1.

Let a_n = the number of decimal strings of length n with no occurrences of "000".

Case 2:
$$\frac{1}{\text{"0"}} \frac{9}{\text{can be 1-9}}$$
 length $n-2$ 9 a_{n-2} possibilities

Case 3:
$$\frac{1}{0}$$
 $\frac{1}{0}$ $\frac{9}{\cos be 1-9}$ $\frac{9a_{n-3}}{\cos be 1-9}$ 99a_{n-3} possibilities

Answer:
$$a_n = 9a_{n-1} + 9a_{n-2} + 9a_{n-3}$$

2.

- (a) Let $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$. It follows that $X \in \mathcal{P}(A)$ or $X \in \mathcal{P}(B)$ or both. Assume that $X \in \mathcal{P}(A)$. It follows that $X \subseteq A$ and hence, $X \subseteq (A \cup B)$. Hence, $X \in \mathcal{P}(A \cup B)$. In similar fashion, we can show that if $X \in \mathcal{P}(B)$, then $X \in \mathcal{P}(A \cup B)$. Thus, $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
- (b) Observe that,

$$(A \cup C) \cap [(A \cap B) \cup (C' \cap B)]$$

$$= (A \cup C) \cap [(B \cap A) \cup (B \cap C')] \qquad \text{(commutativity)}$$

$$= (A \cup C) \cap [B \cap (A \cup C')] \qquad \text{(distributitivity)}$$

$$= (A \cup C) \cap [(A \cup C') \cap B] \qquad \text{(commutativity)}$$

$$= [(A \cup C) \cap (A \cup C')] \cap B \qquad \text{(associativity)}$$

$$= [A \cap (C \cup C')] \cap B \qquad \text{(distributivity)}$$

$$= (A \cap S) \cap B \qquad \text{(complement properties)}$$

$$= (A \cap B) \qquad \text{(identity properties)}$$

3.

Solution: Let

- (a) A denote the set of people with checking accounts,
- (b) ${\it B}$ denote the set of people with regular savings accounts, and
- (c) C denote the set of people with money market savings accounts.

We have that,

(a)
$$|A \cup B \cup C| = 214$$
,

(b)
$$|A| = 189$$
,

(c)
$$|B| = 73$$
,

(d)
$$|C| = 114$$
,

(e)
$$|A \cap B| = 69$$
, and

(f)
$$|B \cap C| = 0$$

We are required to calculate $|A \cap C|$. From the principle of inclusion and exclusion, we know that,

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$$

Since $|B \cap C| = 0$, it trivially follows that $|A \cap B \cap C| = 0$ and hence, $|A \cap C| = 93$. \square

4.

Notation: "E" = "even". "-" means "any digit". Let A be the set of decimal strings of the form "EEE--". Let B be the set of decimal strings of the form "0----". Let C be the set of decimal strings of the form "--EEE".

|A|:
$$\frac{5}{E} = \frac{5}{E} = \frac{10}{E} = \frac{10}{$$

|B|:
$$\frac{1}{\text{"0"}} \frac{10}{\text{any}} \frac{10}{\text{any}} \frac{10}{\text{any}} \frac{10}{\text{any}}$$
 Product = 10,000

|C|:
$$\frac{10}{\text{any}} \frac{10}{\text{any}} \frac{5}{E} \frac{5}{E} \frac{5}{E}$$
 Product = 12,500 (symmetric to |A| case)

$$|A \cap B|$$
: $\frac{1}{"0"} \frac{5}{E} \frac{5}{E} \frac{10}{\text{any}} \frac{10}{\text{any}}$ Product = 2,500

$$|B \cap C|$$
: $\frac{1}{"0"} \frac{10}{\text{any }} \frac{5}{E} \frac{5}{E} \frac{5}{E}$ Product = 1,250

$$|A \cap C|$$
: $\frac{5}{E} \frac{5}{E} \frac{5}{E} \frac{5}{E} \frac{5}{E}$ Product = 3,125

$$|A \cap B \cap C|$$
: $\frac{1}{0} = \frac{5}{E} = \frac{5}{E} = \frac{5}{E}$ Product = 625

So, $|A \cup B \cup C| = 12,500 + 10,000 + 12,500 - 2,500 - 1,250 - 3,125 + 625$ Answer: 28,750.