1. Show using induction that

i[F(i)]‘“’ =F(n)-Fln+1).

i=1

Solution: BASIS: Atn = 1, we have,

LHS = [F(1)]
= 1?
= 1
Likewise.
RHS = F(1)-F(2)

1-1
= 1
Since LHS = RHS, the basis is proven.
INDUCTIVE STEP: Assume that the hypothesis holds for some £ > 1, i.e., assume that

k

SIF@)] = F(k) - F(k +1).

i=1
Observe that,

k+1 k

Sl

[F(@)? + [F(k+ 1)
i=1
= F(k)- F(k+1)4 F(k+1)% hy the inductive hypothesis
F(k+1)-[F(k)+ F(k+1)]
= F(k+1) - F(k+2), definition of Fibonacci sequence

By applying the first principle of mathematical induction, we conclude that the conjecture is true for all integers n.
o

2. How many distinct binary operations can be defined on a set of n elements?

Solution: Focus on a specific binary operation (say ) defined on the n elements. In order to define this operation,
we need to construct a table with » > n entries such that the (7, 7)*" entry corresponds to a; = a;, where a; and a;
are the i and j** element of the set respectively. Now note that for a binary operation that is distinct from @, at
least one of the n x n = n? entries has to be different. Thus, the total number of binary operations corresponds to the
number of distinct ways of filling up the operator table. Since there are n choices for each of the entries, we apply the
multiplication principle to conclude that the total number of distinct binary operators is nm’.

O
3. Show that the set of all infinite length strings over the alphabet {a, b} is not countable.
Solution: The proof closely mirrors the proof discussed in class to prove that the set of real numbers is not countable.

Assume that the given set (say 5) is countable; it follows that the set is denumerable and therefore there exists some
enumeration of S. Let

511812813 - - -

S21522523 - ..

Sp18p2Sp3 - - -

denote one such enumeration. Construct the following string § = s152. .. as follows: s; = a. if s;; = b, else s; = b.
Clearly, s is an infinite length string over {a, b} and hence belongs to S. But it cannot be the first string since it differs
from the first string in the first position; likewise, it differs from the second string in the second position and in general
it differs from every string in the enumeration in at least one position. Thus s cannot belong to S’ this contradiction
arose because we assumed that S is countable. It follows that S is not countable.

0O



4. Let A and B denote two arbitrary sets and let P(A) and P(B) denote their power sets respectively. Argue that,
PANB)="P(A)NP(B)

Solution: Let ¢' = A N B. Observe that P(() is a set of sets, with each set being a subset of . Let S denote an
arbitrary element of P(C'), i.e., S € P(C'). By the definition of power sets, S C €' and hence S € AN B. It follows
that S € Aand S € B. By the definition of power sets, S € P(A) and S € P(B). Hence, S € P(A) N P(B).

Let S € P(A)NP(B). Therefore, S € P(A)and S € P(B). Since 5 € P(A). S C A: likewise, S C B. Therefore,
S C An B. Therefore, S € P(ANB). O

5. Let A, B and (' denote three arbitrary sets. Show that

(a)
(AUB)—C=(A-C)U(B-C)
(b)
(AUBYNA)Y=A4
Solution:

(a) Observe that,

re(AUB)-C

re(AuB)andx € C

(re Aorz e B)and x ¢ C

(reAdand ¢ C)or (r € Band x ¢ ()
(reA-C)or(re B-C)
reE(A-C)u(B-0)

Lrrrd

We have thus shown that [(A U B) — C] € [(4 — C) U (B — )]. The above argument can be reversed to show
that[(A—-C)U(B-C)] C[(AUB)-C].

(b) First observe that
(AuB)YNA = (A nA)u (A" n B, Distributivity
= AU(A'NBY), Identity
= A sinceANBCA

Therefore, [(A" U B")n A" = (A")" = A, as per the rules of complementation.



