1. Show using induction that

$$\sum_{i=1}^{n} [F(i)]^{2} = F(n) \cdot F(n+1).$$

Solution: BASIS: At n = 1, we have,

$$LHS = [F(1)]^2$$
$$= 1^2$$
$$= 1$$

Likewise,

$$RHS = F(1) \cdot F(2)$$
$$= 1 \cdot 1$$
$$= 1$$

Since LHS = RHS, the basis is proven.

INDUCTIVE STEP: Assume that the hypothesis holds for some $k \geq 1$, i.e., assume that

$$\sum_{i=1}^{k} [F(i)]^2 = F(k) \cdot F(k+1).$$

Observe that,

$$\begin{split} \sum_{i=1}^{k+1} [F(i)]^2 &= \sum_{i=1}^k [F(i)]^2 + [F(k+1)]^2 \\ &= F(k) \cdot F(k+1) + F(k+1)^2, \text{ by the inductive hypothesis} \\ &= F(k+1) \cdot [F(k) + F(k+1)] \\ &= F(k+1) \cdot F(k+2), \text{ definition of Fibonacci sequence} \end{split}$$

By applying the first principle of mathematical induction, we conclude that the conjecture is true for all integers n.

2. How many distinct *binary* operations can be defined on a set of n elements?

Solution: Focus on a specific binary operation (say \oplus) defined on the n elements. In order to define this operation, we need to construct a table with $n \times n$ entries such that the $(i,j)^{th}$ entry corresponds to $a_i \oplus a_j$, where a_i and a_j are the i^{th} and j^{th} element of the set respectively. Now note that for a binary operation that is distinct from \oplus , at least one of the $n \times n = n^2$ entries has to be different. Thus, the total number of binary operations corresponds to the number of distinct ways of filling up the operator table. Since there are n choices for each of the entries, we apply the multiplication principle to conclude that the total number of distinct binary operators is n^{n^2} .

3. Show that the set of all *infinite* length strings over the alphabet $\{a,b\}$ is not countable.

Solution: The proof closely mirrors the proof discussed in class to prove that the set of real numbers is not countable. Assume that the given set (say S) is countable; it follows that the set is denumerable and therefore there exists some enumeration of S. Let

denote one such enumeration. Construct the following string $s=s_1s_2\ldots$ as follows: $s_i=a$, if $s_{ii}=b$, else $s_i=b$. Clearly, s is an infinite length string over $\{a,b\}$ and hence belongs to S. But it cannot be the first string since it differs from the first string in the first position; likewise, it differs from the second string in the second position and in general it differs from every string in the enumeration in at least one position. Thus s cannot belong to S; this contradiction arose because we assumed that S is countable. It follows that S is not countable.

4. Let A and B denote two arbitrary sets and let $\mathcal{P}(A)$ and $\mathcal{P}(B)$ denote their power sets respectively. Argue that,

$$\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$$

Solution: Let $C = A \cap B$. Observe that $\mathcal{P}(C)$ is a set of sets, with each set being a subset of C. Let S denote an arbitrary element of $\mathcal{P}(C)$, i.e., $S \in \mathcal{P}(C)$. By the definition of power sets, $S \subseteq C$ and hence $S \subseteq A \cap B$. It follows that $S \subseteq A$ and $S \subseteq B$. By the definition of power sets, $S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$. Hence, $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. Let $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. Therefore, $S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$. Since $S \in \mathcal{P}(A)$, $S \subseteq A$; likewise, $S \subseteq B$. Therefore, $S \subseteq A \cap B$. Therefore, $S \in \mathcal{P}(A \cap B)$. \square

5. Let A, B and C denote three arbitrary sets. Show that

(a)

$$(A \cup B) - C = (A - C) \cup (B - C)$$

(b)

$$[(A' \cup B') \cap A']' = A$$

Solution:

(a) Observe that,

$$\begin{array}{ll} x \in (A \cup B) - C \\ & \to \quad x \in (A \cup B) \text{ and } x \not \in C \\ & \to \quad (x \in A \text{ or } x \in B) \text{ and } x \not \in C \\ & \to \quad (x \in A \text{ and } x \not \in C) \text{ or } (x \in B \text{ and } x \not \in C) \\ & \to \quad (x \in A - C) \text{ or } (x \in B - C) \\ & \to \quad x \in (A - C) \cup (B - C) \end{array}$$

We have thus shown that $[(A \cup B) - C] \subseteq [(A - C) \cup (B - C)]$. The above argument can be reversed to show that $[(A - C) \cup (B - C)] \subseteq [(A \cup B) - C]$.

(b) First observe that

$$(A' \cup B') \cap A' = (A' \cap A') \cup (A' \cap B')$$
, Distributivity
= $A' \cup (A' \cap B')$, Identity
= A' , since $A' \cap B \subseteq A$

Therefore, $[(A' \cup B') \cap A']' = (A')' = A$, as per the rules of complementation.