(a) Using the deduction method, we can rewrite the given argument as:

$$[(\forall x)[P(x) \vee Q(x)] \wedge [(\exists x)P(x)]'] \rightarrow (\forall x)Q(x)$$

Consider the following proof sequence:

- (i)  $[(\exists x)P(x)]'$  hypothesis.
- (ii) P(a)' (i), e.i.
- (iii)  $(\forall x)[P(x) \lor Q(x)]$  hypothesis.
- (iv)  $P(a) \vee Q(a)$  (iii), u.i.
- (v)  $P(a)' \vee Q(a)$  (iv), implication.
- (vi) Q(a) (ii), (v), Modus Ponens.
- (vii)  $(\forall x)Q(x)$  u.g.

The last step is justified, since Q(a) was not deduced from a hypothesis in which a is a free variable nor has Q(a) been deduced by existential instantiation from a formula in which a is a free variable.

(b) Let  $M(x) \equiv$  "x is a member of the board",  $G(x) \equiv$  "x comes from Government",  $I(x) \equiv$  "x comes from Industry",  $F(x) \equiv$  "x is in favor of the motion" and  $L(x) \equiv$  "x has a law degree".

Accordingly, the given argument can be symbolized as follows:

$$[(\forall x)(M(x) \to (G(x) \lor I(x))) \land (\forall x)((G(x) \land L(x)) \to F(x)) \land [I(John)]' \land L(John)]$$
$$\to (M(John) \to F(John))$$

We use the Deduction Method to rewrite the above argument as:

$$[(\forall x)(M(x) \to (G(x) \lor I(x))) \land (\forall x)((G(x) \land L(x)) \to F(x)) \land [I(John)]' \land L(John) \land M(John)] \\ \to F(John)$$

Consider the following proof sequence:

- (i)  $\forall x (M(x) \rightarrow (G(x) \lor I(x)))$  hypothesis.
- (ii)  $M(John) \rightarrow (G(John) \vee I(John))$  Universal Instantiation.
- (iii) M(John) hypothesis.
- (iv)  $G(John) \vee I(John)$  (ii), (iii), Modus Ponens.
- (v)  $[I(John)]' \rightarrow G(John)$  (iv), implication equivalence.
- (vi) [I(John)]' hypothesis.
- (vii) G(John) (v), (vi), Modus Ponens.
- (viii) L(John) hypothesis.
- (ix)  $G(John) \wedge L(John)$  (vii), (viii), Conjunction.
- (x)  $(\forall x)((G(x) \land L(x)) \rightarrow F(x))$  hypothesis.
- (xi)  $(G(John) \wedge L(John)) \rightarrow F(John)$  (x), Universal Instantiation.
- (xii) F(John) (ix), (xi), Modus Ponens.

2

**Solution:** Let x and (x + 1) denote two consecutive integers. Observe that,

$$(x+1)^3 - x^3 = [x^3 + 3 \cdot x^2 + 3 \cdot x + 1] - x^3$$
  
=  $3 \cdot x \cdot (x+1) + 1$ 

Regardless of whether x is even or odd,  $x \cdot (x+1)$  is even and so is  $3 \cdot x \cdot (x+1)$ . It follows that  $3 \cdot x \cdot (x+1) + 1$  is odd.  $\Box$ 

3

**Solution:** We need to show that if x+1 is negative (or zero), then x is negative. Observe that decrementing a negative number always results in a negative number. This if (x+1) < 0, them (x+1) - 1 = x < 0 - 1 = -1. Likewise, if x+1=0, then x=-1<0. The claim follows.  $\Box$ 

**Solution:** Let x denote an integer and  $x^2$  denote its square. If x is odd, then so is  $x^2$  and hence  $x + x^2$  is even. If x is even, then so is  $x^2$  and hence  $x + x^2$  is even.

In either case,  $(x+x^2)$  is even and the claim follows.  $\Box$ 

5

**Solution:** BASIS: n=2.

$$LHS = \sum_{i=1}^{2} \frac{1}{i^{2}}$$

$$= \frac{1}{1} + \frac{1}{4}$$

$$= \frac{5}{4}$$

$$< \frac{3}{2}$$

$$= 2 - \frac{1}{2}$$

$$= RHS$$

Thus the basis is proven.

INDUCTIVE STEP: Assume that  $\sum_{i=1}^k \frac{1}{i^2} < 2 - \frac{1}{k}$ , for some  $k \geq 2$ . Observe that,

$$\begin{split} \sum_{i=1}^{k+1} \frac{1}{i^2} &= \sum_{i=1}^k \frac{1}{i^2} + \frac{1}{(k+1)^2} \\ &< (2 - \frac{1}{k}) + \frac{1}{(k+1)^2}, \text{ by inductive hypothesis} \\ &= 2 - (\frac{1}{k} - \frac{1}{(k+1)^2}) \\ &= 2 - (\frac{(k+1)^2 - k}{k(k+1)^2}) \\ &= 2 - (\frac{k^2 + 2k + 1 - k}{k(k+1)^2}) \\ &= 2 - (\frac{k^2 + k + 1}{k(k+1)^2}) \\ &< 2 - (\frac{k^2 + k}{k(k+1)^2}), \text{ subtracting a smaller number} \\ &= 2 - \frac{k(k+1)}{k(k+1)^2} \\ &= 2 - \frac{1}{k+1} \end{split}$$

We have thus shown that, if the conjecture is true for any  $k \ge 2$ , then it must also be true for (k+1). Using the first principle of mathematical induction, we conclude that the presented conjecture is true for all  $n \ge 2$ .  $\square$