Discrete Structures CSE 2315 (Spring 2014)

Lecture 17 Graphs

Heng Huang, Ph.D.
Department of Computer Science and Engineering

Agenda - Graphs

- Graph basics and definitions
- Vertices/nodes, edges, adjacency, incidence
- Degree, in-degree, out-degree
- Degree, in-degree, out-degree
- Subgraphs, unions, isomorphism
- Adjacency matrices
- Types of Graphs
- Trees
- Undirected graphs
- Simple graphs, Multigraphs, Pseudographs
- Digraphs, Directed multigraph
- Bipartite
- Complete graphs, cycles, wheels, cubes, complete bipartite

Uses of Graph Theory in CS

- Car navigation system
- Efficient database
- Build a bot to retrieve info off WWWW
- Representing computational models
- Many other applications.
- This course we focus more on the properties of abstract graphs rather on algorithms

Graphs -Intuitive Notion

A graph is a bunch of vertices (or nodes) represented by circles • which are connected by edges, represented by line segments.
Mathematically, graphs are binary-relations on their vertex set (except for multigraphs).
In Data Structures one often starts with trees and generalizes to graphs. In this course, opposite approach: We start with graphs and restrict to get trees.

Trees

A very important type of graph in CS is called a tree:

Trees

A very important type of graph in CS is called a tree:

Trees

A very important type of graph in CS is called a tree:

Trees

A very important type of graph in CS is called a tree:

Real
Tree
Spring 2014

Heng Huang

Simple Graphs

Different purposes require different types of graphs.
EG: Suppose a local computer network

- Is bidirectional (undirected)
- Has no loops (no "self-communication")
- Has unique connections between computers

Sensible to represent as follows:

Simple Graphs

- Vertices are labeled to associate with particular computers
- Each edge can be viewed as the set of its two endpoints

Simple Graphs

DEF: A simple graph $G=(V, E)$ consists of a nonempty set V of vertices (or nodes) and a set E (possibly empty) of edges where each edge is a subset of V with cardinality 2 (an unordered pair).

Q: For a set V with n elements, how many possible edges there?

Simple Graphs

A: The number of pairs in V

$$
=C(n, 2)=n \cdot(n-1) / 2
$$

Q: How many possible graphs are there for the same set of vertices V ?

Simple Graphs

A: The number of subsets in the set of possible edges. There are $n \cdot(n-1) / 2$ possible edges, therefore the number of graphs on V is $2^{n(n-1) / 2}$

Multigraphs

If computers are connected via internet instead of directly, there may be several routes to choose from for each connection. Depending on traffic, one route could be better than another. Makes sense to allow multiple edges, but still no self-loops:

Multigraphs

Edge-labels distinguish between edges sharing same endpoints. Labeling can be thought of as function:

$$
\begin{aligned}
& e_{1} \rightarrow\{1,2\}, e_{2} \rightarrow\{1,2\}, e_{3} \rightarrow\{1,3\}, \\
& e_{4} \rightarrow\{2,3\}, e_{5} \rightarrow\{2,3\}, e_{6} \rightarrow\{1,2\}
\end{aligned}
$$

Multigraphs

DEF: A multigraph $G=(V, E, f)$ consists of a nonempty set V of vertices (or nodes), a set E (possibly empty) of edges and a function f with domain E and codomain the set of pairs in V.

Pseudographs

If self-loops are allowed we get a pseudograph:

Now edges may be associated with a single vertex, when the edge is a loop
$e_{1} \rightarrow\{1,2\}, e_{2} \rightarrow\{1,2\}, e_{3} \rightarrow\{1,3\}$,
$e_{4} \rightarrow\{2,3\}, e_{5} \rightarrow\{2\}, e_{6} \rightarrow\{2\}, e_{7} \rightarrow\{4\}$

Multigraphs

DEF: A pseudograph $G=(V, E, f)$ consists of a non-empty set V of vertices (or nodes), a set E (possibly empty) of edges and a function f with domain E and codomain the set of pairs and singletons in V.

Undirected Graphs Terminology

Vertices are adjacent if they are the endpoints of the same edge.

Q: Which vertices are adjacent to 1? How about adjacent to 2,3 , and 4 ?

Undirected Graphs Terminology

(4)
$\mathrm{A}: 1$ is adjacent to 2 and 3
2 is adjacent to 1 and 3
3 is adjacent to 1 and 2
4 is not adjacent to any vertex

Undirected Graphs Terminology

A vertex is incident with an edge (and the edge is incident with the vertex) if it is the endpoint of the edge.

Q: Which edges are incident to 1? How about incident to 2,3 , and 4 ?

Undirected Graphs Terminology

(4)
A: $e_{1}, e_{2}, e_{3}, e_{6}$ are incident with 1
2 is incident with $e_{1}, e_{2}, e_{4}, e_{5}, e_{6}$
3 is incident with e_{3}, e_{4}, e_{5}
4 is not incident with any edge

Digraphs

Digraphs can be used as a way of representing relations:

Q: What type of pair should each edge be (multiple edges not allowed)?

Digraphs

A: Each edge is directed so an ordered pair (or tuple) rather than unordered pair.

Thus the set of edges E is just the represented relation on V.

Digraphs

DEF: A directed graph (or digraph) G
$=(V, E)$ consists of a non-empty set V of vertices (or nodes) and a set E of edges with $E \subseteq V \times V$.
The edge (a, b) is also denoted by $a \rightarrow b$ and a is called the source of the edge while b is called the target of the edge.
Q: For a set V with n elements, how many possible digraphs are there?

Digraphs

A: The same as the number of relations on V, which is the number of subsets of $V \times V$ so $2^{n \cdot n}$.

Directed Multigraphs

If also want to allow multiple edges in a digraph, get a directed multigraph (or multi-digraph).

Q: How to use sets and functions to deal with multiple directed edges, loops?

Directed Multigraphs

A: Have function with domain the edge set and codomain $V \times V$.

$e_{1} \rightarrow(1,2), e_{2} \rightarrow(1,2), e_{3} \rightarrow(2,2), e_{4} \rightarrow(2,3)$,
$e_{5} \rightarrow(2,3), e_{6} \rightarrow(3,3), e_{7} \rightarrow(3,3)$

Degree

The degree of a vertex counts the number of edges that seem to be sticking out if you looked under a magnifying glass:

Degree

The degree of a vertex counts the number of edges that seem to be sticking out if you looked under a magnifying glass:

Degree

The degree of a vertex counts the number of edges that seem to be sticking out if you looked under a magnifying glass:

Thus $\operatorname{deg}(2)=7$ even though 2 only incident wit 5 edges.
Q: How to define this formally?

Degree

A: Add 1 for every regular edge incident with vertex and 2 for every loop. Thus $\operatorname{deg}(2)=1+1+1+2$ $+2=7$

Oriented Degree when Edges Directed

The in-degree of a vertex (deg) counts the number of edges that stick in to the vertex. The out-degree $\left(\mathrm{deg}^{+}\right)$counts the number sticking out.

Q: What are in-degrees and out-degrees of all the vertices?

Oriented Degree when Edges Directed

$$
\text { A: } \quad \begin{aligned}
\operatorname{deg}^{-}(1) & =0 \\
\operatorname{deg}^{-}(2) & =3 \\
\operatorname{deg}^{-(3)} & =4 \\
\operatorname{deg}^{+}(1) & =2 \\
\operatorname{deg}^{+}(2) & =3 \\
\operatorname{deg}^{+}(3) & =2
\end{aligned}
$$

Handshaking Theorem

There are two ways to count the number of edges in the above graph:

1. Just count the set of edges: 7
2. Count seeming edges vertex by vertex and divide by 2 because double-counted edges:

$$
\begin{aligned}
& (\operatorname{deg}(1)+\operatorname{deg}(2)+\operatorname{deg}(3)+\operatorname{deg}(4)) / 2= \\
& (3+7+2+2) / 2=14 / 2=7
\end{aligned}
$$

Handshaking Theorem

THM: In an undirected graph

$$
|E|=\frac{1}{2} \sum_{e \in E} \operatorname{deg}(e)
$$

In a directed graph

$$
|E|=\sum_{e \in E} \operatorname{deg}^{+}(e)=\sum_{e \in E} \operatorname{deg}^{-}(e)
$$

Q: In a party of 5 people can each person be friends with exactly three others?

Handshaking Theorem

A: Imagine a simple graph with 5 people as vertices and edges being undirected edges between friends (simple graph assuming friendship is symmetric and irreflexive). Number of friends each person has is the degree of the person.
Handshaking would imply that
$|E|=($ sum of degrees $) / 2 \quad$ or
$2|E|=($ sum of degrees $)=(5 \cdot 3)=15$.
Impossible as 15 is not even. In general:

Handshaking Theorem

Lemma: The number of vertices of odd degree must be even in an undirected graph.
Proof: Otherwise would have
$2|E|=$ Sum of even no.'s

+ an odd number of odd no.'s
\rightarrow even $=$ even + odd
-this is impossible. •

Graph Patterns Complete Graphs - K_{n}

A simple graph is complete if every pair of distinct vertices share an edge. The notation K_{n} denotes the complete graph on n vertices.

Graph Patterns Cycles - C_{n}

The cycle graph C_{n} is a circular graph with $V=$ $\{0,1,2, \ldots, n-1\}$ where vertex i is connected to $i+1$ $\bmod n$ and to $i-1 \bmod n$. They look like polygons:

C_{1}

C_{2}

C_{3}

C_{4}

C_{5}

Graph Patterns Wheels - W_{n}

A: Pseudographs
The wheel graph W_{n} is just a cycle graph with an extra vertex in the middle:

W_{1}

W_{2}

W_{3}

W_{4}

W_{5}

Usually consider wheels with 3 or more spokes only.

Graph Patterns Cubes - Q_{n}

The n-cube Q_{n} is defined recursively. Q_{0} is just a vertex. Q_{n+1} is gotten by taking 2 copies of Q_{n} and joining each vertex v of Q_{n} with its copy v^{\prime} :

Bipartite Graphs

A simple graph is bipartite if V can be partitioned into $V=V_{1} \cup V_{2}$ so that any two adjacent vertices are in different parts of the partition. Another way of expressing the same idea is bichromatic: vertices can be colored using two colors so that no two vertices of the same color are adjacent.

Bipartite Graphs

EG: C_{4} is a bichromatic:

And so is bipartite, if we redraw it:

Bipartite Graphs

EG: C_{4} is a bichromatic:

And so is bipartite, if we redraw it:

Bipartite Graphs

EG: C_{4} is a bichromatic:

And so is bipartite, if we redraw it:

Bipartite Graphs

EG: C_{4} is a bichromatic:

And so is bipartite, if we redraw it:

Bipartite Graphs

EG: C_{4} is a bichromatic:

And so is bipartite, if we redraw it:

Bipartite Graphs

EG: C_{4} is a bichromatic:

And so is bipartite, if we redraw it:

Bipartite Graphs

EG: C_{4} is a bichromatic:

And so is bipartite, if we redraw it:

Bipartite Graphs

EG: C_{4} is a bichromatic:

And so is bipartite, if we redraw it:

Bipartite Graphs

EG: C_{4} is a bichromatic:

And so is bipartite, if we redraw it:

Bipartite Graphs

EG: C_{4} is a bichromatic:

And so is bipartite, if we redraw it:

Bipartite Graphs

EG: C_{4} is a bichromatic:

And so is bipartite, if we redraw it:

Bipartite Graphs

EG: C_{4} is a bichromatic:

And so is bipartite, if we redraw it:

Q: For which n is C_{n} bipartite?

Bipartite Graphs

A: C_{n} is bipartite when n is even. For even n color all odd numbers red and all even numbers green so that vertices are only adjacent to opposite color.
If n is odd, C_{n} is not bipartite. If it were, color 0 red. So 1 must be green, and 2 must be red. This way, all even numbers must be red, including vertex $n-1$. But $n-1$ connects to $0 \rightarrow \leftarrow$.

Graph Patterns Complete Bipartite - $K_{m, n}$

When all possible edges exist in a simple bipartite graph with m red vertices and n green vertices, the graph is called complete bipartite and the notation $K_{m, n}$ is used. EG:

$$
K_{2,3}
$$

$K_{4,5}$

Subgraphs

Notice that the 2-cube

occurs

inside the 3-cube
words, Q_{2} is a subgraph of Q_{3} :
DEF: Let $G=(V, E)$ and $H=(W, F)$ be graphs. H is said to be a subgraph of G, if $W \subseteq V$ and $F \subseteq E$.
Q: How many Q_{2} subgraphs does Q_{3} have?

Subgraphs

A: Each face of Q_{3} is a Q_{2} subgraph so the answer is 6 , as this is the number of faces on a 3 -cube:

Unions

In previous example can actually reconstruct the 3cube from its 62 -cube faces:

Unions

If we assign the 2 -cube faces (aka S quares) the names S_{1}, $S_{2}, S_{3}, S_{4}, S_{5}, S_{6}$ then Q_{3} is the union of its faces:

$$
Q_{3}=S_{1} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5} \cup S_{6}
$$

Unions

DEF: Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two simple graphs (and V_{1}, V_{2} may or may not be disjoint). The union of G_{1}, G_{2} is formed by taking the union of the vertices and edges. I.E: $G_{1} \cup G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$.
A similar definitions can be created for unions of digraphs, multigraphs, pseudographs, etc.

Adjacency Matrix

We already saw a way of representing relations on a set with a Boolean matrix:

Adjacency Matrix

Since digraphs are relations on their vertex sets, can adopt the concept to represent digraphs. In the context of graphs, we call the representation an adjacency matrix :
For a digraph $G=(V, E)$ define matrix A_{G} by:

- Rows, Columns -one for each vertex in V
- Value at $i^{\text {th }}$ row and $j^{\text {th }}$ column is
-1 if $i^{\text {th }}$ vertex connects to $j^{\text {th }}$ vertex $(i \rightarrow j)$
- 0 otherwise

Adjacency Matrix -Directed Multigraphs

Can easily generalize to directed multigraphs by putting in the number of edges between vertices, instead of only allowing 0 and 1 :
For a directed multigraph $G=(V, E)$ define the matrix A_{G} by:

- Rows, Columns -one for each vertex in V
- Value at $i^{\text {th }}$ row and $j^{\text {th }}$ column is
- The number of edges with source the $i^{\text {th }}$ vertex and target the $j{ }^{\text {th }}$ vertex

Adjacency Matrix -Directed Multigraphs

Q: What is the adjacency matrix?

Adjacency Matrix -Directed Multigraphs

A:

$$
\left(\begin{array}{llll}
0 & 3 & 0 & 1 \\
0 & 1 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Adjacency Matrix -General

Undirected graphs can be viewed as directed graphs by turning each undirected edge into two oppositely oriented directed edges, except when the edge is a self-loop in which case only 1 directed edge is introduced. EG:

Adjacency Matrix -General

Q: What's the adjacency matrix?

Adjacency Matrix -General

A:

$$
\left(\begin{array}{llll}
0 & 2 & 1 & 0 \\
2 & 2 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Notice that answer is symmetric.

Adjacency Matrix -General

For an undirected graph $G=(V, E)$ define the matrix A_{G} by:

- Rows, Columns -one for each element of V
- Value at $i^{\text {th }}$ row and $j^{\text {th }}$ column is the number of edges incident with vertices i and j.
This is equivalent to converting first to a directed graph as above. Or by allowing undirected edges to take us from i to j can simply use definition for directed graphs.

