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Fundamental Notions 

• Given a set S, a binary relation on a set S is any subset of S x 
S, , i.e., any set of ordered pairs of elements of S. We 

typically use x r y to mean (x, y)    r. 

 

• Example: 

 Let S = {1, 2}. S x S = {(1, 1), (1, 2), (2, 1), (2, 2)}. Let r be 

a relation on S x S, defined as follows: x r y      x + y is odd. 

Then, r = {(1, 2), (2, 1)}. 

 

• Given n sets S1, S2, … , Sn, an n-ary relation on S1 x S2 … 

Sn is any subset of S1 x S2 … Sn. 
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Examples 

• Membership 

 Let r be a relation on N x N defined as: x r y      x = y + 1. 

Enumerate the elements of r. 

 Solution: (1, 0), (2, 1), (3, 2), . . . . 

 

• A binary relation on A x B is a pairing of elements in A, 

with the elements in B. 



Spring 2014   Heng Huang                                                  Discrete Structures 4 

Classification 

• Let r be a binary relation defined on S x T. Observe that 
each element of r has the form (s1, s2), where s1   S and  

 s2    T. r is said to be: 

– one-one, if each first component and each second 
component appear exactly once, e.g., r = {(1, 2), (2, 1)}. 

– one-many, if some first component appears more than 
once, e.g., r = {(1, 1), (1, 2)}. 

– many-one, if some second component, appears more 
than once, e.g., r = {(1, 1), (2, 1)}. 

– many-many, if some first component appears more than 
once and some second component appears more than 
once, e.g., r = {(1, 1), (2, 1), (1, 3)}. 
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Set Properties 

• Relations are sets; therefore, all set identities (commutativity, 

associativity, distributivity, etc.) also apply to relations. In 

particular,   

 

• Additional Properties 
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Examples 

• Relations on N x N 

– = is reflexive, symmetric and transitive. 

– < is transitive but not reflexive or symmetric. 

– <= is antisymmetric. 

 

• Relations on the power set P(S) of a set S 

 The relation     is antisymmetric 
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Closure of a relation 

• A binary relation r* on a set S, is the closure of a relation r on S with 
respect to a property P, if 

–  r* has property P, 

–  r    r* , 

–  r* is the subset of any other relation on S that includes r and has 
property P. 

 

• Let S = {1, 2, 3} and r = {(1, 1), (1, 2), (1, 3), (3, 1), (2, 3)}. 

– Is r reflexive? The reflexive closure is: r U {(2, 2), (3, 3)}. 

– Is  symmetric? The symmetric closure is: r U {(2, 1), (3, 2)}. 

– Is  transitive? The transitive closure is: r U {(3, 2), (3, 3), (2, 1), (2, 2)}. 

 

• Compute the reflexive and transitive closure of r. 
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Partial Orderings 

• A binary relation on a set S that is reflexive, antisymmetric 

and transitive is called a partial ordering on S. 

 

• Example 

 

 

 

• If r is a partial ordering on S, (S, r) is called a partially 

ordered set (or poset). (S,     ) will be used to denote an 

arbitrary partially ordered set. 



Spring 2014   Heng Huang                                                  Discrete Structures 9 

Partial Orderings 

• Let (S,     ) denote some poset. Let x and y be two elements 

in S, such that x    y, but x != y (written as x < y). x is said to 

be a predecessor of y and y is said to be a successor of x. If 

there is no z    S, such that x < z < y, then x is said to be an 

immediate predecessor of y. 

 

• If S is finite, the poset (S,     ) can be represented by a Hasse 

diagram, in which elements are represented by vertices and 

the property “is-related-to” by a straight line. 
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Example 

• Consider the relation x | y on the set S = {1, 2, 3, 6, 12, 18}. 

– Enumerate the ordered pairs of the relation. 

 Solution: {(1, 2), (1, 3), (1, 6), (1, 12), (1, 18), (2, 6), (2, 

12), (2, 18), (3, 6), (3, 12), (3, 18), (6, 12), (6, 18), (1, 1), (2, 

2), (3, 3), (6, 6), (12, 12), (18, 18)}. 

– Write all the predecessors of 18. 

 Solution: {1, 2, 3, 6}. 

– Write the immediate predecessors of 6. 

 Solution: {2, 3}. 

– Draw the Hasse diagram for this poset. 
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Additional Issues 

• If every two elements of the ground set are related to each 
other, the partial ordering is called a total ordering or chain. 
e.g.,      on N. 

 

• An element x    S is said to be minimal in the poset (S,     ), if 
there is no element y such that y < x. 

 

• An element x    S is said to be the least element in the poset 
(S,     ), if for every element y     S, x    y. 

 

• If a poset (S,     ) has a least element, then this element is 
unique and minimal. Every minimal element is not 
necessarily a least element. 
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Equivalence Relations 

• A binary relation on a set S that is reflexive, symmetric and 
transitive is said to be an equivalence relation 

 

• Example 

– On any set S, x r y      x = y. 

– On N, x r y      x + y is even. 

 

• A partition of a set S is a collection of nonempty disjoint sets 
whose union is S. 

 

• We use [x] to denote the set {y | y    S     x r y}. [x] is said to 
be the equivalence class of x. 
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Partition theorem 

• An equivalence relation r on a set S determines a partition of 

S and every partition of a set S determines an equivalence 

relation on S. 

 Proof: Somewhat tedious but the main idea is that if there is 

an element common to two distinct equivalence classes, then 

these classes coincide. 

 

• How does the equivalence relation x r y      x + y is even 

partition N? 

 Solution: All odd numbers are in one partition and all even 

numbers in the other partition! 
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One more example 

• For integers x and y and any positive integer n, 

 x = y mod n, if x - y is an integral multiple of n 

 

• Enumerate the equivalence classes of congruence modulo 4. 

 Solution 

   [0] = {…, -8, -4, 0, 4, 8, …} 

   [1] = {…, -7, -3, 1, 5, …} 

   [2] = {…, -6, -2, 2, 6, …} 

   [3] = {…, -5, -1, 3, 7, …} 


