Discrete Structures CSE 2315 (Spring 2014)

Lecture 3 Formal Logic

Heng Huang, Ph.D. Department of Computer Science and Engineering

- In Propositional Logic (a.k.a Propositional Calculus or Sentential Logic), the objects are called <u>propositions</u>.
- **Definition**: A proposition is a <u>statement</u> that is either <u>true</u> or <u>false</u>, but not both.
- We usually denote a proposition by a letter: *A*, *B*, *C*, *D*, ...
- E.g. There are life forms on other planets in the universe

Logical connectives

- Connectives are used to create a compound proposition from two or more propositions
 - Negation (denote ' or \neg)
 - And or logical conjunction (denoted \wedge)
 - Or or logical disjunction (denoted \vee)
 - XOR or exclusive or (denoted \oplus)
 - Implication (denoted \Rightarrow or \rightarrow)
 - Equivalence (denoted \Leftrightarrow or \leftrightarrow)
- We define the meaning (semantics) of the logical connectives using <u>truth tables</u>

Examples of Implications

- "If this lecture ever ends, then the sun will rise tomorrow." True of False?
- "If Tuesday is a day of the week, then I am a penguin." *True* or *False*?
- "If 1+1=6, then Obama is president." True of False?
- "If the moon is made of green cheese, then I am richer than Bill Gates." *True o False*?

Logical Connective: Equivalence (1)

- **Definition:** The equivalence $A \leftrightarrow B$ is the proposition that is true when A and B have the same truth values. It is false otherwise.
- Note that it is equivalent to $(A \rightarrow B) \land (B \rightarrow A)$
- Truth table

A	В	$A \wedge B$	A∨B	A⊕B	$A \rightarrow B$	$A \leftrightarrow B$
F	F	F	F	F	Т	
F	Т	F	Т	Т	Т	
Т	F	F	Т	Т	F	
Т	Т	Т	Т	F	Т	

Logical Connective: Equivalence (2)

- The equivalence A↔B can be equivalently read as
 A if and only if B
 - A is a necessary and sufficient condition for B
 - if A then B, and conversely
 - -A iff B
- Examples
 - -x > 0 if and only if x^2 is positive
 - The alarm goes off iff a burglar breaks in
 - You may have pudding iff you eat your meat

Exercise: Which of the following equivalence is true?

• $x^2 + y^2 = 0$ if and only if x=0 and y=0

True. Both implications hold

• 2 + 2 = 4 if and only if $\sqrt{2} < 2$

True. Both implications hold.

• $x^2 \ge 0$ if and only if $x \ge 0$

False. The implication "if $x \ge 0$ then $x^2 \ge 0$ " holds. However, the implication "if $x^2 \ge 0$ then $x \ge 0$ " is false. Consider x=-1. The hypothesis $(-1)^2=1 \ge 0$ but the conclusion fails.

Converse, Inverse, Contrapositive

- Consider the proposition $A \rightarrow B$
 - Its <u>converse</u> is the proposition $B \rightarrow A$
 - Its <u>inverse</u> is the proposition $A' \rightarrow B'$
 - Its <u>contrapositive</u> is the proposition $B' \to A'$

Truth Tables

- Truth tables are used to show/define the relationships between the truth values of
 - the individual propositions and
 - the compound propositions based on them

A	В	$A \wedge B$	A∨B	A⊕B	$A \rightarrow B$	$A \leftrightarrow B$
F	F	F	F	F	Т	Т
F	Т	F	Т	Т	Т	F
Т	F	F	Т	Т	F	F
Т	Т	Т	Т	F	Т	Т

Constructing truth tables

• Construct the truth table for the following compound proposition

 $((A \land B) \lor B')$

A	B	$A \wedge B$	<i>B</i> '	$((A \land B) \lor B')$
F	F	F	Т	Т
F	Т	F	F	F
Т	F	F	Т	Т
Т	Т	Т	F	Т

Well-formed Formulas

- Definition
 - A simple proposition is a well-formed formula (wff).
 - If A is a wff, then so is A'.
 - If A and B are wffs, then so are (A), $A \lor B$, $A \land B$, $A \rightarrow B$ and $A \leftrightarrow B$.
 - These are the only wffs.
- Example
 - $A \lor B$ is not a wff.
- Precedence
 - Ambiguity is resolved using the following order of precedence.
 - parentheses.
 - negation.
 - conjunction, disjunction.
 - implication.
 - equivalence.
 - Use brackets and forget about precedence!

• Definition

A wff which is always **true** is called a tautology, while a wff which is always **false** is called a contradiction.

Example
 A ∨ A'

• Definition

If A and B are two wffs, and A \leftrightarrow B is a tautology, then A and B are said to be **equivalent wffs** (denoted by A \Leftrightarrow B) and can be substituted for one another.

- Example $(A \rightarrow B) \Leftrightarrow (B' \rightarrow A')$
- Tautology checking How do you check if a wff is a tautology? Truth-tables!

Proving Equivalence via Truth Tables

• *Ex.* Prove that $p \lor q \Leftrightarrow (p' \land q')'$.

Common Tautological Equivalences

- De Morgan's Laws $(A \lor B)' \Leftrightarrow (A' \land B')$
- Commutativity $(A \lor B) \Leftrightarrow (B \lor A)$
- Associativity $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
- Distributivity $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$
- Exercise

Prove all the above tautologies.

$$(\mathbf{A} \land \mathbf{B})' \Leftrightarrow (\mathbf{A'} \lor \mathbf{B'})$$

 $(\mathbf{A} \wedge \mathbf{B}) \Longleftrightarrow (\mathbf{B} \wedge \mathbf{A})$

$$(A \land B) \land C \Leftrightarrow A \land (B \land C)$$

 $\mathbf{A} \land \! (\mathbf{B} \lor \mathbf{C}) \Leftrightarrow \! (\mathbf{A} \land \mathbf{B}) \lor \! (\mathbf{A} \land \mathbf{C})$

Homework and Slides Strategies

- Either type up or handwritten is ok. The handwritten work has to be clear and recognizable.
- How to hand in? Please choose one of the following ways:
 - email your homework to me at heng@uta.edu, or
 - hand it in class (preferred).
 - your homework should be turned in before or in the class on due date.
- Please put your name and ID number on your homework. There is no requirement on layout and font.