Discrete Structures CSE 2315 (Spring 2014)

Lecture 9 Proof

Heng Huang, Ph.D. Department of Computer Science and Engineering

Proof (Chapter 2)

- Arguments are statements having the form P → Q or more generally P(x) →Q(x). We are no longer interested in establishing validity, i.e., truth in all interpretations. In Mathematics, we are interested in establishing truth in a specific interpretation. For instance, Pythagoras' theorem applies to the domain of triangles, Fermat's theorem applies to numbers and so on.
- Arguments which are contextually true (as opposed to being universally true) are called **theorems**. If an argument is not yet proven, it is called a conjecture.
- How to prove theorems? Simply add additional facts as hypotheses and then use rules of predicate logic (or propositional logic)!

Proof Techniques

- Applicable to all domains
 - Exhaustive proof.
 - Direct proof.
 - Proof by contraposition.
 - Proof by contradiction.
 - Serendipity.
- Applicable to Structured Domains
 - Mathematical Induction.
 - Diagonalization.

• Simply enumerate all elements of the domain and check if the argument holds for each element. If it does, then the conjecture is a theorem.

Let $D = \{1, 2, 3, 4, 5, 6, 7, 8\}$. If $x \in D$ and x is divisible by 4, then x is divisible by 2.

Let $P(x) \equiv x$ is divisible by 4, and $Q(x) \equiv x$ is divisible by 2. The conjecture is $(\forall x \in D)P(x) \rightarrow Q(x)$. Check for x = 1, x = 2, ...

- Only works when the domain is finite.
- Example

Let $D = \{0, 1, 2, 3, 4, 5\}$. For all $x \in D$, $x^2 \le 10 + 5 \cdot x$.

Spring 2014

Direct Proof

- Given the conjecture $P \rightarrow Q$, assume that P is true and show that Q must be true.
- Example

Show that the product of two even integers is even. Formally, $(\forall x)(\forall y)$ (x is even \land y is even) \rightarrow xy is even

• Proof.

Since x is even, $x = 2 \cdot k$, for some integer k. Since y is even, $y = 2 \cdot r$, for some integer r. Therefore, $xy = (2 \cdot k) \cdot (2 \cdot r) = 2 \cdot (2 \cdot k \cdot r) = 2 \cdot p$, for some integer p. It follows that xy is even.

• Example

Show that if an integer is divisible by 4, then it is divisible by 2.

Spring 2014

Heng Huang

Proof by Contraposition

- Given the argument $P \rightarrow Q$, use the direct proof technique to show that $Q' \rightarrow P'$. We know that $P \rightarrow Q \Leftrightarrow Q' \rightarrow P'$!
- Do not confuse contrapositive with converse!
- Example

Show that if the square of an integer is odd, then x must be odd. Formally, $(x^2 \text{ is odd}) \rightarrow x \text{ is odd}$ Proof.

We will instead show that if x is even, then x² must be even! But this follows from the example used in Direct Proof!

Proof by Contradiction

- Show that [(P ∧ Q') → false] → (P → Q) is a tautology. It follows that if we show that P ∧ Q' is unequivocally false, we have in fact, proven P → Q!
- Definition A rational number is one that can be expressed in the form p/q, where p and q are integers, with no common divisor and $q \mathrel{!=} 0$. The former condition is denoted by gcd(p, q) = 1.
- Example Show that $\sqrt{2}$ is not rational.

- Prayer! Good Luck.
- Example

Number of games in a tennis tournament.