CSE2315: Homework 4

Out: March 25
Due: April 1.

1. (10 points) Show using induction that

$$
\sum_{i=1}^{n}[F(i)]^{2}=F(n) \cdot F(n+1) .
$$

2. (10 points) How many distinct binary operations can be defined on a set of n elements?
3. (10 points) Show that the set of all infinite length strings over the alphabet $\{a, b\}$ is not countable.
4. (10 points) Let A and B denote two arbitrary sets and let $P(A)$ and $P(B)$ denote their power sets respectively. Argue that,

$$
P(A \cap B)=P(A) \cap P(B)
$$

5. (20 points) Let A, B and C denote three arbitrary sets. Show that
(a)

$$
(A \cup B)-C=(A-C) \cup(B-C)
$$

(b)

$$
\left[\left(A^{\prime} \cup B^{\prime}\right) \cap A^{\prime}\right]^{\prime}=A
$$

