
Discrete Structures 
CSE 2315 (Spring 2014) 

 

Lecture 12 Set 
 

Heng Huang, Ph.D. 

Department of Computer Science and Engineering 

 



Spring 2014   Heng Huang                                                  Discrete Structures 2 

Set Fundamentals 

• A set is an unordered collection of objects 

 

• The fundamental question in set theory is membership, i.e., 

does object x belong to set A. This is denoted as: does           ? 

 

• Two sets are equal, if they contain the same elements. 

Logically, 
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Fundamentals 

• Representing Sets 

– The extensional method - Explicitly enumerate all the elements of the set; 

e.g., A = {1, 5, 7}, B = {1, 2, 3, …,100}, C = {red, white, blue}. 

– The intensional method - Specify a property P that characterizes the set 

elements; e.g., A = {x| x is an integer less than 7, but at least 3}. 

– Recursion - We can describe the set of all even positive integers as follows:  

 (a) 2    S. (b) if x    S, then so is x + 2. 

• Some important sets 

– N - The set of non-negative integers {0, 1, …… }. 

– Z - The set of all integers {…, -1, 0, 1, …}. 

– Q - The set of all rational numbers. 

– R - The set of all real numbers. 

– C - The set of all complex numbers. 

– {} or        - The set with no elements or null set.  
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Relationships 

• A is said to be a subset of B, denoted by 

 

• A is said to be a proper subset of B, denoted by 

 

• Example 

– The statement             is always true, since the statement  

         is vacuously true. 

– Let A = {x | x is a multiple of 8} and B = {x | x is a multiple of 4}. 

Show that A     B. 

– Proof? 
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Power Set 

• The set of all possible subsets of a set S is called its power set 

and denoted by P(S) 

 

• Example 

 Let S = {0, 1}. P(S) = {f, {0}, {1}, {0, 1}}. 

 

• Exercise 

 Show that if a set has n elements, then its power set will have 

2n elements 
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Binary Operations 

• o is a binary operation on a set S, if for every ordered pair (x, 

y) of S, x o y exists, is unique, and is a member of S. The 

properties “exists” and “is unique” are collectively referred to 

as the property of being “well-defined”; the property that x o 

y    S is called the closure property. 

• Example 

 Is + an operation on N? 

 Is - an operation on N? Z? 

 Is - an operation on R? 

 Is o an operation on N, where x o y = 1, if x>=5; x o y = 0, if x<=5 
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Unary Operations 

• # is said to be a unary operation on S, if for all x   S, x# is 

well-defined and S is closed under #. 

 

• The operation x# = -x is a unary operation on Z, but not on 

N. 

 

• The operation x# = (x)1/2 is not a unary operation on N, Z 

or Q; but it is a unary operation on R+. 
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Operations on Sets 

• For discussing operations on sets, we assume the existence 

of a ground set S and its power set P(S). All operations are 

defined on the elements of P(S); P(S) is called the universal 

set or the universe of discourse. 

 

• Principal Operations 
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Examples 

• Note 

 A x A is referred to as A2, A x A x A as A3 and so 

on. 
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Set Identities 

• Recall that all sets under discussion are subsets of the ground 

set S. 
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Proving Set Identities 

 Simply reverse the argument to show that every element in 

the set represented by the RHS is also an element of the set 

represented by the LHS. 
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Proving Set Identities 

• Show that 

 

• Solution 
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Countable and Uncountable Sets 

• The number of elements in a set S is called its cardinality. 

 

• A set S is said to be finite, if |S| = k, for some k    N. 

 

• A set S is said to be denumerable, if its cardinality is    , but 

its elements can be enumerated in some order. e.g., N, Q+, 

Z+, Z-, Z and so on. 

 

• A set S is said to be countable if it is either finite or 

denumerable. Otherwise, it is said to be uncountable. 
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Countability 

• Is the set Q+ (positive rationals) countable? 

 

• Solution 

 

 

 

 

• Cantor’s Theorem 

– The set of all real numbers in the interval [0, 1] is uncountable. 

– Proof? 


