1.

(1) $A^{\prime} \quad$ hypothesis
(2) $B^{\prime}->(C->A)$ hypothesis
(3) B->A hypothesis
(4) $B^{\prime} \quad 1,3, \mathrm{mt}$
(5) C->A $2,4, \mathrm{mp}$

You can also use the deduction method to prove this problem.

2.

Using the deduction method, we can rewrite the given argument as:

$$
\left[(\forall x)[P(x) \vee Q(x)] \wedge[(\exists x) P(x)]^{\prime}\right] \rightarrow(\forall x) Q(x)
$$

Consider the following proof sequence:
(i) $[(\exists x) P(x)]^{\prime} \quad$ hypothesis.
(ii) $P(a)^{\prime}$ (i), e.i.
(iii) $(\forall x)[P(x) \vee Q(x)]$ hypothesis.
(iv) $P(a) \vee Q(a)$ (iii), u.i.
(v) $P(a)^{\prime} \vee Q(a)$ (iv), implication.
(vi) $Q(a) \quad$ (ii), (v), Modus Ponens.
(vii) $(\forall x) Q(x)$ u.g.

The last step is justified, since $Q(a)$ was not deduced from a hypothesis in which a is a free variable nor has $Q(a)$ been deduced by existential instantiation from a formula in which a is a free variable.
3.

Use the same proof from Question 8 of Homework 2. The solution is posted in course website.
4.

1. $(\exists x)[W(x) \wedge P(x)]$
2. $(\exists x)\left[W(x) \wedge P(x)^{\prime}\right]$
3. $(\forall n)[W(n) \rightarrow(\exists m)[W(m) \wedge G(m, n)]]$
4. $(\exists x)[P(x) \wedge(\forall y)[P(y) \rightarrow G(x, y)]]$
