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Functions 

• Some common functions 

 y = x2. 

 y = x1/2 - sin x. 

 

• Definition 

 Let S and T denote two sets. A function (mapping) from S to 
T (denoted by f : S T) is a subset of S X T, in which each 
member of S appears exactly once as the first component of 
an ordered pair. S is called the domain and T is called the 
codomain of the function. If (s, t)     f , then we write t = 
f(s); t is the image of s under f and s is the pre-image of t 
under f . For A     S, f (A) ={f (a) : a    A}. 
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Examples 

• Is f : N  N a function, where f (x) = x1/2. 

• Is f : N  R a function, where f (x) = x1/2. 

• Is g : N  N a function, where 

 g(x) = x, if x <= 5 

  = 10 – x, if 5 <= x <= 10 

  = x, if x >= 11 

 

• Functions can be defined on more than one variable; for 

instance, f : N X N  N , z = x2 + y2. 
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Function Fundamentals 

• Definition 

 Two functions f and g are said to be equal, if they have the 
same domain, the same co-domain and the same association 
of values in the co-domain with values in the domain. 

 

• Example 

 Let S = {1, 2, 3} and let T = {1, 4, 9}. Let f : S  T be 
defined as follows: f = {(1, 1), (2, 4), (3, 9)}. The function g : 
S  T is defined as follows: 

  

 

 Is f = g? 
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Onto Functions 

• Let f : S  T denote an arbitrary function. Let R = {t | t    T 
and t = f(s), for some s    S}, i.e., R = f(S). R is called the 
range of f; clearly R    T. If R = T, then f is called an onto (or 
surjective) function. 

• Example 
– Is f : R+  R defined as f (x) = x1/2 surjective? 

– Is f : R+  R+ defined as f (x) = x1/2 surjective? 

– Is f : R  R defined as f (x) = x2 surjective? 

– Is f : R  R defined as f (x) = x3 surjective? 

• In order to show that a function f : S  T is surjective, 
– Pick an arbitrary element t   T. 

– Show that there exists some s   S, such that f(s) = t. 
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One-one Functions 

• A function f : S  T is said to be one-one or injective, if 
distinct elements in S have distinct images in T. 
 

• Example 

– Is f : R  R defined as f (x) = x2 injective? 

– Is f : R  R defined as f (x) = x3 injective? 

 

• In order to show that a function f : S  T is injective, 

– Show that for arbitrarily chosen a, b    S, a != b  f(a) != 
f(b). 

– Alternatively, show that for arbitrarily chosen f(a), f(b)    
T, f (a) = f (b)  a = b. 
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Bijections 

• Definition 

 A function f : S  T is said to be bjiective if it is both 

injective and surjective. 

 

• Example 

– Is f : R  R defined as f (x) = x2 bijective? 

– Is f : R  R defined as f (x) = x3 bijective? 

 



Spring 2014   Heng Huang                                                  Discrete Structures 8 

Function Composition 

• Let f: S  T and g: T  U denote two functions. Then, the 
composition function, g o f is a function from S to U defined 
as (g o f )(s) = g(f(s)). 

 

• Arbitrary functions cannot be composed; the domains and 
ranges have to be compatible. 

 

• Let f : R  R be defined by f(x) = x2 and g: R  R be 
defined by g(x) =     . Compute (g o f )(2.3) and (f o g)(2.3). 

 Solution: (g o f )(2.3) = g(f(2.3)) = g(5.29) = 5.  

  (f o g)(2.3) = f(g(2.3)) = f (2) = 22 = 4. 
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Function Composition 

• The composition of two injective functions is injective. 

 Proof. 
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Function composition 

• The composition of two surjective function is surjective. 

 Proof. 

 

 

 

 

 

 

• The composition of two bijective functions is a bijective 

function. 
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Inverse Functions 

• The function iS: S  S which maps each element of S to 

itself, is called the identity function on S. 

 

• Let f: S  T denote a bijection. Since f is onto, 

corresponding to every element t    T, there is some element 

s    S, such that f(s) = t. Since f is injective, there is only one s 

such that f(s) = t. But this could be construed as the 

existence of a function g: T  S, i.e., g(t) = s. Note that g is 

also a bijective function! Observe that (g o f )(s) = g(f(s)) = 

g(t) = s, i.e., (g o f ) = iS. Similarly, (f o g) = iT. 
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Inverse Functions 

• Let f: S  T denote a function; if there exists a function g: T 

 S, such that (g o f ) = iS and (f o g) = iT, then g is called 

the inverse function of f and denoted by f-1. 

 

• f: S  T is a bijection if and only if f-1 exists. 

 

• Example 

 Find the inverse of f : R  R defined as f(x) = 3x + 4. 
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Equivalent Sets 

• A set S is equivalent to a set T, if there is a bijection f: S  T. 

Two sets that are equivalent have the same cardinality. 

 

• Do Z and N have the same cardinality? 

 

• Cantor: For any set S, S and P(S) are not equivalent. 

 Proof: 
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Permutation Functions 

• A bijection f from a set A to itself is called a permutation 
function. Note that f has A as both its domain and its range. 

 

• A permutation function represents a reordering of the set. 
e.g.,  A = {1, 2, 3, 4}, f = (1 2 3 4; 2 3 1 4) 

 

• A cycle in a permutation of the form (a1, a2, …, ak) 
represents the fact that element a1 is mapped to a2, a2 is 
mapped to a3, . . . , ak-1 is mapped ak and ak is mapped to a1. 
e.g., f above can be represented as (1 2 3) o (4). 

 

• A permutation function in which no element is mapped to 
itself is called a derangement. 
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Counting Functions 
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Order of Magnitude of Functions 

• The order theory enables us to compare functions, just as the 

theory of arithmetic enables us to compare numbers. In case 

of functions, we are interested in rate of growth, i.e., does 

function f grow at a faster rate than function g? 

• Note 

– Constants do not matter in rate of growth. 

– The starting point of measurement does not matter. 

– We only care about functions from R>=0  R>=0 . 

• Example: 

– Which function grows faster: 100x2 or 1/106 x3? 

– Which function grows faster: x2 - 10 or x + 10? 
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Order of Magnitude 

• Let f and g be functions mapping non-negative reals to non-

negative reals. Then f = O(g), if there exist constants c and 

n0 such that for all n >= n0, f(x) <= c g(x). 

• Let f and g be functions mapping non-negative reals to non-

negative reals. Then f = W(g), if there exist constants c and 

n0 such that for all n >= n0, f(x) >= c g(x). 

• Let f and g be functions mapping non-negative reals to non-

negative reals. Then f = Q(g), if f = O(g) and g = O(f ). 

• If f = O(g), either f = Q(g) or f = O(g). If f = W(g), either f 

= Q(g) or g = O(f ). 
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Examples 

• Let f(x) = 2x2 - 2 and g(x) = 1/100 x2 - 100. f = Q(g). 

 

• Let f(x) = 2x2 - 2 and g(x) = 1/100 x - 100. f = W(g). 

 

• Let f(x) = 2x2 - 2 and g(x) = 1/100 x - 100. g = O(f). 
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Test to determine order 

• Show that x = O(x2). 

• Show that x = O(x log x). 

• Show that log x = O(x). 


