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Abstract

Given a collection of polygonal obstacles with n
vertices on the place, and any ¢ > 1, we present
an O(nlogn) time algorithm that constructs a
bounded-degree t-spanner of the visibility graph,
without first having to construct the wisibility
graph.

1 Introduction

An PBuclidean graph is defined as a graph whose
vertices are points in k-dimensional space, edges
are line segments joining pairs of points, and edge
weights are from the underlying distance metric,
typically the L, metric. If all edges are present,
the graph i1s a complete Euclidean graph, otherwise
it 1s a non-complete Fuclidean graph. A well-known
example of a non-complete Euclidean graph is the
visibility graph, defined as follows. Consider a sce-
nario where we are given a collection of pairwise
disjoint polygons on the plane. This frequently
arises in motion planning problems, where the poly-
gons represent obstacles in a cluttered workspace
within which a point robot has to navigate. Con-
sider a graph over the polygon vertices, where an
edge (u,v) belongs to the graph if the correspond-
ing line segment does not intersect the interior of
any obstacle. Such a graph is known as the visibility
graph. This graph is useful because it contains the
shortest obstacle-avoiding path between any pair of
vertices. Visibility graphs have been the subject
of a great deal of recent research, from both com-
putational and combinatorial aspects (for example,
see [14, 16, 17, 22]). Tt is known that while visi-
bility graphs are not necessarily complete, they can
be quite dense, with as many as Q(n?) edges and
Q(n) degree. Tt is of interest to investigate whether
a visibility graph contains a sparse subgraph which
“approximates” shortest paths between all pairs of
vertices. Such a subgraph would be a more com-
pact structure in motion planning applications, or
in applications where a communication network 1is
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being designed (for example, a road network linking
all the vertices).

We make this notion of “approximate” shortest
paths more precise. Let G = (V| E) be a n-vertex
connected graph with positive edge weights. A sub-
graph G’ is a t-spanner if for all u,v € V, the dis-
tance between u and v in the subgraph is at most ¢
times the corresponding distance in GG. The value ¢
is known as the stretch factor of the spanner. Span-
ners are important structures since they represent
the original graph more compactly, albeit approx-
imately. In constructing spanners, it is frequently
necessary to endow them with additional properties,
such as few edges, small total weight, small degree,
small diameter, etc. Spanners of arbitrary weighted
graphs as well as special classes of graphs such as
complete Euclidean graphs have been the subject of
much recent research. Spanners find applications in
a variety of areas: communication network design,
distributed algorithms, network routing, computa-
tional geometry and robotics. They are also fasci-
nating from a theoretical point of view, and possess
many interesting combinatorial and geometric prop-
erties. A good bibliography of past spanner research
may be found in [5]. Additionally, in this paper we
list several recent references.

While spanners of complete Euclidean graphs
have been well studied, relatively little work
has been accomplished on non-complete Euclidean
graphs, such as for example, visibility graphs. An
early result is by Clarkson ([6]) who showed how to
construct, for any ¢ > 1, a linear-sized t-spanner of
the visibility graph in O(nlogn) time without hav-
ing to first construct the visibility graph. Clark-
son (and later Chen, [7]) applied this spanner to
solving approximate shortest path problems. In [§],
Chew shows that the constrained Delaunay trian-
gulation is a planar O(1)-spanner of the visibility
graph, and can be constructed in O(nlogn) time
(however, in this result the stretch factor cannot
be arbitrarily close to 1). Recently an O(nlogn)
time algorithm has been designed by Arikati et. al.
([2]) to construct, for any ¢ > 1, a Steiner t-spanner
(here the spanner is not strictly a subgraph of the
visibility graph because it may contain additional
Steiner vertices and edges, however distances be-



tween obstacle vertices still stretch by at most t).
These Steiner spanners find applications in answer-
ing all-pairs shortest path queries amidst obstacles.

But suppose we are interested in constructing a
t-spanner such that, (a) it is a subgraph of the vis-
ibility graph, and (b) it has bounded degree? The
problem is interesting from a theoretical standpoint,
because we are trying to discover new combinato-
rial and geometric properties of visibility graphs and
their subgraphs. From a practical standpoint, such
a spanner may be used in the design of a road net-
work linking all obstacle vertices, where the objec-
tive is to decrease congestion by only allowing a few
links to be incident to any vertex. We mention that
the corresponding bounded-degree spanner prob-
lem for complete Euclidean graphs in k-dimensional
space has attracted considerable attention recently
(for example, see [3, 5, 9, 20]). However bounded-
degree spanners of visibility graphs seem harder
to construct, mainly because previously developed
techniques for complete Euclidean graphs cannot be
immediately used (such techniques rely on the fact
that “any vertex can be joined with any other ver-
tex”, which is not true when there are obstacles).

In this paper we have developed an algorithm for
constructing bounded-degree spanners of visibility
graphs. Our algorithm combines a few old tech-
niques with several new techniques. For example,
the algorithm is loosely based on the “covering by
cones” paradigm, which in the past has been very
useful in spanner construction (see [1, 6, 18]). What
is interesting is that we extend the idea much be-
yond its earlier scope, for example when we have to
deal with the special geometric constraints that the
polygonal obstacles pose. The following theorem
summarizes our result.

Theorem 1.1 Guwen a set of polygonal obstacles
with n vertices in the plane, and any t > 1, a
bounded-degree t-spanner of the visibility graph ex-
ists, and can be constructed in O(nlogn) time. The
constants implicit in the big-O depend on t.

The rest of the paper is organized as follows. In
Section 2 we review Clarkson’s spanner (see [6]),
because it provides the foundation for our spanner
algorithm. In Section 3 we show how to construct
a bounded-degree spanner, thereby proving Theo-
rem 1.1. We present some open problems in Sec-
tion 4.

2 Clarkson’s Spanner

In this section we start by reviewing Clarkson’s
spanner (see [6]), which has linear size, but may
not have bounded degree. (In our presentation, we
retain the main ideas, but present the algorithm
somewhat differently. For example, we use a plane
sweep, and also use the concept of projected dis-
tances).

Consider an infinite horizontal line passing
through an arbitrary point z. Let 8 be a small con-
stant angle (its actual value depends on the given
t) and let Ly, La, ..., Ly/26—1 be semi-infinite rays
radiating downward from z such that the angle be-
tween adjacent rays is . This partitions the lower
half-plane into a constant number of unbounded
triangles called cones, C1,Cs,...,Cr 2. For each
cone Cj, define the azis R; as the semi-infinite ray
from z which angularly bisects the cone. Let y be
any other point in the interior of C;. The projected
distance between z and y, proj(z,y), is defined to
be the distance between z and the projection of y
on R;. For a small 8, clearly the projected dis-
tance is almost equal to the actual distance, d(z,y).
(Projected distances were first used in [18] for con-
structing spanners).

The algorithm sweeps the plane in a particu-
lar direction (say from bottom to top, to be con-
sistent with the diagrams to be introduced later),
and on encountering a vertex v, decides to select
only some of the visibility graph edges that connect
it to the vertices below. The selection of visibil-
ity graph edges is simple. Translate all the cones
C1,Cs, ..., Cr96 such that their apexes become v.
For every cone Cj, of all the visibility graph edges
incident to v and contained within C;, the algorithm
selects the edge with the shortest projected length.
Once the sweep is over, the selected edges represent
the spanner, G

It is easy to see that the output has a linear
number of edges, since at every vertex at most a
constant number of edges are selected (at most one
per cone). However, the degree may not be a con-
stant. To see this, imagine that the algorithm is
actually creating a directed graph; at vertex v the
edges that are selected are given downward direc-
tions (from v to the other endpoints below). While
the output graph has a bounded out-degree, it may
have an unbounded in-degree. The output is also
a t-spanner of the visibility graph; for a proof we
refer the reader to [6]. The algorithm can be im-
plemented to run in O(n logn) time without having
to first create the visibility graph, using techniques
such as planar point location and conical Vorono:



diagrams; the details are in [6].

3 Bounding the Degree

In this section we describe our more complex algo-
rithm, which produces a bounded-degree spanner.
The algorithm consists of four steps.

Step 1: Construction of a linear-sized spanner:

Select numbers t1 and t5 such that ¢1,t5 > 1,
is very close to 1, ¢ is somewhat bigger but still
small enough so that ¢ -¢s is closer to 1 than to
t.! Create a ti-spanner of the visibility graph,
using Clarkson’s algorithm. Let this spanner

be G.

Step 2: Partition into forests:
Recall that we had used O(1) cones Cy,Ch,

.., Cr/2¢ in the previous algorithm. We are
going to refine this even further. Select an an-
gle a to be much smaller than § but which di-
vides ¢ evenly (some intuition about its value is
given in Step 3). We partition each cone C} into
O(1) subcones Cy1,C; 9, ...,Cjg/q, such that
the angle of each subcone is a. The following
terms will be useful in our explanations: the
subcones in the central region of C; are known
as central subcones, while the subcones to the
far left or far right of C; are known as periph-
eral subcones. Notice that the total number of
subcones over all the cones is 7/2«, which is a
constant.

We partition ¢ into a constant number of sub-
graphs (actually forests) as follows. Consider
(i as a directed graph, and let (v, u) be any di-
rected edge of GG (i.e. directed downwards from
v to u). If it lies inside the subcone C; ; (with
apex at v), then (v,u) belongs to the graph
G; ;. It is easy to see that each G; ; has an out-
degree of one, but may have an unbounded in-
degree. Clearly the undirected version of G ;
is a forest.

Step 3: Removal of more edges:

In this step, the algorithm performs a down-
ward sweep of G (actually over all the G, ;’s
simultaneously), and at each vertex possibly

IDue to lack of space, we will avoid deriving the exact
values of the various constants used in this version of the
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removes some of the incoming edges. The out-
put graph, G’ will be a spanner of the visibility
graph. It will have a smaller, though still not
constant, in-degree. The stretch factor will be
larger than that of G. The logic for selection or
removal of edges of G ; is as follows. Let ¢ be a
constant (approximately) equal to % (the
exact value of ¢ is somewhat different; it also
depends on « and #, but we omit details from
this version). Notice that 0 < ¢ < 1. Since ;
is selected very close to 1, ¢ is very close to 0.
Suppose the downward sweep visits a vertex v.
Sort the incoming edges of GG; ; at v by increas-
ing length. Select the shortest, whose length is
say [1. Remove all edges of length at most {1 /c.
Select the smallest of the remaining, say {s. Re-
move all edges of length at most ls/c. Repeat
this process until all incoming edges are either
selected or removed. Do this for all the forests,
then sweep downwards to the next vertex.

Once the sweep is over, each forest G;; has
been reduced to a sparser forest, say G;,Jw The
union of these forests, G’, is the output of
Step 3.

Before we describe Step 4, let us analyze G/, the
output of Step 3. Clearly the in-degree of any G;,j
may not be bounded. However if two incoming
edges of G;,j meet at a common vertex, then one
edge is much longer than the other. In addition,
the following lemma shows that G’ is a spanner.

Lemma 3.1 G’ is a (t1-12)-spanner of the visibility
graph.

Proof : In this version we use very rough calcu-
lations and simply sketch the proof. Essentially we
have to show that G’ is a ts-spanner of G. Sup-
pose an edge of GG, say (u,v), is removed while the
algorithm is visiting v. There should be an alter-
nate path in G’ of length at most ¢ - d(u, v). Sup-
pose (u,v) originally belonged to some G; ;. Then
some other edge, (w,v) belongs to G} ; such that
d(u,v) < d(w,v)/c. Let us use Figure 1 as an illus-
tration. For both u and w, the position of their Cj
cone is shown, where the right ray of u’s cone in-
tersects the left ray of v’s cone at x. It is not hard
to see that the line segments (u,z) and (z,w) do
not intersect other obstacles. We also observe that
the two edges (u,v) and (w,v) are almost parallel,
since « 1s very small. Finally the angle uzw is 6,
and since « is much smaller than #, the length of
(z,w) is negligible compared to the length of (v, w).

Define cv(w, 2, u) to be the convex chain obtained
by placing a stretched rubber band from w to z to
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Figure 1: Analysis of Step 3

u, anchoring it at w and u and releasing it at z. It
will assume a convex shape because the shrinkage
will be halted by various obstacles. The chain 1is
confined within the triangle wazu, where (w,u) is
defined as the base boundary and (w, z) and (x,u)
are defined as the side boundaries of the chain. Note
that this chain is a path from w to u in the original
visibility graph. By an induction argument which
we omit, it can be assumed that there 1s a path P
from w to u in G’ of length at most #; - ¢5 times
the length of cv(w, z, u). We thus have an alternate
path @ from v to u in G’ as follows: go from v to w,
then go along P from w to v. The length of Q) is at
most d(v, w) + 1 -t2 - (d(w, z) + d(x, u)). But since
(v,u) and (v, w) are almost parallel, and d(x,w)
is negligible compared to (v, w), the length of @ is
maximized when d(u, w) is the smallest possible, i.e.
when d(u, w) = ¢-d(v, u). In this situation d(u, z)+
d(z,v) is approximately equal to (1 — ¢) - d(u,v).
Substituting these quantities in, we get the length
of @ to be approximately at most ¢ - d(v, u)+t1-t2-
(1 —c¢)-d(v,u). Substituting for ¢, this simplifies to
at most ta - d(u, v). Thus we can conclude that G
is a tg-spanner of GG, hence a (1 - t2)-spanner of the
visibility graph. [ |

At this stage we can make some more observa-
tions. Consider a G; ; whose corresponding subcone
is C; ;. Let v be a vertex with a large in-degree.
If C;; is a central subcone, then all the incoming
edges at v will be approximately of the same length
(since o is much smaller than @). In this case, Step 3
will remove all but the shortest edge. On the other
hand, if C;; is a peripheral subcone, then the in-
coming edges at v could be of all possible lengths.

Uk

T2
Uz
fcv(ul, z1, Us)
Ty
Uy
v

Figure 2: Constructing the bounded-degree spanner

Though Step 3 prunes some of them, an unbounded
number could be left over. We can only guarantee
that for any pair of left over edges, the shorter edge
is much shorter (at most ¢ times) than the longer
edge. Figure 2 (or a symmetric equivalent) correctly
describes the geometry of all incoming edges of G;,j
at v. Notice that the order of these edges by length
is the same as their order by slope.

Step 4: Achieving bounded degree:

This final step is different from the others be-
cause here we remove more edges, and also add
back some edges. The idea is to consider each
G} ;, and create another forest 7f'; which has
bounded degree. However, G/ ;18 not necessar-
ily a subgraph of G ;. The umon of all GY;,
defined as G’ is the ﬁnal output of our algo-
rithm.

The details of the construction of G” are sim-
ple. Forall G} ;, for all vertex v of G5 ;, perform
the follovvmg operatlon Let (uy,v), (uz2,v),

.y (U, v) be the incoming edges at v in
increasing length (see Figure 2).  Retain
(ug,v). Remove (uz,v), (us,v), ..., (tr,v).
Add the chains cv(uy, 21, u2), cv(ua, 2, uz),

~,CU(Uk—1, Th—1, Uk)

This completes the description of the algorithm.
We now analyze the algorithm and its output G”.

Lemma 3.2 G” is a t-spanner of the visibility
graph.

Proof : We sketch the proof. Consider any edge
(tm,v) of G’ that got removed. Consider the al-
ternate path in G”: go from v to wy, then along
cv(uy, x1,us), then along cv(usg, x2, us), and so on



until you reach wu,,. Since « is small, and the con-
stant ¢ (used in Step 3) is small, from the geometry
of the situation it can be shown that this path is
not much longer than d(um,v). In fact, by select-
ing smaller & and smaller ¢ (which can be achieved
by selecting #; closer to 1), we can make this path
length as close to d(um,v) as we like. Since G’ is
a (t1 - t2)-spanner of the visibility graph, it follows
that G is also a spanner of the visibility graph, but
with a slightly larger stretch factor. Since ¢4 -5 has
been selected to be closer to 1 than to ¢, we can
make sure that the stretch factor of G is no more
than ¢. ]

The next two lemmas eventually show that the
degree of ' is bounded. In the construction of G/ ;,
recall that at a vertex v, all incoming edges except
the shortest are removed, and several convex chains
are added instead. For each such convex chain, we

define 1ts base vertex to be v.

Lemma 3.3 If we start with the empty plane, and
draw on it all the conver chains of G} ; and their re-
spective side boundaries, all the line segments in the
arrangement will be pairwise disjoint, except possi-
bly for sharing common endpoints.

Proof : Let cv1 = cv(um, Tm, Ums1) and cvs =
cv(up, Tp, up41) be any two convex chains of Gf' ;. If
they have the same base vertex, v, then the lemma
is clearly true (as Figure 2 shows). On the other
hand, suppose the two chains have different base
vertices, say v; and vs respectively. This involves
a detailed case analysis, which we omit. Instead,
consider Figure 3 which shows the most “crowded”
situation where we try and make the two chains in-
tersect each other. However, since vy is an obstacle
vertex, the convex chain cvs either includes vy or is
below it. Thus 1t neither intersects cv; nor the side
boundaries of cvy. [ |

Lemma 3.4 G” has bounded degree.

Proof : Since there a constant number of G,
it will suffice to prove that each of the latter has
bounded degree. Consider any GY;. It has two
kinds of edges, the convex chains, and the shortest
edges retained from G;,j at every vertex. Consider
the subgraph consisting of the convex chains. Due
to Lemma 3.3, its degree is at most 2. Next con-
sider the subgraph consisting of the shortest edges.
The degree of this subgraph is at most 2, because at
any vertex there is at most one incoming edge and
at most one outgoing edge. Thus the degree of G}/,
is bounded, which implies that the degree of G’ 1s
also bounded. ]

Figure 3: Convex chains and side boundaries are
disjoint

We now present an efficient implementation of
the algorithm. Step 1 takes O(nlogn) time. Step 2
takes O(n) time since there are O(n) edges in G
and assigning an edge to its respective forest takes
O(1) time. Step 3 involves sorting and thus takes
O(nlogn) time per G; ;, thus O(nlogn) time over-
all.

Implementing Step 4 is nontrivial. For each for-
est G;y» the main task is to compute several convex
chains. Let the complete set of convex chains to
be constructed for G;,j be C'V; ;. First start with
the empty plane, and lay out the convex hull of
the original set of obstacles. Then for each chain
in C'V;;, lay out its two side boundaries on the
plane (the two side boundaries are known, even if
the chain is not yet computed). This will result in
a collection of line segments in the interior of the
hull, pairwise disjoint except at endpoints (this is
due to Lemma 3.3). Treat these line segments as
edge obstacles, and compute a trapezoidal decom-
position of the interior of the hull, where the parallel
boundaries of the trapezoids are parallel to the axis
of the cone C;. Using planar point location, assign
each original obstacle vertex to the trapezoid that
contains it. For each chain cv,, let the set of obsta-
cle vertices inside the trapezoids immediately above
the chain’s side boundaries be V;.. Using an opti-
mal convex hull algorithm, compute cv, using only
V, as input. It should be clear that for two different
chains cv, and cvy, the corresponding sets V, and V;
are disjoint. Thus computing Gf'; takes O(nlogn)
time, and therefore Step 4 takes O(nlogn) time.
Thus the entire algorithm runs in O(nlogn) time.



4 Open Problems

We conclude this paper with some open problems.
The foremost open problem is, are there are span-
ners of the visibility graph with a maximum degree
of 37 Notice that the spanner in Theorem 1.1 has
O(1) degree, but that sheds no light on whether a
degree-4 (or even a degree-3) spanner of the visibil-
ity graph exists. We mention that degree-3 span-
ners exist for the case of complete Euclidean graphs
without obstacles ([9]). That paper also shows that
3 is a lower bound on the degree. It would be in-
teresting to extend this to the case with obstacles,
however we feel this may require considerably more
complicated techniques than used in [9].

For complete Euclidean graphs, spanners are
known with several sparseness properties, in addi-
tion to small degree. Some examples are low weight,
and small diameter ([4]). Extending these results to
the case of spanners of visibility graphs is a challeng-
ing problem.

In general, the problem of constructing spanners
of non-complete Euclidean graphs (not just visibil-
ity graphs) in both two as well as higher dimensions
needs to be studied.
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