can be observed that as correlation in-
creases (in the Figure correlation1 < correlation2, in terms of
a standard χ2 test), the accuracy of the estimation drops; however
the resulting estimate remains reasonable. This observation, com-
bined with the good performance of our estimations for the case
of real data sets, in Figure 8 demonstrate that our cost estimation
framework is robust even in the presence of correlated attributes in
the base relation.

Our second set of experiments, aims to evaluate the accuracy of
our estimation procedure EstimateCost(). We conduct exper-
iments varying parameters of interest, including the type of data
used, the values of k as well as the size of the histograms used and
the number of attributes in the relation. Figure 8 presents the ab-
solute relative error of algorithm EstimateCost(), for three types
of data sets, namely uniform, Zipf (with z = 1.2) and the real data
set.

Figures 8(a)(b) present the results for two attribute relations (two

 459

(a) 2d (b) 3d

Figure 5: Real Data, performance comparison of PREFER, LPTA, TA

Figure 6: Uniform Data, performance comparison of PREFER,
LPTA, TA

Figure 7: Varying Correlation

dimensions) as the number of buckets increases from 0.5% of the
total number of points in each data set to 1% (Figure 8(b)). It can be
observed that for a fixed number of buckets across the various data
sets, the error significantly decreases as the value of k increases.
This can be explained by observing that for a fixed number of buck-
ets, what really affects the error of our estimation procedure is the
interpolation step (essentially a uniformity assumption) on the val-
ues in the last bucket encountered before the estimation procedure
halts. As k increases, the influence of the uniformity assumption
made for the last bucket of the histogram decreases. That behavior
is consistent for all the data types (uniform, zipf, real). As expected,
when the number of buckets increase the relative error decreases in
all the examined cases. In Figure 8(b) we see the results for the cost
estimation algorithm when the number of buckets is 1% of the data
set size.

We also conducted the same experiments for three dimensions.
As we see in Figures 8(c)(d), there is a decrease in the relative error
as k increases for constant number of buckets. The increase in the
number of buckets has the same results as in two dimensions. One
thing to notice is that for a constant number of buckets the decrease
in the relative error for the real dataset is much less than the one for
two dimensions. This is because the distribution of values in the
real dataset is highly non uniform.

The third set of experiments evaluates the utility of our view se-
lection methodology, namely SelectV iews() (SV) in comparison
to the Excustive (E), the SelectV iewsSpherical (SV S) and
SelectV iewsByAngles (SV A) algorithms. Figure 9 presents
such a comparison. Figure 9(a) presents the number of disk ac-
cesses of LPTA on the views selected by each of these algorithms
on runs consisting of a random collection of materialized views
derived from a two attribute base relation, for uniform and Zipf
(z=1.2) data for k = 100. Notice that algorithm E identifies the
optimal solution given the specific set of views. The SV algorithm
performs very close to optimal followed by algorithm SV S and
SV A. For uniform distributions both SV S and SV A perform rea-
sonably well. For Zipf data the performance of both SV S and SV
deteriorates. This is expected as they are both derived with uni-
form distributions in mind. Figure 9(b) presents the results of the
same experiment for views derived from a three attribute base rela-
tion. In this case, algorithm SV remains competitive to the optimal
solution derived by E. The overall trends for SV S and SV A re-
main similar. We conducted a series of experiments, varying data
sets and other parameters of interest (such as histogram size, data

 460

(a) 2d, buckets 0.5% (b) 2d, buckets 1%

(c) 3d, buckets 0.5% (d) 3d, buckets 1%

Figure 8: Evaluating Accuracy for two (figures (a)(b)) and three (figures (c)(d) dimensions

(a) 2d (b) 3d

Figure 9: Performance of View Selection Algorithms

set size, values of k). In all cases the results obtained confirm the
general trends presented.

With our last experiment presented here in Figure 10 we eval-
uate the scalability of LPTA as parameters of interest affecting
its performance increase, namely data set size and number of at-
tributes in the views. We present the total running time of LPTA
in Figure 10(a) for uniform data in two dimensions as the size of

the data set increases for various values of k. In all cases running
time grows gracefully with parameter size. The maximum frac-
tion of time spend for LP operations in this experiment was 10%
of the total running time. Figure 10(b) presents the total running
time for a uniform data set with 500K tuples as the number of at-
tributes d in the underlying views increases. In this experiment,
we use a number of views equal to d and the number of attributes

 461

(a) Varying Data Size (b) Varying Number of Attributes

Figure 10: Scalability Experiments on LPTA

in each view is set to d as well. Thus, both the number of views
and their dimensionality increases. We present the total time (To-
tal Time) for k = 500 as well as the absolute processor time (LP
Time) spend conducting LP operations (total time reported includes
the time to conduct LP operations). It is evident that the algorithm
scales nicely with increasing number of dimensions. Moreover, as
the dimensionality increases, processor time for LP operations is
only a small fraction of the total time. The results presented were
consistent for real and other synthetic data sets.

We also conducted related sets of experiments using views that
materialize their top-k results as well as views defined with range
conditions. Our results are consistent with those presented and we
omit them due to space limitations.

9. CONCLUSIONS
In this paper we addressed the problem of answering top-k queries

using views. We presented LPTA an algorithm that can be uti-
lized to provide answers to top-k queries combining information
from multiple views. We have presented several analytical results
related to this problem and demonstrated the efficiency and practi-
cal utility of our proposal.

Our work introduces important problems for further study. In
particular a problem of interest is the design of efficient strategies
to select a number of views to materialize given a query workload
aiming to optimize parameters of interest such as average query
response time.

Acknowledgments
The research of D. Gunopulos was supported by NSF award 0330481
and the research of G. Das was partially supported by grants from
Microsoft Research and Apollo Data Technologies.

10. REFERENCES
[1] L. G. A. Marian, N. Bruno. Evaluating Top-k Queries Over

Web Accesible Sources. TODS 29(2), 2004.
[2] S. Agrawal, S. Chaudhuri, and G. Das. DBExplorer: A

System for Keyword Based Search Over Relational
Databases. Proceedings of ICDE, 2002.

[3] N. Bruno, L. Gravano, and A. Marian. Evaluating Top-k
Queries Over Web Accessible Databases. Proceedings of
ICDE, Apr. 2002.

[4] Y. chi Chang, L. Bergman, V. Castelli, C. Li, M. L. Lo, and
J. Smith. The Onion Technique: Indexing for Linear
Optimization Queries. Proceedings of ACM SIGMOD, pages
391–402, June 2000.

[5] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient
Access Method for Similarity Search Metric Spaces.
Proceedings of VLDB, pages 426–435, Aug. 1997.

[6] R. Fagin. Combining Fuzzy Information from Multiple
Systems. PODS, pages 216–226, June 1996.

[7] R. Fagin. Fuzzy Queries In Multimedia Database Systems.
PODS, pages 1–10, June 1998.

[8] R. Fagin and E. Wimmers. Incorporating User Preferences in
Multimedia Queries. ICDT, pages 247–261, Jan. 1997.

[9] L. Gravano and S. Chaudhuri. Evaluating Top-k Selection
Queries. Proceedings of VLDB, Aug. 1999.

[10] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and
P. Weinberger. Guickly generating a billion-record synthetic
databases. Proceesings of ACM SIGMOD, pages 243–252,
June 1994.

[11] U. Guntzer. Optimizing Multifeature Queries in Image
Databases. VLDB, 2003.

[12] A. Guttman. R-trees : A Dynamic Index Structure for Spatial
Searching. Proceedings of ACM SIGMOD, pages 47–57,
June 1984.

[13] A. Halevy. Answering Queries Using Views. VLDB Journal,
1999.

[14] V. Hristidis, N. Koudas, and Y. Papakonstantinou. Efficient
Execution of Multiparametric Ranked Queries. Proceedings
of SIGMOD, June 2001.

[15] A. E. I. Ilyas, W. Aref. Supporting Top-k Queries in
Relational Databases. VLDB J. 13(3), 2004.

[16] S. H. K. Chang. Minimal Probing: Supporting Expensive
Predicates for Top-k Queries. SIGMOD, 2002.

[17] L. G. N. Bruno, S. Chaudhuri. Top-k Selection Queries Over
Relational Databases: Mapping Strategies and Performance
Evaluation. TODS 27(2), 2002.

[18] A. Natsev, Y.-C. Chang, J. Smith, C.-S. Li, and J. S. Vitter.
Supporting Incremental Join Queries on Ranked Inputs.
Proceedings of VLDB, Aug. 2001.

[19] R. Fagin and A. Lotem and M. Naor. Optimal Aggregation
Algorithms For Middleware. PODS, June 2001.

[20] R. R. S. Chaudhuri and G. Weikum. Integrating DB and IR
technologies: What is the sound of one hand clapping?
CIDR 2005.

[21] M. V. R. S. Nepal. Query Processing Issues in Image
(Multimedia) Databases. ICDE, 1999.

[22] P. Tsaparas, T. Palpanas, N. Koudas, and D. Srivastava.
Ranked Join Indicies. IEEE ICDE, Mar. 2003.

 462

