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Agenda – Graphs  

• Graph basics and definitions 
– Vertices/nodes, edges, adjacency, incidence 

– Degree, in-degree, out-degree 

– Degree, in-degree, out-degree 

– Subgraphs, unions, isomorphism 

– Adjacency matrices 

 

• Types of Graphs 
– Trees 

– Undirected graphs 
• Simple graphs, Multigraphs, Pseudographs 

– Digraphs, Directed multigraph 

– Bipartite 

– Complete graphs, cycles, wheels, cubes, complete bipartite 
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Uses of Graph Theory in CS 

• Car navigation system 

• Efficient database  

• Build a bot to retrieve info off WWW 

• Representing computational models 

• Many other applications.   

• This course we focus more on the properties of 
abstract graphs rather on algorithms 
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Graphs –Intuitive Notion 

A graph is a bunch of vertices (or nodes) represented by 

circles      which are connected by edges, represented 

by line segments         .  

Mathematically, graphs are binary-relations on their 

vertex set (except for multigraphs). 

In Data Structures one often starts with trees and 

generalizes to graphs.  In this course, opposite 

approach:  We start with graphs and restrict to get 

trees. 
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Trees 

A very important type of graph in CS is called a tree: 
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Trees 

transformation 
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Simple Graphs 

Different purposes require different types of graphs. 

EG:  Suppose a local computer network 

– Is bidirectional (undirected) 

– Has no loops (no “self-communication”) 

– Has unique connections between computers 

Sensible to represent as follows: 
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Simple Graphs 

 

 

 

 

 

 

• Vertices are labeled to associate with particular 
computers 

• Each edge can be viewed as the set of its two 
endpoints 

1 2 

3 4 

{1,2} 

{3,4} 
{2,4} {1,3} {2,3} 

{1,4} 
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Simple Graphs 

DEF:  A simple graph G = (V,E ) consists of a non-

empty set V of vertices (or nodes) and a set E 

(possibly empty) of edges where each edge is a 

subset of V with cardinality 2 (an unordered pair). 

 

Q:  For a set V with n elements, how many possible 

edges there? 
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Simple Graphs 

A:  The number of pairs in V   

= C (n,2) = n · (n -1) / 2 

Q:  How many possible graphs are there for the same 

set of vertices V ? 
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Simple Graphs 

A:  The number of subsets in the set of possible edges.  

There are n · (n -1) / 2 possible edges, therefore the 

number of graphs on V is 2n(n -1)/2 
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Multigraphs 

If computers are connected via internet instead of 

directly, there may be several routes to choose from 

for each connection.  Depending on traffic, one 

route could be better than another.  Makes sense to 

allow multiple edges, but still no self-loops: 
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Multigraphs 

 

 

 

 

Edge-labels distinguish between edges sharing same 
endpoints.  Labeling can be thought of as function: 

 e1  {1,2}, e2  {1,2}, e3  {1,3},     

 e4  {2,3}, e5  {2,3}, e6  {1,2} 

1 2 

3 4 

e1 

e3 

e2 

e4 e5 

e6 
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Multigraphs 

DEF:  A multigraph G = (V,E,f ) consists of a non-

empty set V of vertices (or nodes), a set E 

(possibly empty) of edges and a function f with 

domain E and codomain the set of pairs in V. 
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Pseudographs 

If self-loops are allowed we get a pseudograph: 

 

 

 

 

Now edges may be associated with a single vertex, when 

the edge is a loop 

e1  {1,2}, e2  {1,2}, e3  {1,3},  

e4  {2,3}, e5  {2}, e6  {2}, e7  {4} 

1 2 

3 4 

e1 

e3 

e2 

e4 
e5 

e6 

e7 
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Multigraphs 

DEF:  A pseudograph G = (V,E,f ) consists of a 

non-empty set V of vertices (or nodes), a set E 

(possibly empty) of edges and a function f with 

domain E and codomain the set of pairs and 

singletons in V. 
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Undirected Graphs Terminology 

Vertices are adjacent if they are the endpoints of the 

same edge. 

 

 

 

 

Q:  Which vertices are adjacent to 1?  How about 

adjacent to 2, 3, and 4? 

1 2 

3 4 

e1 

e3 

e2 

e4 e5 

e6 
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Undirected Graphs Terminology 

 

 

 

 

A: 1 is adjacent to 2 and 3 

  2 is adjacent to 1 and 3 

  3 is adjacent to 1 and 2 

  4 is not adjacent to any vertex 

1 2 

3 4 

e1 

e3 

e2 

e4 e5 

e6 
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Undirected Graphs Terminology 

A vertex is incident  with an edge (and the edge is 
incident with the vertex) if it is the endpoint of the 
edge. 

 

 

 

 

Q:  Which edges are incident to 1?  How about 
incident to 2, 3, and 4? 

1 2 

3 4 

e1 

e3 

e2 

e4 e5 

e6 
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Undirected Graphs Terminology 

 

 

 

 

A: e1, e2, e3, e6 are incident with 1 

  2 is incident with e1, e2, e4, e5, e6  

  3 is incident with e3, e4, e5  

  4 is not incident with any edge 

1 2 

3 4 

e1 

e3 

e2 

e4 e5 

e6 
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Digraphs 

Digraphs can be used as a way of representing relations: 

 

 

 

 

 

 

 

Q:  What type of pair should each edge be (multiple 
edges not allowed)? 

1 

2 

3 

4 
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Digraphs 

A:  Each edge is directed so an ordered pair (or tuple) rather 

than unordered pair. 

 

 

 

 

 

 

Thus the set of edges E is just the represented relation on 

V. 

1 

2 

3 

4 

(1,2) 

(1,1) 

(2,2) 

(2,4) 

(1,3) 

(2,3) 

(3,4) 

(3,3) 

(4,4) 
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Digraphs 

DEF:  A directed graph (or digraph)    G 
= (V,E ) consists of a non-empty set V of vertices 
(or nodes) and a set E of edges with E V V. 

The edge (a,b) is also denoted by a b and a is called the 
source of the edge while b is called the target  of the 
edge. 

Q:  For a set V with n elements, how many possible 
digraphs are there? 

  Heng Huang                                                  Discrete Structures 



Spring 2014 26 

Digraphs 

A:  The same as the number of relations on V, which 

is the number of subsets of V V so 2n·n. 
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Directed Multigraphs 

If also want to allow multiple edges in a digraph, get a 

directed multigraph (or multi-digraph). 

 

 

 

 

Q:  How to use sets and functions to deal with multiple 

directed edges, loops? 

1 

2 

3 
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Directed Multigraphs 

A:  Have function with domain the edge set and 
codomain V V . 

 

 

 

 

 

e1(1,2), e2(1,2), e3(2,2), e4  (2,3), 

e5  (2,3), e6  (3,3), e7  (3,3) 

1 

2 

3 

e1 

e3 

e2 

e4 
e5 

e7 

e6 
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Degree 

The degree of a vertex counts the number of edges 

that seem to be sticking out if you looked under a 

magnifying glass: 

 

 

 

 

1 

 

2 

 

3 

e1 

e3 

e2 

e4 

e5 

e6 
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Degree 

The degree of a vertex counts the number of edges 

that seem to be sticking out if you looked under a 

magnifying glass: 

 

 

 

 

 

 

1 

 

2 

 

3 

e1 

e3 

e2 

e4 

e5 

e6 

magnify 
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Degree 

The degree of a vertex counts the number of edges 
that seem to be sticking out if you looked under a 
magnifying glass: 

 

 

 

 

 

Thus deg(2) = 7 even though 2 only incident with 5 
edges. 

Q:  How to define this formally? 

 

1 

 

2 

 

3 

e1 

e3 

e2 

e4 

e5 

e6 

magnify  
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Degree 

A:  Add 1 for every regular edge incident with vertex 

and 2 for every loop.  Thus deg(2) = 1 + 1 + 1 + 2 

+ 2 = 7 

 

1 

 

2 

 

3 

e1 

e3 

e2 

e4 

e5 

e6 

magnify  
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Oriented Degree when Edges Directed 

The in-degree of a vertex (deg-) counts the number of 
edges that stick in to the vertex.  The out-degree 
(deg+) counts the number sticking out. 

 

 

 

 

Q:  What are in-degrees and out-degrees of all the 
vertices? 

1 

2 

3 
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Oriented Degree when Edges Directed 

A:  deg-(1) = 0 

  deg-(2) = 3 

  deg-(3) = 4 

  deg+(1) = 2 

  deg+(2) = 3 

  deg+(3) = 2 

1 

2 

3 
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Handshaking Theorem 

 

 

 

 

There are two ways to count the number of edges in 
the above graph: 

1. Just count the set of edges:  7 

2. Count seeming edges vertex by vertex and divide by 
2 because double-counted edges:  

 ( deg(1)+deg(2)+deg(3)+deg(4) )/2 = 
 (3+7+2+2)/2 = 14/2 = 7 

1 2 

3 4 

e1 

e3 

e2 

e4 
e5 

e6 

e7 

  Heng Huang                                                  Discrete Structures 



Spring 2014 36 

Handshaking Theorem 

THM: In an undirected graph 

 

 

In a directed graph  

 

 

 

Q: In a party of 5 people can each person be friends 

with exactly three others? 
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Handshaking Theorem 

A: Imagine a simple graph with 5 people as vertices and 
edges being undirected edges between friends 
(simple graph assuming friendship is symmetric and 
irreflexive).  Number of friends each person has is 
the degree of the person. 

Handshaking would imply that  

|E | = (sum of degrees)/2  or 

2|E | = (sum of degrees) = (5·3) = 15. 

Impossible as 15 is not even.  In general: 
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Handshaking Theorem 

Lemma:  The number of vertices of odd degree must 
be even in an undirected graph. 

Proof :  Otherwise would have  

2|E | =  Sum of even no.’s 

   + an odd number of odd no.’s 

even = even + odd  

            –this is impossible.  • 
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Graph Patterns Complete Graphs - Kn 

A simple graph is complete if every pair of distinct 

vertices share an edge.  The notation Kn denotes the 

complete graph on n vertices. 

 

 

 

    K1          K2       K3       K4         K5 
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Graph Patterns Cycles - Cn 

The cycle graph Cn is a circular graph with V = 

{0,1,2,…,n-1} where vertex i is connected to i +1 

mod n and to i -1 mod n.  They look like polygons: 

 

 

 

    C1       C2    C3        C4     C5 
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Graph Patterns Wheels - Wn  

A:  Pseudographs 

The wheel graph Wn is just a cycle graph with an extra 
vertex in the middle: 

 

 

 

    W1    W2        W3      W4           W5 

 

Usually consider wheels with 3 or more spokes only. 
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Graph Patterns Cubes - Qn 

The n-cube Qn is defined recursively. Q0 is just a vertex. 

Qn+1 is gotten by taking 2 copies of Qn  and joining 

each vertex v of Qn  with its copy v’ : 

 

 

 

 

 

   Q0               Q1    Q2           Q3                  Q4 (hypercube) 
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Bipartite Graphs 

A simple graph is bipartite if V can be partitioned 

into V = V1  V2  so that any two adjacent vertices 

are in different parts of the partition.  Another way 

of expressing the same idea is bichromatic :  
vertices can be colored using two colors so that no 

two vertices of the same color are adjacent. 
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Bipartite Graphs 

EG: C4 is a bichromatic:  

 

 

And so is bipartite, if we redraw it: 
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Bipartite Graphs 

EG: C4 is a bichromatic:  

 

 

And so is bipartite, if we redraw it: 

 

 

 

 

 
  Heng Huang                                                  Discrete Structures 



Spring 2014 52 

Bipartite Graphs 
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Bipartite Graphs 
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Bipartite Graphs 

EG: C4 is a bichromatic:  

 

 

And so is bipartite, if we redraw it: 
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Bipartite Graphs 

EG: C4 is a bichromatic:  

 

 

And so is bipartite, if we redraw it: 

 

 

 

 

Q:  For which n is Cn bipartite? 
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Bipartite Graphs 

A:  Cn is bipartite when n is even.  For even n  color all 

odd numbers red and all even numbers green so 

that vertices are only adjacent to opposite color. 

If n is odd, Cn is not bipartite.  If it were, color 0 red.  

So 1 must be green, and 2 must be red.  This way, all 

even numbers must be red, including vertex n-1.  

But n-1 connects to 0 .  
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Graph Patterns Complete Bipartite - Km,n  

When all possible edges exist in a simple bipartite 

graph with m red vertices and n green vertices, the 

graph is called complete bipartite and the notation 

Km,n is used.  EG:  

 

 

 

             K2,3                   K4,5 
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Subgraphs 

 

Notice that the 2-cube           occurs  

 

 inside the 3-cube             .  In other  

 

 words, Q2 is a subgraph of Q3 : 

DEF:  Let G = (V,E ) and H = (W,F ) be graphs.  H is 

said to be a subgraph of G, if W  V and F  E. 

Q:  How many Q2 subgraphs does Q3  have? 
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Subgraphs 

A:  Each face of Q3 is a Q2 subgraph so the answer is 6, as 

this is the number of faces on a 3-cube: 
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Unions 

In previous example can actually reconstruct the 3-

cube from its 6 2-cube faces: 
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Unions 

If we assign the 2-cube faces (aka Squares) the names S1, 

S2, S3, S4, S5, S6 then Q3 is the union of its faces: 

 

                Q3 = S1S2S3S4S5S6 
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Unions 

DEF:  Let G1 = (V1, E1 ) and G2 = (V2, E2 ) be two simple 

graphs (and V1,V2 may or may not be disjoint).  The 

union of G1, G2  is formed by taking the union of the 

vertices and edges.  I.E: G1G2 = (V1V2, E1E2 ). 

A similar definitions can be created for unions of 

digraphs, multigraphs, pseudographs, etc. 
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Adjacency Matrix 

We already saw a way of representing relations on a set 

with a Boolean matrix: 

  R      digraph(R)              MR 
 

1   1 

2   2 

3   3 

4   4 

 

1 

2 

3 

4 





















1000

1100

1110

1111
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Adjacency Matrix 

Since digraphs are relations on their vertex sets, can 

adopt the concept to represent digraphs.  In the 

context of graphs, we call the representation an 

adjacency matrix : 

For a digraph G = (V,E ) define matrix AG by: 

• Rows, Columns –one for each vertex in V 

• Value at i th row and j th column is 

– 1 if i th vertex connects to j th vertex (i  j ) 

– 0 otherwise 
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Adjacency Matrix -Directed Multigraphs 

Can easily generalize to directed multigraphs by putting in 

the number of edges between vertices, instead of only 

allowing 0 and 1: 

For a directed multigraph G = (V,E ) define the matrix AG 

by: 

• Rows, Columns –one for each vertex in V 

• Value at i th row and j th column is 

– The number of edges with source the i th vertex and 

target the j th vertex 
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Adjacency Matrix -Directed Multigraphs 

Q:  What is the adjacency matrix? 

1 

2 

3 4 

  Heng Huang                                                  Discrete Structures 



Spring 2014 67 

Adjacency Matrix -Directed Multigraphs 

 

 

 

A: 
1 

2 

3 





















0000

0210

0210

1030

4 
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Adjacency Matrix -General 

Undirected graphs can be viewed as directed graphs by 

turning each undirected edge into two oppositely 

oriented directed edges, except when the edge is a self-loop 

in which case only 1 directed edge is introduced.  EG: 

1 2 

3 4 

1 2 

3 4 
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Adjacency Matrix -General 

Q: What’s the adjacency matrix? 

1 2 

3 4 
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Adjacency Matrix -General 

 

 

 

A: 

 

 

 

 

Notice that answer is symmetric. 

1 2 

3 4 





















1000

0011

0122

0120
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Adjacency Matrix -General 

For an undirected graph G = (V,E ) define the matrix 

AG by: 

• Rows, Columns –one for each element of V 

• Value at i th row and j th column is the number of 

edges incident with vertices i and j. 

This is equivalent to converting first to a directed 

graph as above.  Or by allowing undirected edges to 

take us from i  to j can simply use definition for 

directed graphs. 
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