Discrete Structures CSE 2315 (Spring 2014)

Lecture 12 Set

Heng Huang, Ph.D.
Department of Computer Science and Engineering

Set Fundamentals

- A set is an unordered collection of objects
- The fundamental question in set theory is membership, i.e., does object x belong to set A . This is denoted as: does $x \in A$?
- Two sets are equal, if they contain the same elements. Logically,

$$
A=B \Rightarrow(\forall x)[x \in A \leftrightarrow x \in B]
$$

Fundamentals

- Representing Sets
- The extensional method - Explicitly enumerate all the elements of the set; e.g., $A=\{1,5,7\}, B=\{1,2,3, \ldots, 100\}, C=\{$ red, white, blue $\}$.
- The intensional method - Specify a property P that characterizes the set elements; e.g., $A=\{x \mid x$ is an integer less than 7, but at least 3\}.
- Recursion - We can describe the set of all even positive integers as follows:
(a) $2 \in S$. (b) if $x \in S$, then so is $x+2$.
- Some important sets
- N - The set of non-negative integers $\{0,1, \ldots \ldots\}$.
- Z - The set of all integers $\{\ldots,-1,0,1, \ldots\}$.
- Q - The set of all rational numbers.
- R - The set of all real numbers.
- C - The set of all complex numbers.
- \{\} or \emptyset - The set with no elements or null set.

Relationships

- A is said to be a subset of B , denoted by

$$
A \subseteq B, \text { if }(\forall x)[x \in A \rightarrow x \in B]
$$

- A is said to be a proper subset of B, denoted by

$A \subset B$, if $A \subseteq B$, but $A \neq B$

- Example
- The statement $\emptyset \subseteq C$ is always true, since the statement $(\forall x)(x \in \phi \rightarrow x \in C)$ is vacuously true.
- Let $A=\{x \mid x$ is a multiple of 8$\}$ and $B=\{x \mid x$ is a multiple of 4$\}$. Show that $\mathrm{A} \subseteq \mathrm{B}$.
- Proof?

Power Set

- The set of all possible subsets of a set S is called its power set and denoted by $\mathrm{P}(\mathrm{S})$
- Example

Let $S=\{0,1\} . \mathrm{P}(\mathrm{S})=\{\phi,\{0\},\{1\},\{0,1\}\}$.

- Exercise Show that if a set has n elements, then its power set will have $2^{\text {n }}$ elements

Binary Operations

- o is a binary operation on a set S, if for every ordered pair (x , $y)$ of S, x o y exists, is unique, and is a member of S. The properties "exists" and "is unique" are collectively referred to as the property of being "well-defined"; the property that x o $y \in S$ is called the closure property.
- Example

Is + an operation on N ?
Is - an operation on N ? Z?
Is \div an operation on R ?
Is o an operation on N , where x o $\mathrm{y}=1$, if $\mathrm{x}>=5$; x o $\mathrm{y}=0$, if $\mathrm{x}<=5$

Unary Operations

- \# is said to be a unary operation on S, if for all $x \in S, x^{\#}$ is well-defined and S is closed under \#.
- The operation $x^{\#}=-x$ is a unary operation on Z, but not on N.
- The operation $x^{\#}=(x)^{1 / 2}$ is not a unary operation on N, Z or Q ; but it is a unary operation on R_{+}.

Operations on Sets

- For discussing operations on sets, we assume the existence of a ground set S and its power set $\mathrm{P}(\mathrm{S})$. All operations are defined on the elements of $\mathrm{P}(\mathrm{S}) ; \mathrm{P}(\mathrm{S})$ is called the universal set or the universe of discourse.
- Principal Operations

Let $A, B \in \mathcal{P}(S)$, i.e., A and B are subsets of S.
(i) $A \cup B$ (union) is defined as: $\{x \mid x \in A$ or $x \in B\}$.
(ii) $A \cap B$ (intersection) is defined as: $\{x \mid x \in A$ and $x \in B\}$.
(iii) A^{\prime} (complement) is defined as : $\{x \mid x \in S$ and $x \notin A\}$.
(iv) $A-B$ (difference) is defined as: $\{x \mid x \in A$ and $x \notin B\}$.
(v) $A \times B$ (Cartesian Product) is defined as: $\{(x, y) \mid x \in A$ and $y \in B\}$.

Examples

Let $A=\{1,2,3\}$ and $B=\{a, b, 1\}$. Compute $A \cup B, A \cap B, A-B, A \times B$ and $B \times A$.

$$
\begin{aligned}
& A \cup B=\{1,2,3, a, b\}, \\
& A \cap B=\{1\}, \\
& A-B=\{2,3\}, \\
& A \times B=\{(1, a),(1, b),(1,1),(2, a),(2, b),(2,1),(3, a),(3, b),(3,1)\}, \\
& B \times A=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3),(1,1),(1,2),(1,3)\} .
\end{aligned}
$$

- Note
$A \times A$ is referred to as $A^{2}, A \times A \times A$ as A^{3} and so on.

Set Identities

- Recall that all sets under discussion are subsets of the ground set S.

$$
\text { Commutative : }\left\{\begin{array}{l}
A \cup B=B \cup A \\
A \cap B=B \cap A
\end{array}\right.
$$

$$
\text { Associative : }\left\{\begin{array}{l}
(A \cup B) \cup C=A \cup(B \cup C) \\
(A \cap B) \cap C=A \cap(B \cap C)
\end{array}\right.
$$

$$
\text { Distributive : }\left\{\begin{array}{l}
A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{array}\right.
$$

$$
\text { Identity : }\left\{\begin{array}{l}
A \cup \emptyset=A \\
A \cap S=A
\end{array}\right.
$$

$$
\text { Complement : }\left\{\begin{array}{r}
A \cup A^{\prime}=S \\
A \cap A^{\prime}=\emptyset
\end{array}\right.
$$

Proving Set Identities

Show that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
Observe that,

$$
\begin{aligned}
x \in A \cup(B \cap C) & \rightarrow x \in A \text { or } x \in(B \cap C) \\
& \rightarrow(x \in A) \text { or }(x \in B \text { and } x \in C) \\
& \rightarrow(x \in A \text { or } x \in B) \text { and }(x \in A \text { or } x \in C) \\
& \rightarrow(x \in A \cup B) \text { and }(x \in A \cup C) \\
& \rightarrow x \in(A \cup B) \cap(A \cup C)
\end{aligned}
$$

Simply reverse the argument to show that every element in the set represented by the RHS is also an element of the set represented by the LHS.

Proving Set Identities

- Show that

$$
[A \cup(B \cap C)] \cap\left(\left[A^{\prime} \cup(B \cap C)\right] \cap(B \cap C)^{\prime}\right)=\emptyset
$$

- Solution

$$
\begin{array}{r}
{[A \cup(B \cap C)] \cap\left(\left[A^{\prime} \cup(B \cap C)\right] \cap(B \cap C)^{\prime}\right)} \\
=\left([A \cup(B \cap C)] \cap\left[A^{\prime} \cup(B \cap C)\right]\right) \cap(B \cap C)^{\prime} \text { Associativity } \\
=\left([(B \cap C) \cup A] \cap\left[(B \cap C) \cup A^{\prime}\right]\right) \cap(B \cap C)^{\prime} \text { Commutativity } \\
=\left(\left[(B \cap C) \cup\left(A \cap A^{\prime}\right)\right]\right) \cap(B \cap C)^{\prime} \text { Distributivity } \\
=[(B \cap C) \cup \emptyset] \cap(B \cap C)^{\prime} \text { complement } \\
=(B \cap C) \cap(B \cap C)^{\prime} \text { identity } \\
=\emptyset \text { complement }
\end{array}
$$

Countable and Uncountable Sets

- The number of elements in a set S is called its cardinality.
- A set S is said to be finite, if $|S|=k$, for some $k \in N$.
- A set S is said to be denumerable, if its cardinality is ∞, but its elements can be enumerated in some order. e.g., $\mathrm{N}, \mathrm{Q}^{+}$, $\mathrm{Z}^{+}, \mathrm{Z}^{-}, \mathrm{Z}$ and so on.
- A set S is said to be countable if it is either finite or denumerable. Otherwise, it is said to be uncountable.

Countability

- Is the set Q^{+}(positive rationals) countable?
- Solution

$$
\left[\begin{array}{cccc}
1 / 1, & 1 / 2, & 1 / 3, & 1 / 4, \ldots \\
2 / 1, & 2 / 2, & 2 / 3, & 2 / 4, \ldots \\
3 / 1, & 3 / 2, & 3 / 3, & 3 / 4, \ldots \\
& \vdots & \vdots \vdots &
\end{array}\right]
$$

- Cantor's Theorem
- The set of all real numbers in the interval $[0,1]$ is uncountable.
- Proof?

