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Abstract

In data mining, similarity or distance between attrib-
utes is one of the central notions. Such a notion can
be used to build attribute hierarchies etc. Similarity
metrics can be user-defined, but an important prob-
lem is defining similarity on the basis of data. Several
methods based on statistical techniques exist. For de-
fining the similarity between two attributes A and B
they typically consider only the values of A and B, not
the other attributes. We describe how a similarity no-
tion between attributes can be defined by considering
the values of other attributes. The basic idea is that
in a 0/1 relation r, two attributes A and B are similar
if the subrelations oa=1(r) and op=1(r) are similar.
Similarity between the two relations is defined by con-
sidering the marginal frequencies of a selected subset
of other attributes. We show that the framework pro-
duces natural notions of similarity. Empirical results
on the Reuters-21578 document dataset show, for ex-
ample, how natural classifications for countries can be
discovered from keyword distributions in documents.
The similarity notion is easily computable with scal-
able algorithms.

Introduction

Similarity of objects is one of the central concepts
in data mining and knowledge discovery: in order to
look for patterns or regularities in the data we have to
be able to quantify how far from each other two ob-
jects in the database are. Recently, there has been
considerable interest into defining intuitive and eas-
ily computable measures of similarity between com-
plex objects and into using abstract similarity notions
in querying databases (Agrawal, Faloutsos, & Swami
1993; Agrawal et al. 1995; Goldin & Kanellakis 1995;
Jagadish, Mendelzon, & Milo 1995; Knobbe & Adriaans
1996; Rafiei & Mendelzon 1997; White & Jain 1996).

A typical data set is shown in Figure 1. In this ex-
ample, market basket data, the data objects represent
customers in the supermarket, and the columns repres-
ent different products. Similar data sets occur in, e.g.,
information retrieval: there the rows are documents and
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the columns are (key)words occurring in the documents.
In fact, one of our experimental data sets is from this
setting. (Due to the lack of space, we use as only one
example relation, containing just binary attributes, and
do not discuss how the ideas can be adapted to attrib-
utes with larger domains.)

When discussing similarity one typically talks about
similarity of the objects stored in the database, e.g.,
similarity between customers. Such a notion can be
used in customer segmentation, prediction, and other
applications. There is, however, another class of sim-
ilarity notions, similarity between (binary) attributes.
For example, in the supermarket basket data we can
define different notions of similarity between products
by looking at how the customers buy these products. A
simple example is that Coke and Pepsi can be deemed
similar attributes, if the buying behaviour of buyers of
Coke and buyers of Pepsi is similar.

Similarity notions between attributes can be used
to form hierarchies or clusters of attributes. A hier-
archy can itself give useful insight into the structure of
the data, and hierarchies can also be used to produce
more abstract rules etc. (Han, Cai, & Cercone 1992;
Srikant & Agrawal 1995). Typically, one assumes that
the hierarchy is given by a domain expert. This is in-
deed a good solution, but in several cases the data can
be such that no domain expert is available, and hence
there is no ready source for the hierarchy. Given a no-
tion of attribute similarity we could in the supermarket
example produce a hierarchy for the products that is
not based on existing notions of similarity, but rather
is derived from the buying patterns of the customers.

In this paper we consider the problem of defining sim-
ilarity between attributes in large data sets. We discuss
two basic approaches for attribute similarity, internal
and external measures. An internal measure of similar-
ity between two attributes A and B is defined purely in
terms of the values in the A and B columns, whereas
an external measure takes into account also the data in
certain other columns, the probe columns. We contend
that external measures can in several cases give addi-
tional insight into the data. Note that there is no single
correct notion of similarity, and varying the probe sets
malkes 1t possible to obtain similarity notions reflecting



| Row ID | Chips | Mustard | Sausage | Pepsi | Coke | Miller | Bud |

t 1 0 0 0 1 1 0
ts 1 1 1 1 0 1 0
ts3 1 0 1 0 1 0 0
14 0 0 1 0 0 1 0
ts 1 1 1 1 0 0 1
ts 1 1 1 0 0 1 0
t7 1 0 1 1 0 1 0

Figure 1: An example data set.

different viewpoints.

We conclude this section by introducing some nota-
tion. Given a 0/1 relation r with n rows over attributes
R, and a selection condition # on the rows of r, we
denote by fr(r,0) the fraction of rows of r that sat-
isfy 0. For example, fr(r,A = 1 A B = 0) gives the
fraction of rows with A = 1 and B = 0. If » is ob-
vious from the context, we just write fr(f). We use
the abbreviation fr(A4) for fr(A = 1), and fr(ABC)
for fr(A = 1A B = 1 AC = 1). An association
rule (Agrawal, Tmielinski, & Swami 1993) on the re-
lation » 1s an expression X = B, where X C R
and B € R. The frequency or support of the rule
is fr(r, X U {B}), and the confidence of the rule is
conf(X = B) = fr(r, X U{B})/fr(r, X).

Internal measures of similarity

Given a 0/1 relation r with n rows over attributes R,
an internal measure of similarity dy is a measure whose
value dr(A, B) for attributes A and B depends only
on the values on the A and B columns of ». As there
are only 4 possible value combinations,! we can express
the sufficient statistics for any internal measure by the
familiar 2-by-2 contingency table.

We can measure the strength of association between
A and B in numerous ways; see (Goodman & Kruskal
1979) for a compendium of methods. Possibilities in-
clude the x? test statistic, which measures the deviation
of the observed values from the expected values under
the assumption of independence. There exist several
modifications of this measure.

If one would like to focus on the positive information,
an alternative way would be to use the (relative) size
of the symmetric difference of the rows with A = 1 and
B =1

T((A=1AB=0)V(A=0AB=1
T
fra)+frB)-2fras)
fra+frB)-fras)”

In data mining contexts, one might use be tempted to
use the confidences of the association rules A = B and
B = A. For example, one could use the distance func-

tion dr,,, (A, B) = (1—conf(A = B))+ (1 —conf(B =

'and assuming the order of the rows in r does not make
any difference

A)). The functions dy,, are dj
the set of all attributes.

Internal measures are useful in several applications;
however, as the similarity between A and B is based
on solely the values in columns A and B, they cannot
reflect certain types of similarity.

are both metrics on

conf

External measures of similarity

Basic measure Given a 0/1 relation r over attributes
R, we aim to measure the similarity of attributes A
and B by the similarity of the relations r4 = oa=1(r)
and rp = op=1(r). Similarity between these relations
is defined by considering the marginal frequencies of a
selected subset of other attributes. Thus, for example,
in a market basket database two products, Pepsi and
Coke could be deemed similar if the customers buying
them have similar buying behavior with respect to the
other products.

Defining similarity between attributes by similarity
between relations might seem a step backwards. We
wanted to define similarity between two objects of size
n x 1 and reduce this to similarity between objects of
dimensions n4 x m and ng x m, where ngq = |ra| and
ng = |rg|, and that m is the number of attributes.
However, we will see in the sequel that for the simil-
arity of relations we can rely on some well-established
notions.

Consider a set of attributes P, the probe attributes,
and assume that the relations r4 and rp have been
projected to this set. These relations can be viewed as
defining two multivariate distributions g4 and gp on
{0,1}F: given an element z € {0,1}, the value g4(z)
1s the relative frequency of z in the relation r4.

One widely used distance notion between distribu-
tions is the Kullbach-Leibler distance (also known as
relative entropy or cross entropy) (Kullbach & Leibler
1951; Basseville 1989):

re = alz)lo gA(j)
(94,98B) ;g (z)1 ggB(i‘)’

or the symmetrized version of it: re(ga,gp) +
re(g9p,ga). The problem with this measure is that the
sum has 2|7 elements, so direct computation of the
measure is not feasible for larger sets P. Therefore,
we look for simpler measures that would still somehow
reflect the distance between g4 and ¢p.



One way to remove the exponential dependency on
| P|is to look at only a single attribute D € P at a time.
That is, we define the distance dp p(A, B) as

dpp(A,B)= > F(A,B,D),
DeP

where F(A, B, D) is some measure of how closely A
and B agree with respect to the probe attribute D. Of
course, this simplification looses power compared to the
full relative entropy measure. Still, we suggest the sum
above as the external distance between A and B, given
the set P of probe attributes and a measure of distance
of A and B with respect to an attribute D. If the value
dr p(A, B) is large, then A and B are not behaving in
the same way with respect to the attributes in P.

There are several possibilities for the choice of the
function F'(A, B, D). We can measure how different
the frequency of D is in relations r4 and rg. A simple
test for this is to use the y? test statistic for two pro-
portions, as is widely done in, e.g., epidemiology (Miet-
tinen 1985), and also in data mining (Brin, Motwani, &
Silverstein 1997). Given a probe variable D, the value
of the test statistic F\ (A, B, D) is after some simplific-
ations

(fr(ra,D) = fr(rp, D))*fr(r, A)fr(r, B)(n — 1)
frir,DY(1 = fr(r, D))(fr(r, A) + fr(r, B)) ~

where n is the number of rows in the whole dataset
r. To obtain the distance measure we sum over all
the probes D: d\ p(A, B) = > pep F (A, B, D). This
measure is x? distributed with |P| degrees of freedom.

One might be tempted to use d, p or some similar
notion as a measure of similarity. However, as (Good-
man & Kruskal 1979) puts it, “The fact that an excel-
lent test of independence may be based on x? does not
at all meant that y?, or some simple function of it, is
an appropriate measure of degree of association.” One
well-known problem with the y? measure is that it is
very sensitive to cells with small counts; see (Guo 1997)
for a discussion of the same problems in the context of
medical genetics.

An alternative is to use the term from the relative
entropy formula:

F(A, B, D) = fr(ra, D)log(fr(ra, D)/fr(rg, D)).

However, experiments show that this is also quite sens-
itive to small fluctuations in the frequency of the at-
tribute D 1n relations r4 and rpg.

A more robust measure is Ffr(A’ B, D) =
|fr(ra, D) — fr(rp, D)|: if D is a rare attribute, then
Ffr(A’ B, D) cannot obtain a large value. In our exper-

iments we used this variant, and the resulting measure
for the distance between attributes A and B is

dfryP(Aa B) = Z |f7“(7°A, D) - fT(?“B, D)|
DeP
The measure dfr p Is a pseudometric on the set R of
attributes, i.e., it is symmetric, and satisfies the triangle

inequality, but the value of the distance can be 0 even
if two attributes are not identical. A reformulation of
the definition of dfr p in terms of confidences of rules is
dﬁn’P(A,B) =D pep lconf(A = D) — conf(B = D)|.
This turns out to be crucial for the efficient computation
of dfr p for all pairs of attributes A and B. Note that
for the internal distance dy,,,, defined on the basis of

confidences we have dr,,, (A, B) = dfr (4 B}(A, B).

Variations The definition of dfr p 18 by no means the

only possible one. Denote P = {Dy,..., Dg}, the vec-
tor vap = [fr(ra,D1),..., fr(ra, Dy)], and similarly
the vector vp p. We have at least the following altern-
ative ways of defining an external measure of similarity.

1. Instead of using the L; metric, we could use the more
general L, metric and define dfr p(A, B) as the L,

distance between v4 p and vp p.

2. We can generalize the probe set P to be a set of

boolean formulae 8;, where 6; is constructed from
atomic formulae of the form “A = 0” and “A = 1” for
A € R by using standard boolean operators. Then
the distance function is )", |fr(ra,0;) — fr(rs, 0;)].

The use of the L, metric does not seem to have a
large effect on the distances. The importance of the
second variation is not immediately obvious and is left
for further study.

Constructing external measures from internal
measures Suppose dr(A, B) is an internal distance
measure between attributes. Given a collection P =
{Dy,..., Dy} of probes, we can use dj to define an ex-
ternal distance notion as follows. Given attributes A
and B, denote va p = [dr(A, D1),..., di(A, Dy)], ie.,
a vector of internal distances of A to each of the probes.
Similarly, let vg p = [di(B, D1),...,dr(B, Dy)]. Then,
we can define the external distance between A and B by
using any suitable distance notion between the vectors
VAP and UB,P: ddI,P(A,B) = d(vAyp,vByp).

Complexity considerations Given a 0/1 relation
r with n rows over relation schema R with m attrib-
utes, we determine the complexity of computing the
distance dﬁnyP(A, B) for a fixed set P C R and all pairs

A, B € R. To compute these quantities, we need the
frequencies of D in r4 and rg, for each D € P. That
1s, we have to know the confidence of the association
ruless A = D and B = D for each triplet (A, B, D).
There are m?|P| of these triplets. For moderate values
of m and for reasonably small probe sets P we can keep
all these in memory, and one pass through the data-
base suffices to compute all the necessary counts. In
fact, computing these counts is a special case of com-
puting all the frequent sets that arises in association
rule discovery (Agrawal, Imielinski, & Swami 1993;
Agrawal et al. 1996). If we are not interested in probe
attributes of small frequency, we can use variations of
the Apriori (Agrawal et al. 1996) algorithm. This



method is fast and scales nicely to very large data sets.

Introducing new attributes One of the reasons for
considering attribute similarity was the ability to build
attribute hierarchies, i.e., to do hierarchical clustering
on attributes. Now we sketch how this can be done
efficiently using our distance measures.

Suppose we have computed the distances between
all pairs of attributes, and assume A and B are the
closest pair. Then we can form a new attribute F as
the combination of A and B. This new attribute is in-
terpreted as the union of A and B in the sense that
fr(E) = fr(A) + fr(B) — fr(AB).

Suppose we then want to continue the clustering
of attributes. The new attribute F represents a new
cluster, so we have to be able to compute the distance
of I/ from the other attributes. For this, we need to be
able to compute the confidence of the rules £ = D for
all probes D € P. This confidence is defined as

conf(E = D) = fi’};f(“gf;?
fr(AD)+fr(BD)-fr(ABD)
fr(a)+frB)-fr(as)

If we have computed the frequent set information for
all subsets of R with sufficiently high frequency, then
all the terms in the above formula are known. Thus we
can continue the clustering without having to look at
the original data again.

Experimental results

We have used three data sets in our experiments: the
so-called Reuters-21578 collection (Lewis 1997) of news-
wire articles, a database about students and courses at
the Computer Science Department of the University of
Helsinki, and telecommunication alarm sequence data.

Documents and keywords The data set consists of
21578 articles from the Reuters newswire in 1987. Each
article has been tagged with keywords. There are alto-
gether 445 different keywords. Over 1800 articles have
no keywords at all, one article has 29 keywords, and
the average number of keywords per article is slightly
over 2. In the association rule framework the keywords
are the attributes and the articles are the rows. The
frequency of a keyword is the fraction of the articles in
which the keyword appears.

To test the intuitiveness of the resulting measures, we
chose 14 names of countries as our test set: Argentina,
Brazil, Canada, China, Colombia, Ecuador, France, Ja-
pan, Mexico, Venezuela, United Kingdom, USA, USSR,
West Germany.?2 We have lots of background inform-
ation about the similarities and dissimilarities between
these keywords, so testing the naturalness of the results
should be relatively easy. As probe sets, we used several
sets of related keywords: economic terms (earn, trade,
interest), organizations (ec, opec, worldbank, oecd),
and mixed terms (earn, acq, money-fx, crude, grain,
trade, interest, wheat, ship, corn, rice).

2In 1987, both the USSR and West Germany still existed.

Internal vs. external measures We start by com-
paring the two notions of internal distances dj,, and
dr with the external distances dfrP for different

probe sets P.

conf

Obviously, the actual values of a distance function are
irrelevant; we can multiply or divide the distance values
by any constant without modifying the properties of the
metric. In several applications what actually matters 1s
only the relative order of the values. That is, as long
as for all A, B, C', and D we have d(A, B) < d(C, D) if
and only if d (A, B) < dl(C', D), the measures d and d

behave in the same way.

Figure 2 (top left) shows the distribution of points
(dr,.,(A, B),dy,,,, (A, B)) for all pairs (A, B) of coun-
tries. We see that the values of the dy_,,, measure tend
to be quite close to 2, indicating that the confidences of
the rules A = B and B = A are both low. Similarly, a
large fraction of the values of the dy_ , measure are close
to 1. These phenomena are to be expected, as few of

the pairs of countries occur in the same articles.

The other three plots in Figure 2 show how the in-
ternal distance dy_, is related to the external distances
dfr p lor three different selections of P. We note that

the point clouds are fairly wide, indicating that the
measures truly measure different things.

The effect of the probe set P How does the choice
of the probe set P effect the measure dfr p? Given two

sets of probes P and ) which have no relation to each
other, there is no reason to assume that dfr p(A, B)and

dfr Q(A, B) would have any specific relationship. Actu-

ally, the whole point of constructing external measures
between attributes was to let the choice of the probe
sets affect the distance!

Figure 3 shows scatter plots of the measures com-
puted using different probe sets. Again, we see great
variation, as is to be expected.

Clustering using the internal and external dis-
tances To further illustrate the behavior of the ex-
ternal and internal distance functions, we clustered
the 14 countries using a standard agglomerative hier-
archical clustering algorithm (Jain & Dubes 1988;
Kaufman & Rousseauw 1990). As a distance between
clusters, we used the minimum distance between the
elements of the clusters. Figure 4 shows two cluster-
ings produced by using dfT,P’ as well as a clustering

produced by using dy_,.

The clusterings resulting from external distances are
quite natural, and correspond mainly to our views of the
geopolitical relationships between the countries. The
clusterings are different, reflecting the different probe
sets. The flexibility of the external measure 1s that the
probes can be used to define the viewpoint. A slightly
suprising feature in the leftmost clustering on Figure 4
is that Argentina and the USSR are relatively close to
each other. In the data set most of the articles about
Argentina and the USSR were about grain, explaining
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Figure 3: Relationships between external distances for various probe sets between the

data.

the phenomenon. The third clustering based on internal
distance reflects mainly the number of co-occurrence of
the keywords in the articles, whereas the clusterings
based on external measures weigh the co-occurrence
with the probe attributes. Lack of space prevents us
from discussing the qualities of clusterings in detail in
this version.

Course enrollment data As the second data set we
used course enrollment data from the Department of
Computer Science at the University of Helsinki. The
data consists of 1050 students and 128 courses; the rows
represent students and the columns represent courses.

We made several experiments with the data. We
computed, for example, the distances between 8 courses
from the 3rd and 4th year: Computer Networks, Lo-
gic programming, Computer-aided instruction, Object-
oriented databases, User interfaces, String algorithms,
Design and analysis of algorithms, and Database Sys-
tems. As probes we used the 2nd year courses Com-
puter communications, Graphics, Operating systems,
and Artificial intelligence. Computing the distances
and using the minimum distance hierarchical clustering
methods yields the clustering tree in Figure 5. Again,
the results are quite natural.

Telecommunications alarm data In telecommu-
nication network management the handling of so called

0.1 02 03 04
External distance with economic terms probe set

0.1 02 03 04
External distance with organizations probe set

14 countries for the Reuters

Logic programming
String algorithms

Figure 5: Clustering of the courses produced by the
minimum distance clustering criterion.

alarm sequences is quite important. In this applica-
tion, data mining methods have been shown to be use-
ful (Hatonen et al. 1996). Here we describe how our
external distance measures can be used to detect simil-
arities between alarms.

We analyzed a sequence of 58616 alarms with as-
sociated occurrence times from a telephone exchange,
collected during a time period of 12 days. There are
247 different alarms; the most frequent alarm occurs
more the 8000 times, while some alarms occur only
once or twice. We used only the 108 most frequent
of the alarms in our experiments, and transformed the
event sequence into a binary matrix as follows. Each



Figure 4: Clustering of countries produced with the minimum distance clustering criterion by using dfr p Wwith the

mixed probe set (left) and the economic terms probe set (middle), as well as by using dy,, (right).

of the 247 alarms corresponds to a column. We look
at the sequence through windows of width 60 seconds,
and slide the window by increments of 1 second through
the data. For each row there is a 1 in the column of
an alarm, if that alarm occurred within the time win-
dow corresponding to the row. There are about 10°
windows, i.e., rows, as the time period was about 10°
seconds. See (Mannila, Toivonen, & Verkamo 1997) for
efficient algorithms for finding frequent sets in this ap-
plication.

The alarms are identified by their code numbers,
which are assigned by the software developers. The
code numbers for the alarms have been assigned so that
alarms having the same prefix typically have something
to do with each other, at least in the mind of the de-
signer.

We computed the pairwise distances between the 108
alarms, using as probes all the 108 alarms themselves.
Following is the list of the 10 smallest distances.

A B dy,
7316 7317 0.130
2241 2478  0.307
7421 7422 0.377
7132 7139 0.407
2064 2241 0.534
7801 7807 0.611
2064 2478 0.688
7410 7411 1.233
7414 7415 1.336
7001 7030 1421

Even with no knowledge about the actual application,
it is obvious that the similarity metric captures some
aspects of the underlying structure of the application:

the pairs of alarms that are deemed similar by the dfr I

measure have in most cases numbers that are close to
each other. Note that the distance computation uses no
information about the actual structure of the network
nor about the alarm numbers. Two alarms can have
short distance for two reasons: either they occur closely
together in time (and hence in similar contexts), or they
just appear in similar contexts, not necessarily closely
together in time. In the list there are examples of both
cases. We omit the details for brevity.

Random data As an artificial case, we considered
random relations r over attributes R = {4;,..., 4},
where t(A;) = 1 with probability ¢ independently of the
other entries. That is, all the attributes of r are ran-
dom and independent from each other. We computed
pairwise external distances for such relations for vari-
ous probe sets. The results show that the distance for
all pairs is approximately the same. Again, this 1s the
expected behavior.

Selection of probes QOur goal in developing the ex-
ternal measure of similarity was that the probes de-
scribe the facets of subrelations that the user thinks
are important. Optimally, the user should have suffi-
cient domain knowledge to determine which attributes
should be used as probes and which are not.

The experiments showed clearly that different probe
sets produce different similarity notions. This is as it
should be: the probe set defines the point of view from
which similarity is judged, and thus different selections
produces different measures. There is no single optimal
solution to the probe selection problem. In the full pa-
per we describe some strategies that can be used to help
the user in the selection of probes.



Conclusions

Similarity is an important concept for advanced re-
trieval and data mining applications. In this paper we
considered the problem of defining an intuitive similar-
ity or distance notion between attributes of a 0/1 rela-
tion. We introduced the notion of an external measure
between attributes A and B, defined by looking at the
values of probe functions on subrelations defined by A
and B. We also outlined how the use of association
rule algorithms can help in building hierarchies based
on this notion. After that we gave experimental results
on three different real-life data sets and showed that
the similarity notion indeed captures some of the true
similarities between the attributes.

There are several open problems. One is semiauto-
matic probe selection: how can we provide guidance
to the user in selecting the probe sets. The other is
the use of hierarchies generated by this method in rule
discovery: what properties will the discovered rules
have? Also, the connection to statistical tests needs
to be strengthened, and the relationships to mutual en-
tropy and the Hellerstein distance are worth studying.
Moreover, it needs to be shown how good an approx-
imation of the Kullbach-Leibler distance our measure
i1s. Further experimentation is also needed to determine
the usability of external distances in various application
domains. Finally, extending the method for distances
between attribute values is worth investigating.
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