Discrete Structures CSE 2315 (Spring 2014)

Lecture 14 Binomial Theorem

Heng Huang, Ph.D. Department of Computer Science and Engineering

Motivation of The Binomial Theorem

- (i) $(a+b)^1 = a+b$.
- (ii) $(a+b)^2 = a^2 + 2ab + b^2$.
- (iii) $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

(iv)
$$(a+b)^4 = ???$$

We want a general formula that permits us to write down the terms of $(a + b)^n$ without actual multiplication.

Pascal's Triangle

Row 0:					1				
Row 1:				1		1			
Row 2:			1		2		1		
Row 3:		1		3		3		1	
:									
Row n:	1		п				n		1

Roy	v 0:					C(0, 0)				
Roy	v 1:				<i>C</i> (1, 0)		<i>C</i> (1, 1)			
Rov	v 2:			<i>C</i> (2, 0)		<i>C</i> (2, 1)		<i>C</i> (2, 2)		
Roy	v 3:		<i>C</i> (3, 0)		<i>C</i> (3, 1)		<i>C</i> (3, 2)		<i>C</i> (3, 3)	
	:									
Rov	v <i>n</i> :	C(n, 0)		<i>C</i> (<i>n</i> , 1)				C(n, n - 1)		<i>C</i> (<i>n</i> , <i>n</i>)

The Binomial Theorem

$$(a+b)^n = \sum_{i=0}^n C(n,i) a^{n-i} \cdot b^i, \ \forall n \ge 0.$$

- Expand $(x 3)^4$.
- Show that

$$\sum_{i=0}^{n} C(n, i) = 2^{n}$$

Pascal's Formula

• Theorem

$$C(n, k) = C(n - 1, k - 1) + C(n - 1, k), 1 \le k \le n - 1.$$

Proof:

$$C(n-1, k-1) + C(n-1, k) = \frac{(n-1)!}{(k-1)![(n-1-(k-1)!]} + \frac{(n-1)!}{k!(n-1-k)!}$$

$$= \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-1-k)!}$$

$$= \frac{k(n-1)!}{k!(n-k)!} + \frac{(n-k)(n-1)!}{k!(n-k)!}$$

$$= \frac{(n-1)!}{k!(n-k)!} [k + (n-k)]$$

$$= \frac{n(n-1)!}{k!(n-k)!}$$

Spring 2014

Heng Huang