
The Visibility Graph Contains a Bounded-Degree SpannerGautam Das�AbstractGiven a collection of polygonal obstacles with nvertices on the place, and any t > 1, we presentan O(n logn) time algorithm that constructs abounded-degree t-spanner of the visibility graph,without �rst having to construct the visibilitygraph.1 IntroductionAn Euclidean graph is de�ned as a graph whosevertices are points in k-dimensional space, edgesare line segments joining pairs of points, and edgeweights are from the underlying distance metric,typically the L2 metric. If all edges are present,the graph is a complete Euclidean graph, otherwiseit is a non-complete Euclidean graph. A well-knownexample of a non-complete Euclidean graph is thevisibility graph, de�ned as follows. Consider a sce-nario where we are given a collection of pairwisedisjoint polygons on the plane. This frequentlyarises in motion planning problems, where the poly-gons represent obstacles in a cluttered workspacewithin which a point robot has to navigate. Con-sider a graph over the polygon vertices, where anedge (u; v) belongs to the graph if the correspond-ing line segment does not intersect the interior ofany obstacle. Such a graph is known as the visibilitygraph. This graph is useful because it contains theshortest obstacle-avoiding path between any pair ofvertices. Visibility graphs have been the subjectof a great deal of recent research, from both com-putational and combinatorial aspects (for example,see [14, 16, 17, 22]). It is known that while visi-bility graphs are not necessarily complete, they canbe quite dense, with as many as 
(n2) edges and
(n) degree. It is of interest to investigate whethera visibility graph contains a sparse subgraph which\approximates" shortest paths between all pairs ofvertices. Such a subgraph would be a more com-pact structure in motion planning applications, orin applications where a communication network is�Dept. of Mathematical Sci., The Univ. of Memphis,Memphis, TN 38152, USA, dasg@next1.msci.memphis.edu

being designed (for example, a road network linkingall the vertices).We make this notion of \approximate" shortestpaths more precise. Let G = (V;E) be a n-vertexconnected graph with positive edge weights. A sub-graph G0 is a t-spanner if for all u; v 2 V , the dis-tance between u and v in the subgraph is at most ttimes the corresponding distance in G. The value tis known as the stretch factor of the spanner. Span-ners are important structures since they representthe original graph more compactly, albeit approx-imately. In constructing spanners, it is frequentlynecessary to endow themwith additional properties,such as few edges, small total weight, small degree,small diameter, etc. Spanners of arbitrary weightedgraphs as well as special classes of graphs such ascomplete Euclidean graphs have been the subject ofmuch recent research. Spanners �nd applications ina variety of areas: communication network design,distributed algorithms, network routing, computa-tional geometry and robotics. They are also fasci-nating from a theoretical point of view, and possessmany interesting combinatorial and geometric prop-erties. A good bibliography of past spanner researchmay be found in [5]. Additionally, in this paper welist several recent references.While spanners of complete Euclidean graphshave been well studied, relatively little workhas been accomplished on non-complete Euclideangraphs, such as for example, visibility graphs. Anearly result is by Clarkson ([6]) who showed how toconstruct, for any t > 1, a linear-sized t-spanner ofthe visibility graph in O(n logn) time without hav-ing to �rst construct the visibility graph. Clark-son (and later Chen, [7]) applied this spanner tosolving approximate shortest path problems. In [8],Chew shows that the constrained Delaunay trian-gulation is a planar O(1)-spanner of the visibilitygraph, and can be constructed in O(n logn) time(however, in this result the stretch factor cannotbe arbitrarily close to 1). Recently an O(n logn)time algorithm has been designed by Arikati et. al.([2]) to construct, for any t > 1, a Steiner t-spanner(here the spanner is not strictly a subgraph of thevisibility graph because it may contain additionalSteiner vertices and edges, however distances be-



tween obstacle vertices still stretch by at most t).These Steiner spanners �nd applications in answer-ing all-pairs shortest path queries amidst obstacles.But suppose we are interested in constructing at-spanner such that, (a) it is a subgraph of the vis-ibility graph, and (b) it has bounded degree? Theproblem is interesting from a theoretical standpoint,because we are trying to discover new combinato-rial and geometric properties of visibility graphs andtheir subgraphs. From a practical standpoint, sucha spanner may be used in the design of a road net-work linking all obstacle vertices, where the objec-tive is to decrease congestion by only allowing a fewlinks to be incident to any vertex. We mention thatthe corresponding bounded-degree spanner prob-lem for complete Euclidean graphs in k-dimensionalspace has attracted considerable attention recently(for example, see [3, 5, 9, 20]). However bounded-degree spanners of visibility graphs seem harderto construct, mainly because previously developedtechniques for complete Euclidean graphs cannot beimmediately used (such techniques rely on the factthat \any vertex can be joined with any other ver-tex", which is not true when there are obstacles).In this paper we have developed an algorithm forconstructing bounded-degree spanners of visibilitygraphs. Our algorithm combines a few old tech-niques with several new techniques. For example,the algorithm is loosely based on the \covering bycones" paradigm, which in the past has been veryuseful in spanner construction (see [1, 6, 18]). Whatis interesting is that we extend the idea much be-yond its earlier scope, for example when we have todeal with the special geometric constraints that thepolygonal obstacles pose. The following theoremsummarizes our result.Theorem 1.1 Given a set of polygonal obstacleswith n vertices in the plane, and any t > 1, abounded-degree t-spanner of the visibility graph ex-ists, and can be constructed in O(n logn) time. Theconstants implicit in the big-O depend on t.The rest of the paper is organized as follows. InSection 2 we review Clarkson's spanner (see [6]),because it provides the foundation for our spanneralgorithm. In Section 3 we show how to constructa bounded-degree spanner, thereby proving Theo-rem 1.1. We present some open problems in Sec-tion 4.

2 Clarkson's SpannerIn this section we start by reviewing Clarkson'sspanner (see [6]), which has linear size, but maynot have bounded degree. (In our presentation, weretain the main ideas, but present the algorithmsomewhat di�erently. For example, we use a planesweep, and also use the concept of projected dis-tances).Consider an in�nite horizontal line passingthrough an arbitrary point z. Let � be a small con-stant angle (its actual value depends on the givent) and let L1; L2; : : : ; L�=2��1 be semi-in�nite raysradiating downward from z such that the angle be-tween adjacent rays is �. This partitions the lowerhalf-plane into a constant number of unboundedtriangles called cones, C1; C2; : : : ; C�=2�. For eachcone Ci, de�ne the axis Ri as the semi-in�nite rayfrom z which angularly bisects the cone. Let y beany other point in the interior of Ci. The projecteddistance between z and y, proj(z; y), is de�ned tobe the distance between z and the projection of yon Ri. For a small �, clearly the projected dis-tance is almost equal to the actual distance, d(z; y).(Projected distances were �rst used in [18] for con-structing spanners).The algorithm sweeps the plane in a particu-lar direction (say from bottom to top, to be con-sistent with the diagrams to be introduced later),and on encountering a vertex v, decides to selectonly some of the visibility graph edges that connectit to the vertices below. The selection of visibil-ity graph edges is simple. Translate all the conesC1; C2; : : : ; C�=2� such that their apexes become v.For every cone Ci, of all the visibility graph edgesincident to v and contained withinCi, the algorithmselects the edge with the shortest projected length.Once the sweep is over, the selected edges representthe spanner, G.It is easy to see that the output has a linearnumber of edges, since at every vertex at most aconstant number of edges are selected (at most oneper cone). However, the degree may not be a con-stant. To see this, imagine that the algorithm isactually creating a directed graph; at vertex v theedges that are selected are given downward direc-tions (from v to the other endpoints below). Whilethe output graph has a bounded out-degree, it mayhave an unbounded in-degree. The output is alsoa t-spanner of the visibility graph; for a proof werefer the reader to [6]. The algorithm can be im-plemented to run in O(n logn) time without havingto �rst create the visibility graph, using techniquessuch as planar point location and conical Voronoi



diagrams; the details are in [6].3 Bounding the DegreeIn this section we describe our more complex algo-rithm, which produces a bounded-degree spanner.The algorithm consists of four steps.Step 1: Construction of a linear-sized spanner:Select numbers t1 and t2 such that t1; t2 > 1, t1is very close to 1, t2 is somewhat bigger but stillsmall enough so that t1 �t2 is closer to 1 than tot.1 Create a t1-spanner of the visibility graph,using Clarkson's algorithm. Let this spannerbe G.Step 2: Partition into forests:Recall that we had used O(1) cones C1; C2;: : : ; C�=2� in the previous algorithm. We aregoing to re�ne this even further. Select an an-gle � to be much smaller than � but which di-vides � evenly (some intuition about its value isgiven in Step 3). We partition each cone Ci intoO(1) subcones Ci;1; Ci;2; : : : ; Ci;�=�, such thatthe angle of each subcone is �. The followingterms will be useful in our explanations: thesubcones in the central region of Ci are knownas central subcones, while the subcones to thefar left or far right of Ci are known as periph-eral subcones. Notice that the total number ofsubcones over all the cones is �=2�, which is aconstant.We partition G into a constant number of sub-graphs (actually forests) as follows. ConsiderG as a directed graph, and let (v; u) be any di-rected edge of G (i.e. directed downwards fromv to u). If it lies inside the subcone Ci;j (withapex at v), then (v; u) belongs to the graphGi;j. It is easy to see that each Gi;j has an out-degree of one, but may have an unbounded in-degree. Clearly the undirected version of Gi;jis a forest.Step 3: Removal of more edges:In this step, the algorithm performs a down-ward sweep of G (actually over all the Gi;j'ssimultaneously), and at each vertex possibly1Due to lack of space, we will avoid deriving the exactvalues of the various constants used in this version of thepaper

removes some of the incoming edges. The out-put graph, G0, will be a spanner of the visibilitygraph. It will have a smaller, though still notconstant, in-degree. The stretch factor will belarger than that of G. The logic for selection orremoval of edges of Gi;j is as follows. Let c be aconstant (approximately) equal to t1�t2�t2t1�t2�1 (theexact value of c is somewhat di�erent; it alsodepends on � and �, but we omit details fromthis version). Notice that 0 < c < 1. Since t1is selected very close to 1, c is very close to 0.Suppose the downward sweep visits a vertex v.Sort the incoming edges of Gi;j at v by increas-ing length. Select the shortest, whose length issay l1. Remove all edges of length at most l1=c.Select the smallest of the remaining, say l2. Re-move all edges of length at most l2=c. Repeatthis process until all incoming edges are eitherselected or removed. Do this for all the forests,then sweep downwards to the next vertex.Once the sweep is over, each forest Gi;j hasbeen reduced to a sparser forest, say G0i;j. Theunion of these forests, G0, is the output ofStep 3.Before we describe Step 4, let us analyze G0, theoutput of Step 3. Clearly the in-degree of any G0i;jmay not be bounded. However if two incomingedges of G0i;j meet at a common vertex, then oneedge is much longer than the other. In addition,the following lemma shows that G0 is a spanner.Lemma 3.1 G0 is a (t1 �t2)-spanner of the visibilitygraph.Proof : In this version we use very rough calcu-lations and simply sketch the proof. Essentially wehave to show that G0 is a t2-spanner of G. Sup-pose an edge of G, say (u; v), is removed while thealgorithm is visiting v. There should be an alter-nate path in G0 of length at most t2 � d(u; v). Sup-pose (u; v) originally belonged to some Gi;j. Thensome other edge, (w; v) belongs to G0i;j such thatd(u; v) < d(w; v)=c. Let us use Figure 1 as an illus-tration. For both u and w, the position of their Cicone is shown, where the right ray of u's cone in-tersects the left ray of v's cone at x. It is not hardto see that the line segments (u; x) and (x;w) donot intersect other obstacles. We also observe thatthe two edges (u; v) and (w; v) are almost parallel,since � is very small. Finally the angle uxw is �,and since � is much smaller than �, the length of(x;w) is negligible compared to the length of (v; w).De�ne cv(w; x; u) to be the convex chain obtainedby placing a stretched rubber band from w to x to



less than �edge retainedcw(w; x; u)wu edge removed� �vxFigure 1: Analysis of Step 3u, anchoring it at w and u and releasing it at x. Itwill assume a convex shape because the shrinkagewill be halted by various obstacles. The chain iscon�ned within the triangle wxu, where (w; u) isde�ned as the base boundary and (w; x) and (x; u)are de�ned as the side boundaries of the chain. Notethat this chain is a path from w to u in the originalvisibility graph. By an induction argument whichwe omit, it can be assumed that there is a path Pfrom w to u in G0 of length at most t1 � t2 timesthe length of cv(w; x; u). We thus have an alternatepath Q from v to u in G0 as follows: go from v to w,then go along P from w to v. The length of Q is atmost d(v; w) + t1 � t2 � (d(w; x)+ d(x; u)). But since(v; u) and (v; w) are almost parallel, and d(x;w)is negligible compared to (v; w), the length of Q ismaximized when d(u;w) is the smallest possible, i.e.when d(u;w) = c �d(v; u). In this situation d(u; x)+d(x; v) is approximately equal to (1 � c) � d(u; v).Substituting these quantities in, we get the lengthof Q to be approximately at most c �d(v; u)+ t1 � t2 �(1� c) � d(v; u). Substituting for c, this simpli�es toat most t2 � d(u; v). Thus we can conclude that G0is a t2-spanner of G, hence a (t1 � t2)-spanner of thevisibility graph.At this stage we can make some more observa-tions. Consider a Gi;j whose corresponding subconeis Ci;j. Let v be a vertex with a large in-degree.If Ci;j is a central subcone, then all the incomingedges at v will be approximately of the same length(since � is much smaller than �). In this case, Step 3will remove all but the shortest edge. On the otherhand, if Ci;j is a peripheral subcone, then the in-coming edges at v could be of all possible lengths.

v u1u2uk x2 cv(u1; x1; u2)x1Figure 2: Constructing the bounded-degree spannerThough Step 3 prunes some of them, an unboundednumber could be left over. We can only guaranteethat for any pair of left over edges, the shorter edgeis much shorter (at most c times) than the longeredge. Figure 2 (or a symmetric equivalent) correctlydescribes the geometry of all incoming edges of G0i;jat v. Notice that the order of these edges by lengthis the same as their order by slope.Step 4: Achieving bounded degree:This �nal step is di�erent from the others be-cause here we remove more edges, and also addback some edges. The idea is to consider eachG0i;j, and create another forest G00i;j which hasbounded degree. However, G00i;j is not necessar-ily a subgraph of G0i;j. The union of all G00i;j,de�ned as G00, is the �nal output of our algo-rithm.The details of the construction of G00 are sim-ple. For allG0i;j, for all vertex v ofG0i;j, performthe following operation. Let (u1; v); (u2; v);: : : ; (uk; v) be the incoming edges at v inincreasing length (see Figure 2). Retain(u1; v). Remove (u2; v); (u3; v); : : : ; (ur; v).Add the chains cv(u1; x1; u2); cv(u2; x2; u3);: : : ; cv(uk�1; xk�1; uk).This completes the description of the algorithm.We now analyze the algorithm and its output G00.Lemma 3.2 G00 is a t-spanner of the visibilitygraph.Proof : We sketch the proof. Consider any edge(um; v) of G0 that got removed. Consider the al-ternate path in G00: go from v to u1, then alongcv(u1; x1; u2), then along cv(u2; x2; u3), and so on



until you reach um. Since � is small, and the con-stant c (used in Step 3) is small, from the geometryof the situation it can be shown that this path isnot much longer than d(um; v). In fact, by select-ing smaller � and smaller c (which can be achievedby selecting t1 closer to 1), we can make this pathlength as close to d(um; v) as we like. Since G0 isa (t1 � t2)-spanner of the visibility graph, it followsthat G00 is also a spanner of the visibility graph, butwith a slightly larger stretch factor. Since t1 � t2 hasbeen selected to be closer to 1 than to t, we canmake sure that the stretch factor of G00 is no morethan t.The next two lemmas eventually show that thedegree ofG00 is bounded. In the construction ofG00i;j,recall that at a vertex v, all incoming edges exceptthe shortest are removed, and several convex chainsare added instead. For each such convex chain, wede�ne its base vertex to be v.Lemma 3.3 If we start with the empty plane, anddraw on it all the convex chains of G00i;j and their re-spective side boundaries, all the line segments in thearrangement will be pairwise disjoint, except possi-bly for sharing common endpoints.Proof : Let cv1 = cv(um; xm; um+1) and cv2 =cv(up; xp; up+1) be any two convex chains of G00i;j. Ifthey have the same base vertex, v, then the lemmais clearly true (as Figure 2 shows). On the otherhand, suppose the two chains have di�erent basevertices, say v1 and v2 respectively. This involvesa detailed case analysis, which we omit. Instead,consider Figure 3 which shows the most \crowded"situation where we try and make the two chains in-tersect each other. However, since v1 is an obstaclevertex, the convex chain cv2 either includes v1 or isbelow it. Thus it neither intersects cv1 nor the sideboundaries of cv1.Lemma 3.4 G00 has bounded degree.Proof : Since there a constant number of G00i;jit will su�ce to prove that each of the latter hasbounded degree. Consider any G00i;j. It has twokinds of edges, the convex chains, and the shortestedges retained from G0i;j at every vertex. Considerthe subgraph consisting of the convex chains. Dueto Lemma 3.3, its degree is at most 2. Next con-sider the subgraph consisting of the shortest edges.The degree of this subgraph is at most 2, because atany vertex there is at most one incoming edge andat most one outgoing edge. Thus the degree of G00i;jis bounded, which implies that the degree of G00 isalso bounded.

up+1 um+1 umxm upv1v2
cv1 cv2xpFigure 3: Convex chains and side boundaries aredisjointWe now present an e�cient implementation ofthe algorithm. Step 1 takes O(n logn) time. Step 2takes O(n) time since there are O(n) edges in Gand assigning an edge to its respective forest takesO(1) time. Step 3 involves sorting and thus takesO(n logn) time per Gi;j, thus O(n logn) time over-all.Implementing Step 4 is nontrivial. For each for-est G0i;j the main task is to compute several convexchains. Let the complete set of convex chains tobe constructed for G0i;j be CVi;j. First start withthe empty plane, and lay out the convex hull ofthe original set of obstacles. Then for each chainin CVi;j, lay out its two side boundaries on theplane (the two side boundaries are known, even ifthe chain is not yet computed). This will result ina collection of line segments in the interior of thehull, pairwise disjoint except at endpoints (this isdue to Lemma 3.3). Treat these line segments asedge obstacles, and compute a trapezoidal decom-position of the interior of the hull, where the parallelboundaries of the trapezoids are parallel to the axisof the cone Ci. Using planar point location, assigneach original obstacle vertex to the trapezoid thatcontains it. For each chain cvr , let the set of obsta-cle vertices inside the trapezoids immediately abovethe chain's side boundaries be Vr . Using an opti-mal convex hull algorithm, compute cvr using onlyVr as input. It should be clear that for two di�erentchains cvr and cvs, the corresponding sets Vr and Vsare disjoint. Thus computing G00i;j takes O(n logn)time, and therefore Step 4 takes O(n logn) time.Thus the entire algorithm runs in O(n logn) time.



4 Open ProblemsWe conclude this paper with some open problems.The foremost open problem is, are there are span-ners of the visibility graph with a maximum degreeof 3? Notice that the spanner in Theorem 1.1 hasO(1) degree, but that sheds no light on whether adegree-4 (or even a degree-3) spanner of the visibil-ity graph exists. We mention that degree-3 span-ners exist for the case of complete Euclidean graphswithout obstacles ([9]). That paper also shows that3 is a lower bound on the degree. It would be in-teresting to extend this to the case with obstacles,however we feel this may require considerably morecomplicated techniques than used in [9].For complete Euclidean graphs, spanners areknown with several sparseness properties, in addi-tion to small degree. Some examples are low weight,and small diameter ([4]). Extending these results tothe case of spanners of visibility graphs is a challeng-ing problem.In general, the problem of constructing spannersof non-complete Euclidean graphs (not just visibil-ity graphs) in both two as well as higher dimensionsneeds to be studied.References[1] I. Alth�ofer and G. Das and D. P. Dobkin and D. A.Joseph and J. Soares: On sparse spanners of weightedgraphs: Discrete Comput. Geom., Vol 9, 1993, pp 81{100.[2] S. Arikati, D. Chen, L. P. Chew, G. Das, M. Smid, C.D. Zaroliagis: Planar spanners and approximate short-est path queries among obstacles in the plane: Proc.European Symp. on Algorithms (ESA), 1996.[3] S. Arya and M. Smid: E�cient construction of abounded degree spanner with low weight: Proc. 2ndAnnu. European Sympos. Algorithms (ESA), LectureNotes in Computer Science, Vol 855, 1994, pp 48{59.[4] S. Arya and G. Das and D. M. Mount and J. S. Sa-lowe and M. Smid: Euclidean spanners: short, thinand lanky: Proc. ACM Sympos. Theory of Comput.(STOC), 1995.[5] B. Chandra and G. Das and G. Narasimhan and J.Soares: New sparseness results on graph spanners:Proc. 8th Annu. ACM Sympos. Comput. Geom., 1992,pp 192{201.[6] K. L. Clarkson: Approximation algorithms for shortestpath motion planning: Proc. ACM Sympos. Theory ofComput. (STOC), 1987, pp 56{56.[7] D. Z. Chen: On the all pairs Euclidean short path prob-lem: Proc. SIAM-ACM Sympos. on DiscreteAlgorithms(SODA), 1995.[8] L. P. Chew: There are planar graphs almost as good asthe complete graph: J. of Computer and System Sci-ences, 39, 1989, 205{219.
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