
Similarity of Attributes by External ProbesGautam DasUniversity of MemphisDepartment of Mathematical SciencesMemphis TN 38152, USAdasg@msci.memphis.edu Heikki Mannila and Pirjo RonkainenUniversity of HelsinkiDepartment of Computer ScienceP.O. Box 26, FIN-00014 Helsinki, FinlandfHeikki.Mannila,Pirjo.Ronkaineng@cs.helsinki.�AbstractIn data mining, similarity or distance between attrib-utes is one of the central notions. Such a notion canbe used to build attribute hierarchies etc. Similaritymetrics can be user-de�ned, but an important prob-lem is de�ning similarity on the basis of data. Severalmethods based on statistical techniques exist. For de-�ning the similarity between two attributes A and Bthey typically consider only the values of A and B, notthe other attributes. We describe how a similarity no-tion between attributes can be de�ned by consideringthe values of other attributes. The basic idea is thatin a 0/1 relation r, two attributes A and B are similarif the subrelations �A=1(r) and �B=1(r) are similar.Similarity between the two relations is de�ned by con-sidering the marginal frequencies of a selected subsetof other attributes. We show that the framework pro-duces natural notions of similarity. Empirical resultson the Reuters-21578 document dataset show, for ex-ample, how natural classi�cations for countries can bediscovered from keyword distributions in documents.The similarity notion is easily computable with scal-able algorithms. IntroductionSimilarity of objects is one of the central conceptsin data mining and knowledge discovery: in order tolook for patterns or regularities in the data we have tobe able to quantify how far from each other two ob-jects in the database are. Recently, there has beenconsiderable interest into de�ning intuitive and eas-ily computable measures of similarity between com-plex objects and into using abstract similarity notionsin querying databases (Agrawal, Faloutsos, & Swami1993; Agrawal et al. 1995; Goldin & Kanellakis 1995;Jagadish, Mendelzon, & Milo 1995; Knobbe & Adriaans1996; Ra�ei & Mendelzon 1997; White & Jain 1996).A typical data set is shown in Figure 1. In this ex-ample, market basket data, the data objects representcustomers in the supermarket, and the columns repres-ent di�erent products. Similar data sets occur in, e.g.,information retrieval: there the rows are documents andCopyright c
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the columns are (key)words occurring in the documents.In fact, one of our experimental data sets is from thissetting. (Due to the lack of space, we use as only oneexample relation, containing just binary attributes, anddo not discuss how the ideas can be adapted to attrib-utes with larger domains.)When discussing similarity one typically talks aboutsimilarity of the objects stored in the database, e.g.,similarity between customers. Such a notion can beused in customer segmentation, prediction, and otherapplications. There is, however, another class of sim-ilarity notions, similarity between (binary) attributes.For example, in the supermarket basket data we cande�ne di�erent notions of similarity between productsby looking at how the customers buy these products. Asimple example is that Coke and Pepsi can be deemedsimilar attributes, if the buying behaviour of buyers ofCoke and buyers of Pepsi is similar.Similarity notions between attributes can be usedto form hierarchies or clusters of attributes. A hier-archy can itself give useful insight into the structure ofthe data, and hierarchies can also be used to producemore abstract rules etc. (Han, Cai, & Cercone 1992;Srikant & Agrawal 1995). Typically, one assumes thatthe hierarchy is given by a domain expert. This is in-deed a good solution, but in several cases the data canbe such that no domain expert is available, and hencethere is no ready source for the hierarchy. Given a no-tion of attribute similarity we could in the supermarketexample produce a hierarchy for the products that isnot based on existing notions of similarity, but ratheris derived from the buying patterns of the customers.In this paper we consider the problem of de�ning sim-ilarity between attributes in large data sets. We discusstwo basic approaches for attribute similarity, internaland external measures. An internal measure of similar-ity between two attributes A and B is de�ned purely interms of the values in the A and B columns, whereasan external measure takes into account also the data incertain other columns, the probe columns. We contendthat external measures can in several cases give addi-tional insight into the data. Note that there is no singlecorrect notion of similarity, and varying the probe setsmakes it possible to obtain similarity notions re
ecting



Row ID Chips Mustard Sausage Pepsi Coke Miller Budt1 1 0 0 0 1 1 0t2 1 1 1 1 0 1 0t3 1 0 1 0 1 0 0t4 0 0 1 0 0 1 0t5 1 1 1 1 0 0 1t6 1 1 1 0 0 1 0t7 1 0 1 1 0 1 0Figure 1: An example data set.di�erent viewpoints.We conclude this section by introducing some nota-tion. Given a 0/1 relation r with n rows over attributesR, and a selection condition � on the rows of r, wedenote by fr (r; �) the fraction of rows of r that sat-isfy �. For example, fr (r; A = 1 ^ B = 0) gives thefraction of rows with A = 1 and B = 0. If r is ob-vious from the context, we just write fr (�). We usethe abbreviation fr (A) for fr (A = 1), and fr (ABC)for fr (A = 1 ^ B = 1 ^ C = 1). An associationrule (Agrawal, Imielinski, & Swami 1993) on the re-lation r is an expression X ) B, where X � Rand B 2 R. The frequency or support of the ruleis fr (r;X [ fBg), and the con�dence of the rule isconf (X ) B) = fr (r;X [ fBg)=fr (r;X).Internal measures of similarityGiven a 0/1 relation r with n rows over attributes R,an internal measure of similarity dI is a measure whosevalue dI(A;B) for attributes A and B depends onlyon the values on the A and B columns of r. As thereare only 4 possible value combinations,1 we can expressthe su�cient statistics for any internal measure by thefamiliar 2-by-2 contingency table.We can measure the strength of association betweenA and B in numerous ways; see (Goodman & Kruskal1979) for a compendium of methods. Possibilities in-clude the �2 test statistic, which measures the deviationof the observed values from the expected values underthe assumption of independence. There exist severalmodi�cations of this measure.If one would like to focus on the positive information,an alternative way would be to use the (relative) sizeof the symmetric di�erence of the rows with A = 1 andB = 1: dIsd(A;B) = fr ((A=1^B=0)_(A=0^B=1))fr (A=1_B=1)= fr (A)+fr (B)�2fr (AB)fr (A)+fr (B)�fr (AB) :In data mining contexts, one might use be tempted touse the con�dences of the association rules A) B andB ) A. For example, one could use the distance func-tion dIconf (A;B) = (1�conf (A) B))+(1�conf (B )1and assuming the order of the rows in r does not makeany di�erence

A)): The functions dIsd are dIconf are both metrics onthe set of all attributes.Internal measures are useful in several applications;however, as the similarity between A and B is basedon solely the values in columns A and B, they cannotre
ect certain types of similarity.External measures of similarityBasic measure Given a 0/1 relation r over attributesR, we aim to measure the similarity of attributes Aand B by the similarity of the relations rA = �A=1(r)and rB = �B=1(r). Similarity between these relationsis de�ned by considering the marginal frequencies of aselected subset of other attributes. Thus, for example,in a market basket database two products, Pepsi andCoke could be deemed similar if the customers buyingthem have similar buying behavior with respect to theother products.De�ning similarity between attributes by similaritybetween relations might seem a step backwards. Wewanted to de�ne similarity between two objects of sizen � 1 and reduce this to similarity between objects ofdimensions nA �m and nB �m, where nA = jrAj andnB = jrBj, and that m is the number of attributes.However, we will see in the sequel that for the simil-arity of relations we can rely on some well-establishednotions.Consider a set of attributes P , the probe attributes,and assume that the relations rA and rB have beenprojected to this set. These relations can be viewed asde�ning two multivariate distributions gA and gB onf0; 1gP : given an element �x 2 f0; 1gP , the value gA(x)is the relative frequency of �x in the relation rA.One widely used distance notion between distribu-tions is the Kullbach-Leibler distance (also known asrelative entropy or cross entropy) (Kullbach & Leibler1951; Basseville 1989):re(gA; gB) =X�x gA(�x) log gA(�x)gB(�x) ;or the symmetrized version of it: re(gA; gB) +re(gB ; gA). The problem with this measure is that thesum has 2jP j elements, so direct computation of themeasure is not feasible for larger sets P . Therefore,we look for simpler measures that would still somehowre
ect the distance between gA and gB.



One way to remove the exponential dependency onjP j is to look at only a single attribute D 2 P at a time.That is, we de�ne the distance dF;P (A;B) asdF;P (A;B) = XD2P F (A;B;D);where F (A;B;D) is some measure of how closely Aand B agree with respect to the probe attribute D. Ofcourse, this simpli�cation looses power compared to thefull relative entropy measure. Still, we suggest the sumabove as the external distance between A and B, giventhe set P of probe attributes and a measure of distanceof A and B with respect to an attribute D. If the valuedF;P (A;B) is large, then A and B are not behaving inthe same way with respect to the attributes in P .There are several possibilities for the choice of thefunction F (A;B;D). We can measure how di�erentthe frequency of D is in relations rA and rB. A simpletest for this is to use the �2 test statistic for two pro-portions, as is widely done in, e.g., epidemiology (Miet-tinen 1985), and also in data mining (Brin, Motwani, &Silverstein 1997). Given a probe variable D, the valueof the test statistic F�(A;B;D) is after some simpli�c-ations(fr (rA; D) � fr (rB ; D))2fr (r; A)fr (r; B)(n � 1)fr (r;D)(1� fr (r;D))(fr (r; A) + fr (r; B)) ;where n is the number of rows in the whole datasetr. To obtain the distance measure we sum over allthe probes D: d�;P (A;B) = PD2P F�(A;B;D): Thismeasure is �2 distributed with jP j degrees of freedom.One might be tempted to use d�;P or some similarnotion as a measure of similarity. However, as (Good-man & Kruskal 1979) puts it, \The fact that an excel-lent test of independence may be based on �2 does notat all meant that �2, or some simple function of it, isan appropriate measure of degree of association." Onewell-known problem with the �2 measure is that it isvery sensitive to cells with small counts; see (Guo 1997)for a discussion of the same problems in the context ofmedical genetics.An alternative is to use the term from the relativeentropy formula:F (A;B;D) = fr (rA; D) log(fr (rA; D)=fr (rB ; D)):However, experiments show that this is also quite sens-itive to small 
uctuations in the frequency of the at-tribute D in relations rA and rB .A more robust measure is Ffr (A;B;D) =jfr (rA; D) � fr (rB ; D)j: if D is a rare attribute, thenFfr (A;B;D) cannot obtain a large value. In our exper-iments we used this variant, and the resulting measurefor the distance between attributes A and B isdfr ;P (A;B) = XD2P jfr (rA; D)� fr (rB; D)jThe measure dfr ;P is a pseudometric on the set R ofattributes, i.e., it is symmetric, and satis�es the triangle

inequality, but the value of the distance can be 0 evenif two attributes are not identical. A reformulation ofthe de�nition of dfr ;P in terms of con�dences of rules isdfr ;P (A;B) = PD2P jconf (A ) D) � conf (B ) D)j:This turns out to be crucial for the e�cient computationof dfr ;P for all pairs of attributes A and B. Note thatfor the internal distance dIconf de�ned on the basis ofcon�dences we have dIconf (A;B) = dfr ;fA;Bg(A;B).Variations The de�nition of dfr ;P is by no means theonly possible one. Denote P = fD1; : : : ; Dkg, the vec-tor vA;P = [fr (rA; D1); : : : ; fr (rA; Dk)], and similarlythe vector vB;P . We have at least the following altern-ative ways of de�ning an external measure of similarity.1. Instead of using the L1 metric, we could use the moregeneral Lp metric and de�ne dfr ;P (A;B) as the Lpdistance between vA;P and vB;P .2. We can generalize the probe set P to be a set ofboolean formulae �i, where �i is constructed fromatomic formulae of the form \A = 0" and \A = 1" forA 2 R by using standard boolean operators. Thenthe distance function isPi jfr (rA; �i) � fr (rB ; �i)j.The use of the Lp metric does not seem to have alarge e�ect on the distances. The importance of thesecond variation is not immediately obvious and is leftfor further study.Constructing external measures from internalmeasures Suppose dI(A;B) is an internal distancemeasure between attributes. Given a collection P =fD1; : : : ; Dkg of probes, we can use dI to de�ne an ex-ternal distance notion as follows. Given attributes Aand B, denote vA;P = [dI(A;D1); : : : ; dI(A;Dk)]; i.e.,a vector of internal distances of A to each of the probes.Similarly, let vB;P = [dI(B;D1); : : : ; dI(B;Dk)]. Then,we can de�ne the external distance between A and B byusing any suitable distance notion between the vectorsvA;P and vB;P : ddI ;P (A;B) = d(vA;P ; vB;P ).Complexity considerations Given a 0/1 relationr with n rows over relation schema R with m attrib-utes, we determine the complexity of computing thedistance dfr ;P (A;B) for a �xed set P � R and all pairsA;B 2 R. To compute these quantities, we need thefrequencies of D in rA and rB, for each D 2 P . Thatis, we have to know the con�dence of the associationrules A ) D and B ) D for each triplet (A;B;D).There are m2jP j of these triplets. For moderate valuesof m and for reasonably small probe sets P we can keepall these in memory, and one pass through the data-base su�ces to compute all the necessary counts. Infact, computing these counts is a special case of com-puting all the frequent sets that arises in associationrule discovery (Agrawal, Imielinski, & Swami 1993;Agrawal et al. 1996). If we are not interested in probeattributes of small frequency, we can use variations ofthe Apriori (Agrawal et al. 1996) algorithm. This



method is fast and scales nicely to very large data sets.Introducing new attributes One of the reasons forconsidering attribute similarity was the ability to buildattribute hierarchies, i.e., to do hierarchical clusteringon attributes. Now we sketch how this can be donee�ciently using our distance measures.Suppose we have computed the distances betweenall pairs of attributes, and assume A and B are theclosest pair. Then we can form a new attribute E asthe combination of A and B. This new attribute is in-terpreted as the union of A and B in the sense thatfr (E) = fr (A) + fr (B) � fr (AB).Suppose we then want to continue the clusteringof attributes. The new attribute E represents a newcluster, so we have to be able to compute the distanceof E from the other attributes. For this, we need to beable to compute the con�dence of the rules E ) D forall probes D 2 P . This con�dence is de�ned asconf (E ) D) = fr ((A_B)D)fr (A_B)= fr (AD)+fr (BD)�fr (ABD)fr (A)+fr (B)�fr (AB) :If we have computed the frequent set information forall subsets of R with su�ciently high frequency, thenall the terms in the above formula are known. Thus wecan continue the clustering without having to look atthe original data again.Experimental resultsWe have used three data sets in our experiments: theso-called Reuters-21578 collection (Lewis 1997) of news-wire articles, a database about students and courses atthe Computer Science Department of the University ofHelsinki, and telecommunication alarm sequence data.Documents and keywords The data set consists of21578 articles from the Reuters newswire in 1987. Eacharticle has been tagged with keywords. There are alto-gether 445 di�erent keywords. Over 1800 articles haveno keywords at all, one article has 29 keywords, andthe average number of keywords per article is slightlyover 2. In the association rule framework the keywordsare the attributes and the articles are the rows. Thefrequency of a keyword is the fraction of the articles inwhich the keyword appears.To test the intuitiveness of the resulting measures, wechose 14 names of countries as our test set: Argentina,Brazil, Canada, China, Colombia, Ecuador, France, Ja-pan, Mexico, Venezuela, United Kingdom, USA, USSR,West Germany.2 We have lots of background inform-ation about the similarities and dissimilarities betweenthese keywords, so testing the naturalness of the resultsshould be relatively easy. As probe sets, we used severalsets of related keywords: economic terms (earn, trade,interest), organizations (ec, opec, worldbank, oecd),and mixed terms (earn, acq, money-fx, crude, grain,trade, interest, wheat, ship, corn, rice).2In 1987, both the USSR and West Germany still existed.

Internal vs. external measures We start by com-paring the two notions of internal distances dIsd anddIconf with the external distances dfr ;P for di�erentprobe sets P .Obviously, the actual values of a distance function areirrelevant; we can multiply or divide the distance valuesby any constant without modifying the properties of themetric. In several applications what actually matters isonly the relative order of the values. That is, as longas for all A, B, C, and D we have d(A;B) < d(C;D) ifand only if d0(A;B) < d0(C;D), the measures d and d0behave in the same way.Figure 2 (top left) shows the distribution of points(dIsd(A;B); dIconf (A;B)) for all pairs (A;B) of coun-tries. We see that the values of the dIconf measure tendto be quite close to 2, indicating that the con�dences ofthe rules A) B and B ) A are both low. Similarly, alarge fraction of the values of the dIsd measure are closeto 1. These phenomena are to be expected, as few ofthe pairs of countries occur in the same articles.The other three plots in Figure 2 show how the in-ternal distance dIsd is related to the external distancesdfr ;P for three di�erent selections of P . We note thatthe point clouds are fairly wide, indicating that themeasures truly measure di�erent things.The e�ect of the probe set P How does the choiceof the probe set P e�ect the measure dfr ;P ? Given twosets of probes P and Q which have no relation to eachother, there is no reason to assume that dfr ;P (A;B) anddfr ;Q(A;B) would have any speci�c relationship. Actu-ally, the whole point of constructing external measuresbetween attributes was to let the choice of the probesets a�ect the distance!Figure 3 shows scatter plots of the measures com-puted using di�erent probe sets. Again, we see greatvariation, as is to be expected.Clustering using the internal and external dis-tances To further illustrate the behavior of the ex-ternal and internal distance functions, we clusteredthe 14 countries using a standard agglomerative hier-archical clustering algorithm (Jain & Dubes 1988;Kaufman & Rousseauw 1990). As a distance betweenclusters, we used the minimum distance between theelements of the clusters. Figure 4 shows two cluster-ings produced by using dfr ;P , as well as a clusteringproduced by using dIsd.The clusterings resulting from external distances arequite natural, and correspond mainly to our views of thegeopolitical relationships between the countries. Theclusterings are di�erent, re
ecting the di�erent probesets. The 
exibility of the external measure is that theprobes can be used to de�ne the viewpoint. A slightlysuprising feature in the leftmost clustering on Figure 4is that Argentina and the USSR are relatively close toeach other. In the data set most of the articles aboutArgentina and the USSR were about grain, explaining
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Figure 2: Relationships between internal distances and external distances between the 14 countries for the Reutersdata.
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Figure 3: Relationships between external distances for various probe sets between the 14 countries for the Reutersdata.the phenomenon. The third clustering based on internaldistance re
ects mainly the number of co-occurrence ofthe keywords in the articles, whereas the clusteringsbased on external measures weigh the co-occurrencewith the probe attributes. Lack of space prevents usfrom discussing the qualities of clusterings in detail inthis version.Course enrollment data As the second data set weused course enrollment data from the Department ofComputer Science at the University of Helsinki. Thedata consists of 1050 students and 128 courses; the rowsrepresent students and the columns represent courses.We made several experiments with the data. Wecomputed, for example, the distances between 8 coursesfrom the 3rd and 4th year: Computer Networks, Lo-gic programming, Computer-aided instruction, Object-oriented databases, User interfaces, String algorithms,Design and analysis of algorithms, and Database Sys-tems. As probes we used the 2nd year courses Com-puter communications, Graphics, Operating systems,and Arti�cial intelligence. Computing the distancesand using the minimumdistance hierarchical clusteringmethods yields the clustering tree in Figure 5. Again,the results are quite natural.Telecommunications alarm data In telecommu-nication network management the handling of so called
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7Figure 5: Clustering of the courses produced by theminimum distance clustering criterion.alarm sequences is quite important. In this applica-tion, data mining methods have been shown to be use-ful (H�at�onen et al. 1996). Here we describe how ourexternal distance measures can be used to detect simil-arities between alarms.We analyzed a sequence of 58616 alarms with as-sociated occurrence times from a telephone exchange,collected during a time period of 12 days. There are247 di�erent alarms; the most frequent alarm occursmore the 8000 times, while some alarms occur onlyonce or twice. We used only the 108 most frequentof the alarms in our experiments, and transformed theevent sequence into a binary matrix as follows. Each
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Figure 4: Clustering of countries produced with the minimum distance clustering criterion by using dfr ;P with themixed probe set (left) and the economic terms probe set (middle), as well as by using dIsd (right).of the 247 alarms corresponds to a column. We lookat the sequence through windows of width 60 seconds,and slide the window by increments of 1 second throughthe data. For each row there is a 1 in the column ofan alarm, if that alarm occurred within the time win-dow corresponding to the row. There are about 106windows, i.e., rows, as the time period was about 106seconds. See (Mannila, Toivonen, & Verkamo 1997) fore�cient algorithms for �nding frequent sets in this ap-plication.The alarms are identi�ed by their code numbers,which are assigned by the software developers. Thecode numbers for the alarms have been assigned so thatalarms having the same pre�x typically have somethingto do with each other, at least in the mind of the de-signer.We computed the pairwise distances between the 108alarms, using as probes all the 108 alarms themselves.Following is the list of the 10 smallest distances.A B dfr ;P7316 7317 0.1302241 2478 0.3077421 7422 0.3777132 7139 0.4072064 2241 0.5347801 7807 0.6112064 2478 0.6887410 7411 1.2337414 7415 1.3367001 7030 1.421Even with no knowledge about the actual application,it is obvious that the similarity metric captures someaspects of the underlying structure of the application:

the pairs of alarms that are deemed similar by the dfr ;Pmeasure have in most cases numbers that are close toeach other. Note that the distance computation uses noinformation about the actual structure of the networknor about the alarm numbers. Two alarms can haveshort distance for two reasons: either they occur closelytogether in time (and hence in similar contexts), or theyjust appear in similar contexts, not necessarily closelytogether in time. In the list there are examples of bothcases. We omit the details for brevity.Random data As an arti�cial case, we consideredrandom relations r over attributes R = fA1; : : : ; Amg,where t(Ai) = 1 with probability c independently of theother entries. That is, all the attributes of r are ran-dom and independent from each other. We computedpairwise external distances for such relations for vari-ous probe sets. The results show that the distance forall pairs is approximately the same. Again, this is theexpected behavior.Selection of probes Our goal in developing the ex-ternal measure of similarity was that the probes de-scribe the facets of subrelations that the user thinksare important. Optimally, the user should have su�-cient domain knowledge to determine which attributesshould be used as probes and which are not.The experiments showed clearly that di�erent probesets produce di�erent similarity notions. This is as itshould be: the probe set de�nes the point of view fromwhich similarity is judged, and thus di�erent selectionsproduces di�erent measures. There is no single optimalsolution to the probe selection problem. In the full pa-per we describe some strategies that can be used to helpthe user in the selection of probes.
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