Discrete Structures CSE 2315 (Spring 2014)

Lecture 10 Proof

Heng Huang, Ph.D.
Department of Computer Science and Engineering

Proof Techniques

- Applicable to all domains
- Exhaustive proof.
- Direct proof.
- Proof by contraposition.
- Proof by contradiction.
- Serendipity.
- Applicable to Structured Domains
- Mathematical Induction.
- Diagonalization.

Serendipity

- Prayer! Good Luck.
- Example

Number of games in a tennis tournament.

Induction

- Motivation: reaching arbitrary rungs of a ladder.

Can only be applied to a well-ordered domain, where the concept of "next" is unambiguous, e.g. integers.

- Assume that the domain is the set of positive integers
- $\mathrm{P}(1)$ is true.
- $(\forall \mathrm{k})[\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1)]$
- Then, $\mathrm{P}(\mathrm{n})$ is true, for all positive integers n .
- The first principle of mathematical induction
- Showing that $\mathrm{P}(1)$ is true is called the basis step.
- Assuming that $\mathrm{P}(\mathrm{k})$ is true, in order to show that $\mathrm{P}(\mathrm{k}+1)$ is true is called the inductive hypothesis.

Induction Examples

- Show that the sum of the first n integers is $\mathrm{n}(\mathrm{n}+1) / 2$
- Main ideas
- Mathematicize the conjecture.
- Prove the basis (usually $\mathrm{P}(1)$ and usually easy.)
- Assume P(k).
- Show $\mathrm{P}(\mathrm{k}+1)$. (The hard part. Use mathematical manipulation.)
- Show that the sum of the squares of the first n integers is $n(n+1)(2 n+1) / 6$
- Show that the sum of the first n odd integers is n^{2}
- Show that $7^{\mathrm{n}}-5^{\mathrm{n}}$ is always an even number for $\mathrm{n}>=0$, i.e., show that $2 \mid\left(7^{\mathrm{n}}-5^{\mathrm{n}}\right), \forall \mathrm{n}>=0$.

Second Principle of Induction

- Also called Strong Induction. Is necessary, when the first principle does not help us.
- Assume that the domain is the set of integers.
- $P(1)$ is true.
- $(\forall \mathrm{k})[\mathrm{P}(\mathrm{r})$ true for all $\mathrm{r}, 1<=\mathrm{r}<=\mathrm{k} \rightarrow \mathrm{P}(\mathrm{k}+1)]$
- Then, $\mathrm{P}(\mathrm{n})$ is true for all n .
- Show that every number greater than or equal to 8 can be expressed in the form $5 \mathrm{a}+3 \mathrm{~b}$, for suitably chosen a and b .

Induction Example

- Proof

The conjecture is clearly true for 8,9 and 10 . Assume that the conjecture holds for all $\mathrm{r}, 8<=\mathrm{r}<=\mathrm{k}$. Consider the integer $\mathrm{k}+1$. Without loss of generality, we assume that (k $+1)>=11$. Observe that $(\mathrm{k}+1)-3=\mathrm{k}-2$ is at least 8 and less than k . As per the inductive hypothesis, $\mathrm{k}-2$ can be expressed in the form $3 a+5 b$, for suitably chosen a and b. It follows that $(k+1)=3(a+1)+5 b$, can also be so expressed. Applying the second principle of mathematical induction, we conclude that the conjecture is true.

