Discrete Structures CSE 2315 (Spring 2014)

Lecture 4 Argument

Heng Huang, Ph.D. Department of Computer Science and Engineering

Recall: Tautologies

• Definition

A wff which is always **true** is called a tautology, while a wff which is always **false** is called a contradiction.

- Example $A \lor A'$
- Tautology checking How do you check if a wff is a tautology? Truth-tables!

Common Tautological Equivalences

- De Morgan's Laws $(A \lor B)' \Leftrightarrow (A' \land B')$
- Commutativity $(A \lor B) \Leftrightarrow (B \lor A)$
- Associativity $(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
- Distributivity $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$
- Exercise
 - Try to prove all the above tautologies.

$$(\mathbf{A} \wedge \mathbf{B})' \Leftrightarrow (\mathbf{A'} \vee \mathbf{B'})$$

 $(A \land B) \Leftrightarrow (B \land A)$

$$(A \land B) \land C \Leftrightarrow A \land (B \land C)$$

 $\mathbf{A} \land \! (\mathbf{B} \lor \mathbf{C}) \Leftrightarrow \! (\mathbf{A} \land \mathbf{B}) \lor \! (\mathbf{A} \land \mathbf{C})$

Spring 2014

• An argument is a statement of the form:

$$(P_1 \land P_2 \land \ldots P_n) \rightarrow Q$$

where each of the P_i s and Q are propositions. The P_i s are called the hypotheses and Q is called the conclusion.

- When can Q be logically deduced from P_1, P_2, \ldots, P_n ?
- 2 + 2 = 4 and 7 + 3 = 10. Therefore, a minute has 60 seconds. Is this valid?

Valid Arguments

• The argument

$$(P_1 \land P_2 \land \ldots P_n) \rightarrow Q$$

is said to be valid, if it is a tautology.

- The validity of an argument is based purely on its intrinsic structure and not on the specific meanings attached to its constituent propositions.
- If John is hungry, he will eat. John is hungry. Therefore, he will eat.

```
Symbolically, (H \rightarrow E) \land H \rightarrow E.
```

Spring 2014

Heng Huang

Checking Validity

• Truth-table Method

Simply check if all rows of the truth-table are **true**. Horribly expensive!

• Derivation Rules

We will use a set of derivation rules and manipulate the hypotheses to arrive at the desired conclusion.

• Proof Sequence

A proof sequence is a sequence of wffs in which each wff is either a hypothesis or the result of applying one of the formal system's derivation rules to earlier wffs in the sequence.

Derivation Rules

- Rule Types
 - Equivalence Rules.
 - Inference Rules.
- Equivalence Rules

Expression	Equivalent to	Name of Rule
$P \lor Q$	$Q \lor P$	Commutative - comm
$P \wedge Q$	$oldsymbol{Q}\wedge oldsymbol{P}$	
$P \lor (Q \lor R)$	$(P \lor Q) \lor R$	Associative -ass
$P \wedge (Q \wedge R)$	$(P \land Q) \land R$	
$(P \lor Q)'$	$P' \wedge Q'$	De Morgan
$(P \wedge Q)'$	$P' \lor Q'$	
P ightarrow Q	$P' \lor Q$	Implication - imp
P	(<i>P'</i>) <i>'</i>	Double negation - dn
$P \leftrightarrow Q$	$(P \leftarrow Q) \land (Q \leftarrow P)$	Definition of equivalence

Spring 2014

Heng Huang

Derivation Rules

• Inference Rules

From	Can Derive	Name of Rule
P, P ightarrow Q	Q	<i>Modus Ponens</i> (mp)
P ightarrow Q, Q'	P'	<i>Modus Tollens</i> (mt)
P, Q	$P \wedge Q$	Conjunction
$P \wedge Q$	<i>P</i> , <i>Q</i>	Simplification
Р	$P \lor Q$	Addition