Discrete Structures CSE 2315 (Spring 2014)

Lecture 15 Relations

Heng Huang, Ph.D.
Department of Computer Science and Engineering

Fundamental Notions

- Given a set S, a binary relation on a set S is any subset of $S X$ S, , i.e., any set of ordered pairs of elements of S. We typically use $\mathrm{x} \rho$ y to mean $(\mathrm{x}, \mathrm{y}) \in \rho$.
- Example:

Let $S=\{1,2\} . S \times S=\{(1,1),(1,2),(2,1),(2,2)\}$. Let ρ be a relation on $S \times S$, defined as follows: $\mathrm{x} \rho \mathrm{y} \leftrightarrow \mathrm{x}+\mathrm{y}$ is odd. Then, $\rho=\{(1,2),(2,1)\}$.

- Given n sets $\mathrm{S} 1, \mathrm{~S} 2, \ldots, \mathrm{Sn}$, an n -ary relation on $\mathrm{S} 1 \times \mathrm{S} 2 \ldots$ Sn is any subset of $\mathrm{S} 1 \times \mathrm{S} 2 \ldots \mathrm{Sn}$.

Examples

- Membership

Let ρ be a relation on $N \times N$ defined as: $x \rho y \leftrightarrow x=y+1$. Enumerate the elements of ρ.
Solution: $(1,0),(2,1),(3,2), \ldots$

- A binary relation on $\mathrm{A} \times \mathrm{B}$ is a pairing of elements in A , with the elements in B .

Classification

- Let ρ be a binary relation defined on $S \times T$. Observe that each element of ρ has the form ($s 1, s 2$), where s1 $\in S$ and $s 2 \in \mathrm{~T} . \rho$ is said to be:
- one-one, if each first component and each second component appear exactly once, e.g., $\rho=\{(1,2),(2,1)\}$.
- one-many, if some first component appears more than once, e.g., $\rho=\{(1,1),(1,2)\}$.
- many-one, if some second component, appears more than once, e.g., $\rho=\{(1,1),(2,1)\}$.
- many-many, if some first component appears more than once and some second component appears more than once, e.g., $\rho=\{(1,1),(2,1),(1,3)\}$.

Set Properties

- Relations are sets; therefore, all set identities (commutativity, associativity, distributivity, etc.) also apply to relations. In particular, $\rho \cup \rho^{\prime}=S^{2}$ and $\rho \cap \rho^{\prime}=\emptyset$
- Additional Properties

A relation ρ on $S \times S$ is said to be:
(i) Reflexive, if $(\forall x)(x \in S \rightarrow(x, x) \in \rho)$.
(ii) Symmetric, if $(\forall x)(\forall y)(x \in S \wedge y \in S \wedge(x, y) \in \rho \rightarrow(y, x) \in \rho)$.
(iii) Transitive, if
$(\forall x)(\forall y)(\forall z)(x \in S \wedge y \in S \wedge z \in S \wedge(x, y) \in \rho \wedge(y, z) \in \rho \rightarrow(x, z) \in \rho)$.
(iv) Antisymmetric, if $(\forall x)(\forall y)(x \in S \wedge y \in S \wedge(x, y) \in \rho \wedge(y, x) \in \rho \rightarrow x=y)$.

Examples

- Relations on $\mathrm{N} \times \mathrm{N}$
$-=$ is reflexive, symmetric and transitive.
$-<$ is transitive but not reflexive or symmetric.
$-<=$ is antisymmetric.
- Relations on the power set $\mathrm{P}(\mathrm{S})$ of a set S The relation \subseteq is antisymmetric

Closure of a relation

- A binary relation $\rho *$ on a set S, is the closure of a relation ρ on S with respect to a property P , if
$-\quad \rho^{*}$ has property P ,
$-\rho \subseteq \rho^{*}$,
- ρ^{*} is the subset of any other relation on S that includes ρ and has property P .
- Let $S=\{1,2,3\}$ and $\rho=\{(1,1),(1,2),(1,3),(3,1),(2,3)\}$.
- Is ρ reflexive? The reflexive closure is: $\rho U\{(2,2),(3,3)\}$.
- Is symmetric? The symmetric closure is: $\rho \cup\{(2,1),(3,2)\}$.
- Is transitive? The transitive closure is: $\rho \cup\{(3,2),(3,3),(2,1),(2,2)\}$.
- Compute the reflexive and transitive closure of ρ.

Partial Orderings

- A binary relation on a set S that is reflexive, antisymmetric and transitive is called a partial ordering on S.
- Example
(i) $\operatorname{On} \mathcal{N}, x \rho y \leftrightarrow x \leq y$.
(ii) $\operatorname{On} \mathcal{P}(\mathcal{N}), A \rho B \leftrightarrow A \subseteq B$.
(iii) On $\{0,1\}, x \rho y \leftrightarrow x=y^{2}$.
- If ρ is a partial ordering on $S,(S, \rho)$ is called a partially ordered set (or poset). (S, \leq) will be used to denote an arbitrary partially ordered set.

Partial Orderings

- Let (S, \leq) denote some poset. Let x and y be two elements in S, such that $x \leq y$, but $x!=y$ (written as $x<y$). x is said to be a predecessor of y and y is said to be a successor of x. If there is no $z \in S$, such that $x<z<y$, then x is said to be an immediate predecessor of y.
- If S is finite, the poset (S, \leq) can be represented by a Hasse diagram, in which elements are represented by vertices and the property "is-related-to" by a straight line.

Example

- Consider the relation $\mathrm{x} \mid \mathrm{y}$ on the set $\mathrm{S}=\{1,2,3,6,12,18\}$.
- Enumerate the ordered pairs of the relation.

Solution: $\{(1,2),(1,3),(1,6),(1,12),(1,18),(2,6),(2$,
12), $(2,18),(3,6),(3,12),(3,18),(6,12),(6,18),(1,1),(2$,
$2),(3,3),(6,6),(12,12),(18,18)\}$.

- Write all the predecessors of 18.

Solution: $\{1,2,3,6\}$.

- Write the immediate predecessors of 6 .

Solution: $\{2,3\}$.

- Draw the Hasse diagram for this poset.

Additional Issues

- If every two elements of the ground set are related to each other, the partial ordering is called a total ordering or chain. e.g., \leq on N.
- An element $x \in S$ is said to be minimal in the $\operatorname{poset}(S, \leq)$, if there is no element y such that $\mathrm{y}<\mathrm{x}$.
- An element $x \in S$ is said to be the least element in the poset (S, \leq), if for every element $y \in S, x \leq y$.
- If a poset (S, \leq) has a least element, then this element is unique and minimal. Every minimal element is not necessarily a least element.

Equivalence Relations

- A binary relation on a set S that is reflexive, symmetric and transitive is said to be an equivalence relation
- Example
- On any set $S, x \rho y \leftrightarrow x=y$.
- On $N, x \rho y \leftrightarrow x+y$ is even.
- A partition of a set S is a collection of nonempty disjoint sets whose union is S.
- We use $[x]$ to denote the set $\{y \mid y \in S \triangle x \rho y\}$. $[x]$ is said to be the equivalence class of x.

Partition theorem

- An equivalence relation ρ on a set S determines a partition of S and every partition of a set S determines an equivalence relation on S.

Proof: Somewhat tedious but the main idea is that if there is an element common to two distinct equivalence classes, then these classes coincide.

- How does the equivalence relation $\mathrm{x} \rho \mathrm{y} \leftrightarrow \mathrm{x}+\mathrm{y}$ is even partition N?
Solution: All odd numbers are in one partition and all even numbers in the other partition!

One more example

- For integers x and y and any positive integer n, $\mathrm{x}=\mathrm{y} \bmod \mathrm{n}$, if $\mathrm{x}-\mathrm{y}$ is an integral multiple of n
- Enumerate the equivalence classes of congruence modulo 4. Solution

$$
\begin{aligned}
{[0] } & =\{\ldots,-8,-4,0,4,8, \ldots\} \\
{[1] } & =\{\ldots,-7,-3,1,5, \ldots\} \\
{[2] } & =\{\ldots,-6,-2,2,6, \ldots\} \\
{[3] } & =\{\ldots,-5,-1,3,7, \ldots\}
\end{aligned}
$$

